Changes in the plant composition of an Amelichloa clandestina (Hack.) grassland after non-selective grazing

Authors

  • Sait JUANES-MARQUEZ Universidad Autónoma Agraria Antonio Narro, Doctorado en Ciencias en Producción Agropecuaria, Periférico Raúl López Sanches, Valle Verde, 27054, Torreón, Coahuila (MX) https://orcid.org/0000-0003-4284-4837
  • Perpetuo ALVARES-VÁZQUEZ Universidad Autónoma Agraria Antonio Narro, Departamento de Recursos Naturales Renovables, 25315, Saltillo C.P. 25315, Coahuila (MX) https://orcid.org/0000-0003-2666-3999
  • Miguel MELLADO-BOSQUE Universidad Autónoma Agraria Antonio Narro, Departamento de Nutrición Animal, 25315, Saltillo C.P. 25315, Coahuila (MX) https://orcid.org/0000-0002-3341-0060
  • Juan A. ENCINA-DOMÍNGUEZ Universidad Autónoma Agraria Antonio Narro, Departamento de Recursos Naturales Renovables, 25315, Saltillo C.P. 25315, Coahuila (MX) https://orcid.org/0000-0002-2758-1197
  • Aurelio PEDROZA-SANDOVAL Universidad Autónoma Chapingo, Unidad Regional Universitaria de Zonas Áridas, Carretera Gómez Palacio - Ciudad Juárez, km 40, 35230, Bermejillo, Durango (MX) https://orcid.org/0000-0002-8008-8641
  • Martin CADENA-ZAPATA Universidad Autónoma Agraria Antonio Narro, Departamento de Maquinaria Agrícola, 25315, Saltillo C.P. 25315, Coahuila (MX) https://orcid.org/0000-0003-2401-942X

DOI:

https://doi.org/10.15835/nbha53314567

Keywords:

ACC, Amelichloa clandestina, grassland, grazing, richness and diversity, stocking rate

Abstract

This study evaluated the effect of intensive non-selective grazing on the richness, diversity, and structure of a grassland dominated by Amelichloa clandestina (Hack.) Arriaga & Barkworth at Rancho “Los Ángeles”, Saltillo, Coahuila. Experimental plots of 600 m² were established in a 2.23 ha area, with three replicates per season. Two treatments were applied: grazed and ungrazed (control) plots, separated by electric fencing. These plots were subjected to intensive grazing 333 livestock units (LU ha-1) at the beginning of each season, beginning in the winter of 2023. In the fall of 2024, the cover of all species in five quadrats (1 m²) per plot was quantified. Richness (Margalef), diversity (Shannon-Wiener), dominance (Simpson), evenness, and floristic similarity (Sørensen-Dice) indices were calculated. Canonical correspondence analysis (CCA) was used to evaluate the relationship between moisture and compaction. ANOVA and Tukey's test were performed. Thirty-seven species grouped into 19 families were recorded, with the greatest species richness in winter (30 species; Margalef index of 4.2). Spring and summer showed the most significant similarity (80%). The species A. clandestina, Ambrosia confertiflora, and Clematis drummondii were associated with higher humidity in summer and autumn. In conclusion, intensive non-selective grazing, carried out in different seasons, enhanced species richness and diversity, particularly during winter, spring, and summer.

References

Acocks JPH (1966). Non‐selective grazing as a means of veld reclamation. Proceedings of the Annual Congresses of the Grassland Society of Southern Africa 1(1):33-39. https://doi.org/10.1080/00725560.1966.9648517

Amezaga I, Mendarte S, Albizu I, Besga G, Garbisu C, Onaindia M (2004). Grazing intensity, aspect, and slope effects on limestone grassland structure. Journal of Range Management 57(6):606-612. https://doi.org/10.2111/1551-5028(2004)057[0606:GIAASE]2.0.CO;2

Aranda MJ, Tognetti PM, Mochi LS, Mazía N (2023). Intensive rotational grazing in pastures reduces the early establishment of an invasive tree species. Biological Invasions 25(10):3137-3150. https://doi.org/10.1007/s10530-023-03096-2

Arévalo JR, Encina-Domínguez JA, Juanes-Márquez S, Álvarez-Vázquez P, Nuñez-Colima JA, Mellado M (2021). Restoration of rangelands invaded by Amelichloa clandestina (Hack.) Arriaga & Barkworth after 12 years of agriculture abandonment (Coahuila, Mexico). Agriculture 11(9):886. https://doi.org/10.3390/agriculture11090886

Barkworth ME (1982). Embryological characters and the taxonomy of the Stipeae (Gramineae). Taxon 31(2):233-243. https://doi.org/10.2307/1219986

