Mitigation of drought stress effects on sweet potato plants by application of γ-Aminobutyric acid

Authors

  • Mahmoud S. AMIN Ain Shams University, Faculty of Agriculture, Department of Horticulture, Cairo 11566 (EG)
  • Mohamed Z. EL-SHINAWY Ain Shams University, Faculty of Agriculture, Department of Horticulture, Cairo 11566 (EG)
  • Hany G. ABD EL-GAWAD Ain Shams University, Faculty of Agriculture, Department of Horticulture, Cairo 11566 (EG)
  • Maryam M. ALOMRAN Princess Nourah bint Abdulrahman University, College of Science, Department of Biology, P.O. Box 84428, Riyadh 11671 (SA)
  • Khaled ABDELAAL Kafrelsheikh University, Faculty of Agriculture, EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Kafr Elsheikh 33516 (EG)
  • Rasha F. EL-FLAAH Al-Azhar University, Faculty of Agricultural (girls), Department of Agriculture and Botany, Cairo 11517 (EG)
  • Mahmoud A. ALI Ain Shams University, Faculty of Agriculture, Department of Horticulture, Cairo 11566 (EG)

DOI:

https://doi.org/10.15835/nbha53314549

Keywords:

antioxidant enzymes, carotenoids, GABA, Ipomoea batatas, water deficit

Abstract

The goal of the present study is to examine the role of γ-aminobutyric acid (GABA) at control, 0.5, and 1 mM L-¹ in reducing the effects of drought stress and enhancing field performance on sweet potato (Ipomoea batatas (L.) Lam. var. batatas) under 2 irrigation regimes (50% and 70% exhaustion of available soil water). The results showed that,However, osmolyte content (free amino acids FAA, soluble sugars, and proline), lipid peroxidation (MDA) and activity of peroxidase (28%) showed significant increases due to water stress. In sweet potato plants, application of GABA (particularly at 1 mM L-1) showed a partial normalization of drought effects. The 1 mM dose was further active than 0.5 mM L-1 in enhancing SPAD rate, dry matter, and carotene content. Furthermore, the 1 mM L-1 dose enhanced plant growth, water status, osmotic adjustment, antioxidant defence, and nutritional acquisition. The 1 mM dose was more effective than 0.5 mM L-1 in alleviating drought effects, leading to better yield and enhanced physiological reactions. In general, application of GABA seems to be a useful priming method for semiarid sweet potato plants in reducing the negative effects of drought stress. Significant reductions in plant growth and leaf relative water content and total soluble solids were caused by water stress in sweet potato plants. Exogenous foliar application of GABA at 1 mM L-1 enhanced osmotic adjustment, water plant status, and antioxidant defence systems, also improved nutrient uptake in sweet potato plants grown under drought stress.

References

Abd El-Gawad HG, Mukherjee S, Farag R, Abd Elbar OH, Hikal M, Abou El-Yazied A, … Ibrahim MHM (2021). Exogenous γ-aminobutyric acid (GABA)-induced signaling events and field performance associated with mitigation of drought stress in Phaseolus vulgaris L. Plant Signaling & Behaviour 16(2):1853384. https://doi.org/10.1080/15592324.2020.1853384

Abdelaal K, Alaskar A, Hafez Y )2024(. Effect of arbuscular mycorrhizal fungi on physiological, bio-chemical and yield characters of wheat plants (Triticum aestivum L.) under drought stress conditions. BMC Plant Biology 24:1119. https://doi.org/10.1186/s12870-024-05824-9

Abdelaal Kh, Alsubeie M, Hafez Y, Emeran A, Moghanm F, Okasha S, … Ibraheem F (2022). Physiological and biochemical changes in vegetable and field crops under drought, salinity and weeds stresses: Control strategies and management. Agriculture 12(12):2084. https://doi.org/10.3390/agriculture12122084

Abdelaal Kh, Attia KA, Niedbała G, Wojciechowsk T, Hafez, Y, Alamery, S, Alateeq TK, Arafa SA (2021). Mitigation of drought damages by exogenous chitosan and yeast extract with modulating the photosynthetic pigments, antioxidant defense system and improving the productivity of garlic plants. Horticulturae 7(11):510. https://doi.org/10.3390/horticulturae7110510

