Variation in survival and stem quality of Douglas-fir provenances: Insights from 47-year-old common garden experiments in Romania
DOI:
https://doi.org/10.15835/nbha53314695Keywords:
adaptation, common garden experiments, Douglas-fir, genetic variance, wood qualityAbstract
Understanding the genetic variation of wood quality traits is essential for developing breeding strategies to improve the quality of Douglas-fir plantations. This study assessed the performance of 61 Douglas-fir provenances established in 1977 established in three Romanian common garden experiments (Aleșd, Făget and Padeș). A mixed linear model was applied to estimate the variance components, and Pearson correlations were used to explore trait relationships. The results revealed significant provenance effects for branch angle, branch diameter, number of branches, and survival at Aleșd, and for branch angle and diameter at Făget. Survival and branch traits, particularly branch angle and diameter, were the most stable traits across the field trials and hence suitable for early selection and breeding across similar site conditions. Over 50% of trait variance was accounted by stem form, forking index, and number of branches due to strong environmental effects. Provenance-by-environment interaction was significant only for branch diameter, suggesting that this trait is more sensitive to site-specific conditions. The other traits had stable provenance rankings across environments due to non-significant interaction effects. These findings highlight the potential to use selected provenances as a genetic base for renewing the Douglas-fir breeding program in Romania. Selecting provenances with high survival and favourable branch traits improves timber quality and plantation resilience. The study also demonstrates the relevance of long-term provenance trials in identifying climate-resilient genetic resources, which is critical for maintaining forest productivity and stability under future climate change scenarios.
References
Aitken SN, Bemmels JB (2016). Time to get moving: assisted gene flow of forest trees. Evolutionary Applications 9(1):271-290. https://doi.org/10.1111/eva.12293
Alexandru A-M, Mihai G, Stoica E, Curtu AL (2023). Multi-trait selection and stability in Norway spruce (Picea abies) provenance trials in Romania. Forests 14(3):456. https://doi.org/10.3390/f14030456
Bastien JC, Sanchez L, Michaud D (2013). Forest tree breeding in Europe. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6146-9
Brus R, Pötzelsberger E, Lapin K, Brundu G, Orazio C, Straigyte L, Hasenauer H (2019). Extent, distribution and origin of non-native forest tree species in Europe. Scandinavian Journal of Forest Research 34:533-544. https://doi.org/10.1080/02827581.2019.1676464
Cannell MGR, Rothery P, Ford E 1(984). Competition within stands of Picea sitchensis and Pinus contorta. Annals of Botany 53(3):349-362. https://doi.org/10.1093/oxfordjournals.aob.a086699
Castellanos-Hernández OA, Rodríguez-Sahagún A, Acevedo-Hernández GJ, Herrera-Estrella LR (2011). Genetic transformation of forest trees. In Alvarez MA (Ed). Genetic Transformation. IntechOpen. https://doi.org/10.5772/24354
Climent J, Alía R, Karkkainen K, Bastien C, Benito-Garzon M, Bouffier L, … Cavers S (2024). Trade-offs and trait integration in tree phenotypes: consequences for the sustainable use of genetic resources. Current Forestry Reports 10:196-222. https://doi.org/10.1007/s40725-024-00217-5
Depardieu C, Girardin MP, Nadeau S, Lenz P, Bousquet J, Isabel N (2020). Adaptive genetic variation to drought in a widely distributed conifer suggests a potential for increasing forest resilience in a drying climate. New Phytologist 227:427-439. https://doi.org/10.1111/nph.16551
Di Fabio A, Buttò V, Chakraborty D, O’Neill GA, Schueler S, Kreyling J (2024). Climatic conditions at provenance origin influence growth stability to changes in climate in two major tree species. Frontiers in Forests and Global Change 7:1422165. https://doi.org/10.3389/ffgc.2024.1422165
Ducci F, De Cuyper B, Pâques LE, Wolf H (2012). Reference protocols for assessment of trait and reference genotypes to be used as standards in international research projects. Consiglio per la Ricerca e la Sperimentazione in Agricoltura Centro di Ricerca per la Selvicoltura (CRA SEL), Arezzo, Italy p 82.