Bleicher SS, Kotler BP, Downs CJ, Brown JS (2020). Intercontinental test of constraint‐breaking adaptations: Testing behavioural plasticity in the face of a predator with novel hunting strategies. Journal of Animal Ecology 89(8):1837-1850. https://doi.org/10.1111/1365-2656.13234

Borer ET, Seabloom EW, Gruner DS, Harpole WS, Hillebrand H, Lind EM, … Yang LH (2014). Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508(7497):517-520. https://doi.org/10.1038/nature13144

Bullock JM, Pakeman RJ (1997). Grazing of lowland heath in England: management methods and their effects on healthland vegetation. Biological Conservation 79(1):1-13. https://doi.org/10.1016/S0006-3207(96)00117-6

Chapman DF, McCaskill MR, Quigley PE, Thompson AN, Graham JF, Borg D, Clark SG (2003). Effects of grazing method and fertiliser inputs on the productivity and sustainability of phalaris-based pastures in Western Victoria. Australian Journal of Experimental Agriculture 43(8):785-798. https://doi.org/10.1071/EA02198

Chaturvedi RK, Raghubanshi AS (2018). Effect of soil moisture on composition and diversity of trees in tropical dry forest. MOJ Ecology & Environmental Sciences 3(1):6-8. https://doi.org/10.15406/mojes.2018.03.00059

Chen W, Ye M, Pan X, Li M, Zeng G, Zhang X, Che J (2024). Relationships and changes in grassland community diversity and biomass in the pastoral areas of the Two Rivers under grazing disturbance. Agronomy 14(6):1336. https://doi.org/10.3390/agronomy14061336

Ellenberg H, Leuschner C (2010). Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht [Vegetation of Central Europe including the Alps: from an ecological, dynamic and historical perspective] (6th ed). In Leuschner E, Derschke H (Eds). Ulmer, Stuttgart. https://d-nb.info/1007232765

García E (2004). Modificaciones al sistema de clasificación climática de Köeppen [Modifications to the Köeppen climate classification system]. Instituto de Geografía-UNAM: Serie Libros (5th ed), México p 50.

Hobbs RJ, Huenneke LF (1992). Disturbance, diversity, and invasion: implications for conservation. Conservation biology 6(3):324-337. https://doi.org/10.1046/j.1523-1739.1992.06030324.x

Huston MA (1994). Biological diversity: the coexistence of species. Cambridge University Press, United Kingdom.

Juanes-Márquez S, Encina-Domínguez JA, Álvarez-Vázquez P, Lara-Reimers EA, Camposeco-Montejo N, García-López JI (2023). Caracterización del banco de semilla de un zacatal en el sureste de Coahuila [Characterization of the seed bank of a grassland in the southeast of Coahuila]. Revista mexicana de ciencias agrícolas 14(1):97-107. https://doi.org/10.29312/remexca.v14i1.3386

Juanes-Márquez S, Encina-Domínguez JA, Torres-Mora M, Mellado M, Álvarez-Vázquez P, Lara-Reimers EA (2024). Effect of cutting, burning, and herbicide application to Amelichloa clandestina (Hack.) Arriaga & Barkworth grassland on the structure and species diversity of this grassland ecosystem. Revista Bio Ciencias 11:e1459.

Kahn LP, Earl JM, Nicholls M (2010). Herbage mass thresholds rather than plant phenology are a more useful cue for grazing management decisions in the mid-north region of South Australia. The Rangeland Journal 32(4):379-388. https://doi.org/10.1071/RJ10003

Klinerová T, Dostál P (2020). Nutrient‐demanding species face less negative competition and plant-soil feedback effects in a nutrient‐rich environment. New Phytologist 225(3):1343-1354. https://doi.org/10.1111/nph.16227

Leonard SW, Kirkpatrick JB (2004). Effects of grazing management and environmental factors on native grassland and grassy woodland, Northern Midlands, Tasmania. Australian Journal of Botany 52(4):529-542. https://doi.org/10.1071/BT03106

Li Y, Dong S, Gao Q, Fan C, Fayiah M, Ganjurjav H, Li S (2022). Grazing changed plant community composition and reduced stochasticity of soil microbial community assembly of alpine grasslands on the Qinghai-Tibetan Plateau. Frontiers in Plant Science 13:864085. https://doi.org/10.3389/fpls.2022.864085

Liu N, Kan, HM, Yang GW, Zhang YJ (2015). Changes in plant, soil, and microbes in a typical steppe from simulated grazing: explaining potential change in soil C. Ecological Monographs 85(2):269-286. https://doi.org/10.1890/14-1368.1

Lolila NJ, Shirima DD, Mauya EW (2023). Tree species composition along environmental and disturbance gradients in tropical sub-montane forests, Tanzania. Plos One 18(3):e0282528. https://doi.org/10.1371/journal.pone.0282528

