Transcriptome analysis of wheat (Triticum aestivum) reveals regulatory mechanisms of adaptation to water deficit stress induced by arbuscular mycorrhizal fungi

Authors

  • Elahe DOOKHE Islamic Azad University, SR.C, Converging Sciences and Technologies Faculty, Department of Biology, 1477893855, Tehran (IR)
  • Alireza IRANBAKHSH Islamic Azad University, SR.C, Converging Sciences and Technologies Faculty, Department of Biology, 1477893855, Tehran (IR) https://orcid.org/0000-0001-5879-0613
  • Rahim AHMADVAND Seed and Plant Improvement Institute, Department of Vegetables Research, Agricultural Research, Education & Extension Organization, 3135933151, Karaj (IR)
  • Mostafa EBADI Islamic Azad University, Department of Biology, Damghan Branch, 3671639998, Damghan (IR) https://orcid.org/0000-0002-5664-357X
  • Iraj MEHREGAN Islamic Azad University, SR.C, Converging Sciences and Technologies Faculty, Department of Biology, 1477893855, Tehran (IR) https://orcid.org/0000-0002-5108-2558

DOI:

https://doi.org/10.15835/nbha53314529

Keywords:

arbuscular mycorrhizal fungi (AMF), cell wall, osmotic regulation, RNA-seq, transporters, Triticum aestivum, water deficit

Abstract

RNA sequencing (RNA-Seq) is a powerful tool for exploring transcriptional responses to environmental cues and elucidating gene regulatory networks. This study investigates how arbuscular mycorrhizal fungi (AMF) alleviate water deficit (WD) stress in Triticum aestivum seedlings through transcriptomic analysis. A comparative transcriptome analysis was performed on wheat roots under two irrigation regimes, well-watered (WW) and WD, and/or AMF inoculation, to identify differentially expressed genes (DEGs). AMF inoculation modulated the expression of genes involved in osmotic adjustment and protective metabolite biosynthesis. While genes such as P5CS, ARG, OAT, and TaPROT2 were downregulated in AMF-treated plants under WD, asparagine synthase (ASNS) was notably upregulated. Furthermore, AMF symbiosis enhanced the expression of genes related to polyamine and GABA metabolism under WD stress. A significant upregulation of antioxidant-related genes, particularly GSTU1, indicated an AMF-induced strengthening of the antioxidant defense system. Additionally, AMF treatment upregulated multiple nutrient transporter genes, including PHT, AMT, NPF, NRT, HAK/AKT, aquaporins, sugar transporters, and ABC transporters, thereby contributing to improved nutritional status. AMF also influenced carbohydrate metabolism to promote cell wall (CW) biosynthesis and remodelling, highlighting its role in structural adaptation to drought. These findings offer key molecular insights into the mechanisms by which AMF symbiosis modulates gene expression to improve wheat drought tolerance under varying irrigation conditions.

References

Abdelaal K, Alaskar A, Hafez Y (2024). Effect of arbuscular mycorrhizal fungi on physiological, bio chemical and yield characters of wheat plants (Triticum aestivum L.) under drought stress conditions. BMC Plant Biology 24(1):1119. https://doi.org/10.1186/s12870-024-05824-9

Acevedo M, Zurn JD, Molero G, Singh P, He X, Aoun M … McCandless L (2018). The role of wheat in global food security. In Nagothu US (Ed). Agricultural Development and Sustainable Intensification. Routledge, London pp 81 110.

Aebi H (1984). [13] Catalase in vitro. In: Packer L (Ed). Methods in Enzymology. Academic Press 105:121-126. https://doi.org/10.1016/S0076-6879(84)05016-3

Afshari M, Rahimmalek M, Sabzalian MR, Szumny A, Matkowski A, Jezierska Domaradzka A (2022). Mycorrhizal colonization modulates the essential oil profile and enzymatic and non enzymatic antioxidants to mitigate the adverse effects of water deficit in Salvia subg. Perovskia. Biology 11(12):1757. https://doi.org/10.3390/biology11121757

Ahmad Z, Waraich EA, Akhtar S, Anjum S, Ahmad T, Mahboob W … Rizwan M (2018). Physiological responses of wheat to drought stress and its mitigation approaches. Acta Physiologiae Plantarum 40:80. https://doi.org/10.1007/s11738-018-2651-6

Akin S, Kaya C (2023). Asparagine and nitric oxide jointly enhance antioxidant capacity and nitrogen metabolism to improve drought resistance in cotton: Evidence from long term field trials. Food and Energy Security 13(2):e502. https://doi.org/10.1002/fes3.502