Eilmann B, de Vries SMG, den Ouden J, Mohren GMJ, Sauren P, Sass-Klaassen U (2013). Origin matters! Difference in drought tolerance and productivity of coastal Douglas-fir (Pseudotsuga menziesii (Mirb.)) provenances. Forest Ecology and Management 302:133-143. https://doi.org/10.1016/j.foreco.2013.03.031
Enescu V (1975). Ameliorarea principalelor specii forestiere [Breeding of the main forest tree species]. Ceres, București, p 314.
Enescu V (1984). Cercetări de proveniență la duglas şi larice [Provenance research on Douglas-fir and larch]. Institutul de Cercetări şi Amenajări Silvice, București.
Leskinen P, Lindner M, Verkerk PJ, Nabuurs GJ, Van Brusselen J, Kulikova E, Hassegawa M, Lerink B (2020). Russian forests and climate change. In Leskinen P, Lindner M, Verkerk PJ, Nabuurs GJ, Van Brusselen J, Kulikova E, Hassegawa M, Lerink B (Eds). What science can tell us 11. European Forest Institute p 136 https://doi.org/10.36333/wsctu11
Falk DA, van Mantgem PJ, Keeley JE, Gregg RM, Guiterman CH, Tepley AJ, … Marshall LA (2022). Mechanisms of forest resilience. Forest Ecology and Management 512:120129. https://doi.org/10.1016/j.foreco.2022.120129
Ghirardo A, Blande JD, Ruehr NK, Balestrini R, Külheim C (2022). Editorial: adaptation of trees to climate change: mechanisms behind physiological and ecological resilience and vulnerability. Frontiers in Forests and Global Change 4:831701. https://doi.org/10.3389/ffgc.2021.831701
Hankin LE, Leger EA, Bisbing SM (2023). Reforestation of high elevation pines: direct seeding success depends on seed source and sowing environment. Ecological Applications 33:e2897. https://doi.org/10.1002/eap.2897
Kerns BK, Day MA, Ikeda D (2020). Long-term seeding outcomes in slash piles and skid trails after conifer removal. Forests 11:839. https://doi.org/10.3390/f11080839
Konnert M, Alizoti P (2016). Short reviews on the genetics and breeding of introduced to Europe forest tree species. In Konnert M, Alizoti P (Eds.) Slovenian Forestry Institute, Silva Slovenica Publishing Centre, Ljubljana p 49. https://doi.org/10.20315/SFS.151
Kuznetsova A, Brockhoff PB, Christensen RHB, Jensen SP (2020). lmerTest: Tests in linear mixed effects models. Retrived 2024 Septemper 10 from https://cran.r-project.org/web/packages/lmerTest/index.html
Lantz CW (2008). Genetic improvement of forest trees. Springer, Dordrecht. Retrieved 2025 July 8 from https://www.fs.usda.gov/nsl/Wpsm/Chapter2.pdf.
Lausberg MJF, Cown DJ, McConchie DL, Skipwith JH (1996). Variation in some wood properties of Pseudotsuga menziesii provenances grown in New Zealand. New Zealand Journal of Forestry Science 26:497-509.