Abd-El-Aty MS, Kamara MM, Elgamal WH, Mesbah MI, Abomarzoka E, Alwutayd KM, … Abdelaal Kh (2024). Exogenous application of nano-silicon, potassium sulfate, or proline enhances physiological parameters, antioxidant enzyme activities, and agronomic traits of diverse rice genotypes under water deficit conditions. Heliyon 10(5):e26077. https://doi.org/10.1016/j.heliyon.2024.e26077

Abdou AH, Alkhateeb O, Mansour HH, Ghazzawy HS, Albadrani MS, Al-harbi NA, … Abdelaal Kh (2023). Application of plant growth-promoting bacteria as an eco-friendly strategy for mitigating the harmful effects of abiotic stress on plants. Phyton-International Journal of Experimental Botany 92(12):3305-3321; https://doi.org/10.32604/phyton.2023.044780

Alharbi K, Gharib H, Mohamed E, Elsamahy B, Khedr R, Darwish A, … Abdelaal Kh (2025). Effect of some biostimulants on agronomic, physiological, and quality traits of wheat plants (Triticum aestivum L.) under water deficit stress conditions. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/194229

AlKahtani MDF, Hafez YM, Attia K, Rashwan E, Husnain LA, AlGwaiz HIM, Abdelaal Kh (2021). Evaluation of silicon and proline application on the oxidative machinery in drought-stressed sugar beet. Antioxidants 10(3):398. https://doi.org/10.3390/antiox10030398

Alkhateeb O, Gaballah M, El-Sayed A, El-Nady M, Abdelaal Kh, Abdou A, Metwaly M (2024). Improving water-deficit stress tolerance in rice (Oryza sativa L.) by paclobutrazol exogenous application. Polish Journal of Environmental Studies 33(3):3055-3066. https://doi.org/10.15244/pjoes/178399

Alshammari W, AL-Huquil, AA, Alshammery K, Lotfi S, Altamimi H, Alshammari A, … Abdelaal Kh (2024a). Alleviation of drought stress damages by melatonin and Bacillus thuringiensis associated with adjusting photosynthetic efficiency, antioxidative system, and anatomical structure of Glycine max (L.). Heliyon 10(14):e34754. https://doi.org/10.1016/j.heliyon.2024.e34754

Alshammari W, Alshammery K, Lotfi S, Altamimi H, Alshammari A, Al-Harbi N, … Abdelaal Kh (2024b). Improvement of morphophysiological and anatomical attributes of plants under abiotic stress conditions using plant growth-promoting bacteria and safety treatments. PeerJ 12:e17286 http://doi.org/10.7717/peerj.17286

Arafa SA, Attia KA, Niedbała G, Piekutowska M, Alamery S, Abdelaal Kh, … Attallah ShY (2021). Seed priming boost adaptation in pea plants under drought stress. Plants 10(10):2201. https://doi.org/10.3390/plants10102201

Ashraf U, Anjum S, Naseer S, Abbas A, Abrar M, Nawaz M, Luo K (2024). Gamma amino butyric acid (GABA) application modulated the morpho-physiological and yield traits of fragrant rice under well-watered and drought conditions. BMC Plant Biology 24(1):569. https://doi.org/10.1186/s12870-024-05272-5

Bates L, Waldren R, Teare I (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39:205-207.

Bista DR, Heckathorn SA, Jayawardena DM, Mishra S, Boldt JK (2018). Effects of drought on nutrient uptake and the levels of nutrient-uptake proteins in roots of drought-sensitive and-tolerant grasses. Plants 7:28. https://doi.org/10.3390/plants7020028

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Carminati A, Javaux M (2020). Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Science 25(9):868-880. https://doi.org/10.1016/j.tplants.2020.04.003

Cottenie A, Verloo M, Kiekens L, Velghe G, Camerlynck R (1982). Chemical Analysis of Plants and Soils. RUG. Laboratory of Analytical and Agrochemistry. Gent, Belgium p 63. https://lib.ugent.be/catalog/rug01:000239299

Dias MA, Costa MM (1983). Effect of low salt concentrations on nitrate reductase and peroxidase of sugar beet leaves. Journal of Experimental Botany 34(5):537-543. https://doi.org/10.1093/jxb/34.5.537

EL Sabagh A, Hossain A, Barutçular C, Abdelaal Kh, Fahad S, Anjorin FB, ... Saneoka H (2018). Sustainable maize (Zea mays L.) production under drought stress by understanding its adverse effect, Survival mechanism and drought tolerance indices. Journal of Experimental Biology and Agricultural Sciences 6(2):282-295.