An J, Zeng T, Ji C, de Graaf S, Zheng Z, Xiao TT … Pan Z (2019). A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. New Phytologist 224(1):396 408. https://doi.org/10.1111/nph.15975

Asadollahi M, Iranbakhsh A, Ahmadvand R, Ebadi M, Mehregan I (2023). Synergetic effect of water deficit and arbuscular mycorrhizal symbiosis on the expression of aquaporins in wheat (Triticum aestivum L.) roots: insights from NGS RNA sequencing. Physiology and Molecular Biology of Plants 29(2):195 208. https://doi.org/10.1007/s12298-023-01285-w

Avidan O, Martins MCM, Feil R, Lohse M, Giorgi FM, Schlereth A … Stitt M (2024). Direct and indirect responses of the Arabidopsis transcriptome to an induced increase in trehalose 6 phosphate. Plant Physiology 196(1):409-431. https://doi.org/10.1093/plphys/kiae196

Bahadur A, Batool A, Nasir F, Jiang S, Mingsen Q, Zhang Q … Feng H (2019). Mechanistic insights into arbuscular mycorrhizal fungi mediated drought stress tolerance in plants. International Journal of Molecular Sciences 20(17):4199. https://doi.org/10.3390/ijms20174199

Bapela T, Shimelis H, Tsilo TJ, Mathew I (2022). Genetic improvement of wheat for drought tolerance: Progress, challenges and opportunities. Plants 11(10):1331. https://doi.org/10.3390/plants11101331

Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water stress studies. Plant and Soil 39(1):205 207. https://doi.org/10.1007/BF00018060

Beauchamp C, Fridovich I (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry 44(1):276 287. https://doi.org/10.1016/0003-2697(71)90370-8

Begum N, Akhtar K, Ahanger MA, Iqbal M, Wang P, Mustafa NS … Zhang L (2021). Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. Environmental Science and Pollution Research 28(33):45276 45295. https://doi.org/10.1007/s11356-021-13755-3

Bernardo L, Carletti P, Badeck FW, Rizza F, Morcia C, Ghizzoni R … Lucini L (2019). Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiology and Biochemistry 137:203 212. https://doi.org/10.1016/j.plaphy.2019.02.007

Boorboori MR, Lackóová L (2025). Arbuscular mycorrhizal fungi and salinity stress mitigation in plants. Frontiers in Plant Science 15:1504970. https://doi.org/10.3389/fpls.2024.1504970

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 72(1 2):248 254. https://doi.org/10.1016/0003-2697(76)90527-3

Cao X, Hu Y, Song J, Feng H, Wang J, Chen L … Qiao Z (2022). Transcriptome sequencing and metabolome analysis reveals the molecular mechanism of drought stress in millet. International Journal of Molecular Sciences 23(18):10792. https://doi.org/10.3390/ijms231810792

Chaichi M, Sanjarian F, Razavi K, Gonzalez Hernandez JL (2019). analysis of transcriptional responses in root tissue of bread wheat landrace (Triticum aestivum L.) reveals drought avoidance mechanisms under water scarcity. PLoS One 14(3):e0212671. https://doi.org/10.1371/journal.pone.0212671

Chance B, Maehly A (1955). Assay of catalases and peroxidases. Methods in Enzymology 2:764 775. https://doi.org/10.1016/S0076-6879(55)02300-8

Chandrasekaran M (2022). Arbuscular mycorrhizal fungi mediated alleviation of drought stress via non enzymatic antioxidants: a meta analysis. Plants 11(19):2448. https://doi.org/10.3390/plants11192448

Chen W, Ye T, Sun Q, Niu T, Zhang J (2021). Arbuscular mycorrhizal fungus alters root system architecture in Camellia sinensis L. as revealed by RNA Seq analysis. Frontiers in Plant Science 12:777357. https://doi.org/10.3389/fpls.2021.777357

Cheng S, Zou YN, Kuča K, Hashem AF, Abd Allah EF … Wu QS (2021). Elucidating the mechanisms underlying enhanced drought tolerance in plants mediated by arbuscular mycorrhizal fungi. Frontiers in Microbiology 12:809473. https://doi.org/10.3389/fmicb.2021.809473

Daszkowska Golec A, Mehta D, Uhrig RG, Brąszewska A, Novak O, Fontana IM … Marzec M (2023). Multi omics insights into the positive role of strigolactone perception in barley drought response. BMC Plant Biology 23(1):445. https://doi.org/10.1186/s12870-023-04450-1

Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V … Svistoonoff S (2020). Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12(10):370. https://doi.org/10.3390/d12100370

Dowarah B, Gill SS, Agarwala N (2022). Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. Journal of Plant Growth Regulation 41(4):1429 1444. https://doi.org/10.1007/s00344-021-10392-5

Duan J, Tian H, Gao Y (2016). expression of nitrogen transporter genes in roots of winter wheat (Triticum aestivum L.) in response to soil drought with contrasting nitrogen supplies. Crop and Pasture Science 67(2):128 136. https://doi.org/10.1071/CP15152

Fanourakis D, Nikoloudakis N, Pappi P, Markakis E, Doupis G, Charova SN … Tsaniklidis G (2020). The role of proteases in determining stomatal development and tuning pore aperture: a review. Plants 9(3):340. https://doi.org/10.3390/plants9030340

Gall HL, Philippe F, Domon JM, Gillet F, Pelloux J, Rayon C (2015). Cell wall metabolism in response to abiotic stress. Plants 4(1):112 166. https://doi.org/10.3390/plants4010112

Gao C, Courty PE, Varoquaux N, Cole B, Montoya L, Xu L … Taylor JW (2023). Successional adaptive strategies revealed by correlating arbuscular mycorrhizal fungal abundance with host plant gene expression. Molecular Ecology 32(10):2674 2687. https://doi.org/10.1111/mec.16343

Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U … Bonfante P (2009). A mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiology 150(1):73 83. https://doi.org/10.1104/pp.109.136390

Habib H, Fazili KM (2007). Plant protease inhibitors: A defense strategy in plants. Biotechnology and Molecular Biology Review 2(3):68 85.

Han J, Liu Y, Shen Y, Li W (2023). A surprising diversity of xyloglucan endotransglucosylase/hydrolase in wheat: new in sight to the roles in drought tolerance. International Journal of Molecular Sciences 24(12):9886. https://doi.org/10.3390/ijms24129886

Handa Y, Nishide H, Takeda N, Suzuki Y, Kawaguchi M, Saito K (2015). RNA seq transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in Lotus japonicus and Rhizophagus irregularis. Plant and Cell Physiology 56(8):1490 1511. https://doi.org/10.1093/pcp/pcv071

He JD, Zou YN, Wu QS, Kuča K (2020). Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Scientia Horticulturae 262:108745. https://doi.org/10.1016/j.scienta.2019.108745

Heath RL, Packer L (1968). Photoperoxidation in isolated chloroplasts: I. kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125(1):189 198. https://doi.org/10.1016/0003-9861(68)90654-1

Hu L, Xie Y, Fan S, Wang Z, Wang F, Zhang B … Kong L (2018). Comparative analysis of root transcriptome profiles between drought tolerant and susceptible wheat genotypes in response to water stress. Plant Science 272:276 293. https://doi.org/10.1016/j.plantsci.2018.03.036

Hu Y, Chen B (2020). Arbuscular mycorrhiza induced putrescine degradation into γ aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water stressed maize plants. Mycorrhiza 30(2 3):329 339. https://doi.org/10.1007/s00572-020-00952-0

Huang D, Ma M, Wang Q, Zhang M, Jing G, Li C … Ma F (2020). Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiology and Biochemistry 149:245 255. https://doi.org/10.1016/j.plaphy.2020.02.020

Kashyap A, Jiménez Jiménez ÁL, Zhang W, Capellades M, Srinivasan S, Laromaine A … Coll NS (2022). Induced ligno suberin vascular coating and tyramine derived hydroxycinnamic acid amides restrict Ralstonia solanacearum colonization in resistant tomato. New Phytologist 234(4):1411 1429. https://doi.org/10.1111/nph.17982

Khalloufi M, Martínez Andújar C, Karray Bouraouib N, Pérez Alfocea F … Albacete A (2024). The crosstalk interaction of ethylene, gibberellins, and arbuscular mycorrhiza improves growth in salinized tomato plants by modulating the hormonal balance. Journal of Plant Physiology 303:154336. https://doi.org/10.1016/j.jplph.2024.154336

Kim D, Langmead B, Salzberg SL (2015). HISAT: A fast spliced aligner with low memory requirements. Nature Methods 12(4):357 360. https://doi.org/10.1038/nmeth.3317