Li Y, Suontama M, Burdon RD, Dungey HS (2017). Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genetics and Genomes 13:60. https://doi.org/10.1007/s11295-017-1144-x
Liepe KJ, van der Maaten E, van der Maaten-Theunissen M, Kormann JM, Wolf H, Liesebach M (2024). Ecotypic variation in multiple traits of European beech: selection of suitable provenances based on performance and stability. European Journal of Forest Research 143:831-845. https://doi.org/10.1007/s10342-024-01656-2
Liu H, Xiong K, Yu Y, Li T, Qing Y, Wang Z, Zhang S (2021). A review of forest ecosystem vulnerability and resilience: implications for the rocky desertification control. Sustainability 13:11849. https://doi.org/10.3390/su132111849
Longo BL, Brüchert F, Becker G, Sauter UH (2019). Validation of a CT knot detection algorithm on fresh Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) logs. Annals of Forest Science 76:16. https://doi.org/10.1007/s13595-019-0812-4
Lowell E, Maguire D, Briggs D, Turnblom E, Jayawickrama K, Bryce J (2014). Effects of silviculture and genetics on branch/knot attributes of coastal Pacific Northwest Douglas-fir and implications for wood quality—a synthesis. Forests 5:1717-1736. https://doi.org/10.3390/f5071717
Macdonald E, Hubert J (2002). A review of the effects of silviculture on timber quality of Sitka spruce. Forestry: An International Journal of Forest Research 75:107-138. https://doi.org/10.1093/forestry/75.2.107
Magalska L, Howe GT (2014). Genetic and environmental control of Douglas-fir stem defects. Forest Ecology and Management 318:228-238. https://doi.org/10.1016/j.foreco.2014.01.002
Marchi M, Castellanos-Acuña D, Hamann A, Wang T, Ray D, Menzel A (2020). ClimateEU, scale-free climate normals, historical time series, and future projections for Europe. Scientific Data 7:428. https://doi.org/10.1038/s41597-020-00763-0
Mátyás C (1996). Climatic adaptation of trees: rediscovering provenance tests. Euphytica 92:45-54. https://doi.org/10.1007/BF00022827
Milesi P, Berlin M, Chen J, Orsucci M, Li L, Jansson G, Karlsson B, Lascoux M (2019). Assessing the potential for assisted gene flow using past introduction of Norway spruce in southern Sweden: local adaptation and genetic basis of quantitative traits in trees. Evolutionary Applications 12:1946-1959. https://doi.org/10.1111/eva.12855
Moise M (1998). Studiul variabilităţii genetice interpopulaţionale la larice (Larix decidua Mill.) şi duglas (Pseudotsuga menziesii (Mirb.) Franco) în culturi comparative multistaţionale din România. PhD thesis. Academia de Științe Agricole și Silvice, București.
Nagel LM, Palik BJ, Battaglia MA, D’Amato AW, Guldin JM, Swanston CW, … Roske MR (2017). Adaptive silviculture for climate change: a national experiment in manager-scientist partnerships to apply an adaptation framework. Journal of Forestry 115:167-178. https://doi.org/10.5849/jof.16-039
Nanson A (2004). Génétique et amélioration des arbres forestiers. Presses Agronomiques de Gembloux, Gembloux.
Nicolescu VN, Mason WL, Bastien JC, Vor T, Petkova K, Podrázský V, … Mihăilescu G (2023). Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in Europe: an overview of management practices. Journal of Forestry Research 34:871-888. https://doi.org/10.1007/s11676-023-01607-4
Opgenoorth L, Dauphin B, Benavides R, Heer K, Alizoti P, Martínez-Sancho E, … Cavers S (2021). The GenTree platform: growth traits and tree-level environmental data in 12 European forest tree species. GigaScience 10:giab010. https://doi.org/10.1093/gigascience/giab010
Osborne NL, Maguire DA (2016). Modelling knot geometry from branch angles in Douglas-fir (Pseudotsuga menziesii). Canadian Journal of Forest Research 46: 215–224. https://doi.org/10.1139/cjfr-2015-0145
Pâques LE (2013). Forest tree breeding in Europe. Current state-of-the-art and perspectives. In Pâques LE (Ed). Springer Dordrecht p 527. https://doi.org/10.1007/978-94-007-6146-9
Pedlar JH, McKenney DW, Allen DJ (2024). Effect of tree species and seed origin on climate change trial outcomes in Southern Ontario. New Forests 55:63-79. https://doi.org/10.1007/s11056-023-09965-x
R Core Team (2024). R: a language and environment for statistical computing. R Foundation for Statistical Computing. Accessed 2025 June 14 from https://www.R-project.org
Risk C, McKenney DW, Pedlar J, Lu P (2021). A compilation of North American tree provenance trials and relevant historical climate data for seven species. Scientific Data 8:29. https://doi.org/10.1038/s41597-021-00820-2
Ronch FD, Caudullo G, de Rigo D (2016). Pseudotsuga menziesii in Europe: distribution, habitat, usage and threats. In: San-Miguel-Ayanz J, de Rigo D, Caudullo G, Houston Durrant T, Mauri A (Eds). European atlas of forest tree species. Publications Office of the European Union, Luxembourg. https://forest.jrc.ec.europa.eu/en/european-atlas/atlas-download-page/
Ross R (2021). Wood handbook-wood as an engineering material. General Technical Report FPL-GTR-282. Madison, WI: U.S. Department of Agriculture, Forest Service, Forest Products Laboratory p 543.