Elkelish A, El-Mogy MM, Niedbała G, Piekutowska M, Atia MA, Hamada M, … Shebl M (2021). Roles of exogenous α-lipoic acid and cysteine in mitigation of drought stress and restoration of grain quality in wheat. Plants 10(11):2318. https://doi.org/10.3390/plants10112318

El-Yazied A, Ibrahim MFM, Ibrahim MAR, Nasef, IN, Al-Qahtani SM, Al-Harbi, … Shehata SA (2022). Melatonin mitigates drought induced oxidative stress in potato plants through modulation of osmolytes, sugar metabolism, ABA homeostasis and antioxidant enzymes. Plants 11(9):1151. https://doi.org/10.3390/plants11091151

FAO (2022). World Food and Agriculture - Statistical Yearbook 2022 Rome p 382. https://doi.org/10.4060/cc2211en

Ge T-D, Sun N-B, Bai L-P, Tong C-L, Sui F-G (2012). Effects of drought stress on phosphorus and potassium uptake dynamics in summer maize (Zea mays) throughout the growth cycle. Acta Physiologiae Plantarum 34(6):2179-2186. https://doi.org/10.1007/s11738-012-1018-7

Gou Z, Wang X, Wang W (2012). Evolution of neurotransmitter gamma-aminobutyric acid, glutamate and their receptors. Zoological Research 33(E5-6):75-81. https://zoores.ac.cn/article/doi/10.3724/SP.J.1141.2012.E05-06E75

Hafez YM, Attia KA, Alamery S, Ghazy A, Al-Dosse A, Ibrahim E, ... Abdelaal Kh (2020). Beneficial effects of biochar and chitosan on antioxidative capacity, osmolytes accumulation, and anatomical characters of water-stressed barley plants. Agronomy 10(5):630. https://doi.org/10.3390/agronomy10050630

Hamilton PB, Van Slyke DD, Lemish S (1943). The gasometric determination of free amino acids in blood filtrates by the ninhydrin-carbon dioxide method. Journal of Biological Chemistry 150(1):231-250.

Hasan MM, Alabdallah NM, Alharbi BM, Waseem M, Yao G, Liu XD, ... Fang XW. (2021). GABA: A key player in drought stress resistance in plants. International Journal of Molecular Sciences 22(18):10136. https://doi.org/10.3390/ijms221810136

Heath RL, Packer L (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives Biochemistry and Biophysics 125(1):189-198.

Ibrahim M, Ibrahim HA, Abd El-Gawad H (2021). Folic acid as a protective agent in snap bean plants under water deficit conditions. The Journal of Horticultural Science and Biotechnology 96(1):94-109. https://doi.org/10.1080/14620316.2020.1793691

Jurkonienė S, Gavelienė V, Mockevičiūtė R, Jankovska-Bortkevič E, Šveikauskas V, Jankauskienė J, … Kozeko L. (2025). GABA and proline application induce drought resistance in oilseed rape. Plants 14(6):860. https://doi.org/10.3390/plants14060860

Kasim WA, Osman ME, Omar MN, El-Daim A, Islam A, Bejai S, Meijer J (2013). Control of drought stress in wheat using plant-growth-promoting bacteria. Journal of Plant Growth Regulation 32:122-130. https://doi.org/10.1007/s00344-012-9283-7

Khaffagy AE, Mazrou YSA, Morsy AR, El-Mansoury MAM, El-Tokhy AI, Hafez Y, … Khedr RA (2022). Impact of irrigation levels and weed control treatments on annual weeds, physiological traits and productivity of soybean under clay soil conditions. Agronomy 12(5):1037. https://doi.org/10.3390/agronomy12051037