López CL, García RR, Ferreira LM, García U, Osoro K, Celaya R (2017). Impacts of horse grazing on botanical composition and diversity in different types of heathlands. The Rangeland Journal 39(4):375-385. https://doi.org/10.1071/RJ17079

Mavromihalis JA, Dorrough J, Clark SG, Turner V, Moxham C (2013). Manipulating livestock grazing to enhance native plant diversity and cover in native grasslands. The Rangeland Journal 35(1):95-108. https://doi.org/10.1071/RJ12074

Medeiros ADS, Maia SMF, Santos TCD, Gomes TCDA (2020). Losses and gains of soil organic carbon in grasslands in the Brazilian semi-arid region. Scientia Agricola 78(3):e20190076. https://doi.org/10.1590/1678-992X-2019-0076

Meier T, Hensen I, Partzsch M (2021). Floristic changes of xerothermic grasslands in Central Germany: A resurvey study based on quasi-permanent plots. Tuexenia 41:203-226. https://doi: 10.14471/2021.41.009

Meier T, Partzsch M (2018). Federgras-Bestände in Mitteldeutschland. Teil I. Aktuelle Situation und Bestandsentwicklung [Feather grass populations in Central Germany. - Part I. Current situation and population development]. Hercynia-Ökologie und Umwelt in Mitteleuropa 51(2):113-154. https://public.bibliothek.uni-halle.de/hercynia/article/view/1797

Milchunas DG, Lauenroth WK (1993). Quantitative effects of grazing on vegetation and soils over a global range of envionments: Ecological Archives M063-001. Ecological monographs 63(4):327-366. https://doi.org/10.2307/2937150

Milchunas DG, Sala OE, Lauenroth WK (1988). A generalized model of the effects of grazing by large herbivores on grassland community structure. The American Naturalist 132(1):87-106. https://doi.org/10.1086/284839

Moreno CE (2001). Métodos Para Medir La Biodiversidad [Methods for measuring biodiversity]. Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo, Oficina Regional de Ciencia y Tecnología para América Latina y el Caribe de UNESCO y Sociedad Entomológica Aragonesa. Serie Manuales y Tesis SEA. Zaragoza, Spain 86 p.

Morris CD (2021). How Biodiversity-Friendly is regenerative grazing? Frontiers in Ecology and Evolution 9:816374. https://doi.org/10.3389/fevo.2021.816374

Msadek J, Tlili A, Moumni M, Louhaichi M, Tarhouni M (2022). Impact of grazing regimes, landscape aspect, and elevation on plant life form types in managed arid montane rangelands. Rangeland Ecology & Management 83:10-19. https://doi.org/10.1016/j.rama.2022.02.013

Munhoz CBR, Felfili JM, Rodrigues C (2008). Species-environment relationship in the herb-subshrub layer of a moist Savanna site, Federal District, Brazil. Brazilian Journal of Biology 68:25-35. https://doi.org/10.1590/S1519-69842008000100005

Nai-bregaglio M, Pucheta E, Cabido M (2002). El efecto del pastoreo sobre la diversidad florística y estructural en pastizales de montaña del centro de Argentina [The effect of grazing on floristic and structural diversity in mountain grasslands of central Argentina]. Revista Chilena de Historia Natural 75(3):613-623. https://dx.doi.org/10.4067/S0716-078X2002000300012

Nie ZN, Zollinger RP (2012). Impact of deferred grazing and fertilizer on plant population density, ground cover and soil moisture of native pastures in steep hill country of southern Australia. Grass and Forage Science 67(2):231-242. https://doi.org/10.1111/j.1365-2494.2011.00838.x

Nippert JB, Knapp AK (2007). Linking water uptake with rooting patterns in grassland species. Oecologia 153:261-272. https://doi.org/10.1007/s00442-007-0745-8

Osem Y, Perevolotsky A, Kigel J (2002). Grazing effect on diversity of annual plant communities in a semi‐arid rangeland: interactions with small‐scale spatial and temporal variation in primary productivity. Journal of Ecology 90(6):936-946. https://doi.org/10.1046/j.1365-2745.2002.00730.x

Pennekamp F, Pontarp M, Tabi A, Altermatt F, Alther R, Choffat Y, Petchey OL (2018). Biodiversity increases and decreases ecosystem stability. Nature 563(7729):109-112. https://doi.org/10.1038/s41586-018-0627-8

Petřík P, Černý T, Boublik K (2011). Impact of hoofed game and weather on the vegetation of endangered dry grasslands in the Křivoklátsko Biosphere Reserve (Czech Republic). Tuexenia 31:283-299.