Schermann N, Adams WT, Aitken SN (1977). Genetic parameters of stem form traits in a 9-year-old coastal Douglas-fir progeny test in Washington. Silvae Genetica 26:149-155.
Schmidt U, Nyssen B, Muys B, Lei P, Pyttel P (2016). The history of introduced tree species in Europe in a nutshell. In Krumm F, Vítková L (Eds). Introduced tree species in European forests: challenges and opportunities. European Forest Institute, Freiburg pp 46-54.
Schueler S, George JP, Karanitsch-Ackerl S, Mayer K, Klumpp R, Grabner M (2021). Evolvability of drought response in four native and non-native conifers: opportunities for forest and genetic resource management in Europe. Frontiers in Plant Science 12:648312. https://doi.org/10.3389/fpls.2021.648312
Seho M, Kohnle U (2014). The international Douglas-fir provenance test 1958: differences in branch and stem characteristics on trials in south-western Germany. Allgemeine Forst- und Jagdzeitung 185(1/2):27-42.
Sestras AF, Sălăgean T, Roman AM, Morar IM, Dan C, Truta AM, ... Sestras P (2025). Growth and resistance to mechanical stress in the young phase of black locust (Robinia pseudoacacia L.) trees based on geographical provenances. Journal of Environmental Management 384:125465. https://doi.org/10.1016/j.jenvman.2025.125465
Smolnikar P, Brus R, Jarni K (2021). Differences in growth and log quality of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) provenances. Forests 12:287. https://doi.org/10.3390/f12030287
Şofletea N, Curtu L (2007). Dendrologie. Editura Universităţii Transilvania, Braşov, Romania.
St Clair JB, Mandel NL, Vance-Borland KW (2005). Genecology of Douglas-fir in western Oregon and Washington. Annals of Botany 96:1199-1214. https://doi.org/10.1093/aob/mci278
Stoica E, Alexandru AM, Mihai G, Scarlatescu V, Curtu AL (2025). Evaluating Douglas-fir provenances in Romania through multi-trait selection. Plants 14:1347. https://doi.org/10.3390/plants14091347
Temel F, Adams WT (2000). Persistence and age-age genetic correlations of stem defects in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii (Mirb.) Franco). Silvae Genetica 49:5-11.
Todoroki CL, Monserud RA, Parry DL (2005). Predicting internal lumber grade from log surface knots: actual and simulated results. New Zealand Journal of Forestry Science 35:99-119.
Ukrainetz NK, Kang KY, Aitken SN, Stoehr M, Mansfield SD (2008). Heritability and phenotypic and genetic correlations of coastal Douglas-fir (Pseudotsuga menziesii) wood quality traits. Canadian Journal of Forest Research 38:1536-1546. https://doi.org/10.1139/X07-234
Vargas-Hernández J, Adams WT, Joyce D (2003). Quantitative genetic structure of stem form and branching traits in Douglas-fir seedlings and implications for early selection. Silvae Genetica 52:36-44.
Wei T, Simko V (2021). corrplot: visualization of a correlation matrix. R package version 0.92. Accessed 2025 July 1 from https://cran.r-project.org/package=corrplot
White TL, Adams WT, Neale DB (2009). Forest genetics. CABI Publishing, Wallingford, UK. https://doi.org/10.1079/9781845932855.0000
Zerbe S (2003). Vegetation and future natural development of plantations with the black poplar hybrid Populus × euramericana Guinier introduced to Central Europe. Forest Ecology and Management 179:293-309. https://doi.org/10.1016/S0378-1127(02)00543-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Emanuel STOICA, Alin M. ALEXANDRU, Georgeta MIHAI, Alexandru L. CURTU

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:

Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.









.png)