Li Y, Fan Y, Ma Y, Zhang Z, Yue H, Wang L, Li J, Jiao Y (2017). Effects of exogenous γ-aminobutyric acid (GABA) on photosynthesis and antioxidant system in pepper (Capsicum annuum L.) seedlings under low light stress. Journal of Plant Growth Regulation 36:436-449. https://doi.org/10.1007/s00344-016-9652-8

Li Z, Peng Y, Huang B (2018). Alteration of transcripts of stress-protective genes and transcriptional factors by γ-aminobutyric acid (GABA) associated with improved heat and drought tolerance in creeping bentgrass (Agrostis stolonifera). International Journal of Molecular Sciences 19(6):1623. https://doi.org/10.3390/ijms19061623

Ma Y, Wang P, Gu Z, Tao Y, Shen C, Zhou Y, Han Y, Yang R (2019). Ca2+ involved in GABA signal transduction for phenolics accumulation in germinated hulless barley under NaCl stress. Food Chemistry: X 2:100023. https://doi.org/10.1016/j.fochx.2019.100023

Malik CP, Singh MB (1980). Plant enzymology and histoenzymology. Kalyani Publishers, New Delhi, p. 434.

Paul K, Pauk J, Kondic-Spika A, Grausgruber H, Allahverdiyev T, Sass L, Vass I (2019). Co-occurrence of mild salinity and drought synergistically enhances biomass and grain retardation in wheat. Frontiers in Plant Science 10:501. https://doi.org/10.3389/fpls.2019.00501

Plummer DT (1978). An introduction to practical biochemistry. McGraw-Hill, USA p 362.

Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ (2012). Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. Plant Science 193:130-135. https://doi.org/10.1016/j.plantsci.2012.06.001

Snedecor GW, Cochran WG (1982). Statistical Methods. Iowa State University Press (7th ed)., Towa p 507.

Wang X, Xie B, An W, Li J, Zhai Z, Duan L (2009). Effects of exogenous GABA on yield, quality and high temperature tolerance of winter wheat at the anthesis stage. Journal of Triticeae Crops 29(4):623-626.

Wang Y, Luo Z, Huang X, Yang K, Gao S, Du R (2014). Effect of exogenous γ-aminobutyric acid (GABA) treatment on chilling injury and antioxidant capacity in banana peel. Scientia Horticulturae 168:132-137. https://doi.org/10.1016/j.scienta.2014.01.022

Xu B, Long Y, Feng X, Zhu X, Sai N, Chirkova L, ... Gilliham M (2021). GABA signalling modulates stomatal opening to enhance plant water use efficiency and drought resilience. Nature Communications 12(1):1952. https://doi.org/10.1038/s41467-021-21694-3

Yang Z, Zhang Q, Hao X, Yue P (2019). Changes in evapotranspiration over global semiarid regions 1984-2013. Journal of Geophysical Research: Atmospheres 124(6):2946-2963. https://doi.org/10.1029/2018jd029533

Yong B, Xie H, Li Z, Li Y-P, Zhang Y, Nie G, … Peng Y (2017). Exogenous application of GABA improves PEG-induced drought tolerance positively associated with GABA-shunt, polyamines, and proline metabolism in white clover. Front in Physiology 8:1107. https://doi.org/10.3389/fphys.2017.01107

Zhang Q, Wang W, Su H, Yang G, Xue J, Hou H, … Xu Z (2025). PLCNet: A 3D-CNN-based plant-level classification network hyperspectral framework for sweet potato virus disease detection. Remote Sensing 17(16):2882. https://doi.org/10.3390/rs17162882

Downloads

Published

2025-09-10

How to Cite

AMIN, M. S., EL-SHINAWY, M. Z., ABD EL-GAWAD, H. G., ALOMRAN, M. M., ABDELAAL, K., EL-FLAAH, R. F., & ALI, M. A. (2025). Mitigation of drought stress effects on sweet potato plants by application of γ-Aminobutyric acid . Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 53(3), 14549. https://doi.org/10.15835/nbha53314549

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha53314549

Most read articles by the same author(s)