Proulx M, Mazumder A (1998). Reversal of grazing impact on plant species richness in nutrient‐poor vs. nutrient‐rich ecosystems. Ecology 79(8):2581-2592. https://doi.org/10.1890/0012-9658(1998)079[2581:ROGIOP]2.0.CO;2

Reeve IJ, Kaine G, Lees JW, Barclay E (2000). Producer perceptions of pasture decline and grazing management. Australian Journal of Experimental Agriculture 40(2):331-341. https://doi.org/10.1071/EA98018

Rigueiro-Rodríguez A, Mouhbi R, Santiago-Freijanes JJ, González-Hernández MDP, Mosquera-Losada MR (2012). Horse grazing systems: understory biomass and plant biodiversity of a Pinus radiata stand. Scientia agricola 69:38-46. https://doi.org/10.1590/S0103-90162012000100006

Rolnik A, Olas B (2021). The plants of the Asteraceae family as agents in the protection of human health. International journal of molecular sciences 22(6):3009. https://doi.org/10.3390/ijms22063009

Rosenberg NJ (1964). Response of plants to the physical effects of soil compaction. Advances in Agronomy 16:181-196. https://doi.org/10.1016/S0065-2113(08)60024-3

Russell ML, Landers JrRQ (2017). Mexican needlegrass. Texas A&M AgriLife Extension Service 1-4. ERM-038.pdf

Rzedowski J (1992). Diversidad y orígenes de la flora fanerogámica de México [Diversity and origins of the phanerogamic flora of Mexico]. Acta Botánica Mexicana 14:3-21. https://www.redalyc.org/pdf/574/57401402.pdf

Ter-Braak CJ, Smilauer P (2002). CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). Retrieved 2025 January 5 from https://www.canoco5.com/

Toto EJ, Montero SA, Zapata AMA, Hernández CIC (2023). Diversidad y estructura de la vegetación leñosa en cuatro bosques urbanos de la zona conurbada Xalapa-Banderilla, Veracruz, México [Diversity and structure of woody vegetation in four urban forests of the Xalapa-Banderilla metropolitan area, Veracruz, Mexico]. Acta Botánica Mexicana 130: 30. https://doi.org/10.21829/abm130.2023.2214

Vanderburg KL, Steffens TJ, Lust DG, Rhoades MB, Blaser BC, Peters K, Ham MJ (2020). Trampling and cover effects on soil compaction and seedling establishment in reseeded pasturelands over time. Rangeland Ecology & Management 73(3):452-461. https://doi.org/10.1016/j.rama.2020.01.001

Veresoglou SD, Peñuelas J (2019). Variance in biomass‐allocation fractions is explained by distribution in European trees. New Phytologist 222(3):1352-1363. https://doi.org/10.1111/nph.15686

Villarreal-Quintanilla JA (2001). Vegetación y flora de un ecotono entre las provincias del altilpano y de la planicie costera del noreste de México [Vegetation and flora of an ecotone between the provinces of the altilpano and the coastal plain of northeastern Mexico]. Acta Botanica Mexicana (55):39-67.

Villaseñor JL (2016). Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad 87(3):559-902. https://doi.org/10.1016/j.rmb.2016.06.017

Xu X, Zhang Q, Tan Z, Li Y, Wang X (2015). Effects of water-table depth and soil moisture on plant biomass, diversity, and distribution at a seasonally flooded wetland of Poyang Lake, China. Chinese Geographical Science 25:739-756. https://doi.org/10.1007/s11769-015-0774-x

Zanella PG, Junior LHPDG, Pinto CE, Baldissera TC, Werner SS, Garagorry FC, Sbrissia AF (2021). Grazing intensity drives plant diversity but does not affect forage production in a natural grassland dominated by the tussock-forming grass Andropogon lateralis Nees. Scientific Reports 11(1):16744. https://doi.org/10.1038/s41598-021-96208-8

Zhang Y, Hou LL, Yan RR, Xin XP (2020b). Effects of grazing intensity on plant community characteristics and nutrient quality of herbage in a meadow steppe. Scientia Agricultura Sinica 53:2550-2561.

Zhang YJ, Zhu JT, Shen RN, Wang L (2020a). Research progress on the effects of grazing on grassland ecosystem. Chinese Journal of Plant Ecology 44(5):553. https://doi.org/10.17521/cjpe.2019.0314

Zhu Q, Lin H (2011). Influences of soil, terrain, and crop growth on soil moisture variation from transect to farm scales. Geoderma 163(1-2):45-54. https://doi.org/10.1016/j.geoderma.2011.03.015

Downloads

Published

2025-09-17

How to Cite

JUANES-MARQUEZ, S., ALVARES-VÁZQUEZ, P., MELLADO-BOSQUE, M., ENCINA-DOMÍNGUEZ, J. A., PEDROZA-SANDOVAL, A., & CADENA-ZAPATA, M. (2025). Changes in the plant composition of an Amelichloa clandestina (Hack.) grassland after non-selective grazing. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 53(3), 14567. https://doi.org/10.15835/nbha53314567

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha53314567

Most read articles by the same author(s)