Kosar F, Akram NA, Sadiq M, Al-Qurainy F, Ashraf M (2019). Trehalose: A key organic osmolyte effectively involved in plant abiotic stress tolerance. Journal of Plant Growth Regulation 38(2):606-18. https://doi.org/10.1007/s00344-018-9876-x

Li P, Liu Y, Tan W, Chen J, Zhu M, Lv Y … Cai H (2019). Brittle Culm 1 encodes a COBRA like protein involved in secondary cell wall cellulose biosynthesis in sorghum. Plant and Cell Physiology 60(4):788 801. https://doi.org/10.1093/pcp/pcy246

Loqué D, von Wirén N (2004). Regulatory levels for the transport of ammonium in plant roots. Journal of Experimental Botany 55(401):1293 1305. https://doi.org/10.1093/jxb/erh147

Lunn JE, Delorge I, Figueroa CM, Van Dijck P, Stitt M (2014). Trehalose metabolism in plants. The Plant Journal 79(4):544 567. https://doi.org/10.1111/tpj.12509

Ma Y, Li Y (2024). The research progress on genomic selection and breeding for drought resistance in wheat: from genetic analysis to smart breeding applications. Geographical Research Bulletin 3:625 646. https://doi.org/10.50908/grb.3.0_625

Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015). Aquaporins in plants. Physiological Reviews 95(4):1321-58. https://doi.org/10.1152/physrev.00008.2015

McCready RM, Guggolz J, Silviera V, Owens HS (1950). Determination of starch and amylose in vegetables. Analytical Chemistry 22(9):1156-8. https://doi.org/10.1021/ac60045a016

Miller GA, Suzuki N, Ciftci‐Yilmaz SU, Mittler RO (2010). Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33(4):453-67. https://doi.org/10.1111/j.1365-3040.2009.02041.x

Moloi SJ, Ngara R (2023). The roles of plant proteases and protease inhibitors in drought response: a review. Frontiers in Plant Science 14:1165845. https://doi.org/10.3389/fpls.2023.1165845

Murphy JAM, Riley JP (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27:31-36. https://doi.org/10.1016/S0003-2670(00)88444-5

Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22(5):867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076140

Nyaupane S, Poudel MR, Panthi B, Dhakal A, Paudel H, Bhandari R (2024). Drought stress effect, tolerance, and management in wheat - a review. Cogent Food and Agriculture 10(1):2296094. https://doi.org/10.1080/23311932.2023.2296094

Oguz MC, Aycan M, Oguz E, Poyraz I, Yildiz M (2022). Drought stress tolerance in plants: Interplay of molecular, biochemical and physiological responses in important development stages. Physiologia 2(4):180-197. https://doi.org/10.3390/physiologia2040015

Paul MJ, Watson A, Griffiths CA (2020). Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. Journal of Experimental Botany 71(7):2270-2280. https://doi.org/10.1093/jxb/erz480

Porras-Murillo R, Zhao Y, Hu J, Ijato T, Retamal JP, Ludewig U, Neuhäuser B (2023). The wheat AMT2 (AMmonium Transporter) family, possible functions in ammonium uptake and pathogenic/symbiotic interactions. Journal of Plant Nutrition and Soil Science 186(2):164-168. https://doi.org/10.1002/jpln.202200362

Puccio G, Ingraffia R, Mercati F, Amato G, Giambalvo D, Martinelli F, Frenda AS (2023). Transcriptome changes induced by Arbuscular mycorrhizal symbiosis in leaves of durum wheat (Triticum durum Desf.) promote higher salt tolerance. Scientific Reports 13(1):116. https://doi.org/10.1038/s41598-022-26903-7

Qasim M, Ahmed W, Safdar U, Dilshad R, Sajid HB, Noor H, Haq MIU (2022). Effect of drought stress on fertile tillers of wheat genotypes (Triticum aestivum L.). International Journal of Agricultural and Bioscience 11(3):172-180. https://doi.org/10.47278/journal.ijab/2022.024

Qin Y, Cai Q, Ling Y, Chen X, Xu J, Huang G, Liang S, Yuan X, Yang XM, Lu D, Wang X (2023). Arbuscular mycorrhizal fungi improve selenium uptake by modulating root transcriptome of rice (Oryza sativa L.). Frontiers in Plant Science 14:1242463. https://doi.org/10.3389/fpls.2023.1242463

Ran Z, Chen X, Li R, Duan W, Zhang Y, Fang L, Zhou J (2023). Transcriptomics and metabolomics reveal the changes induced by arbuscular mycorrhizal fungi in Panax quinquefolius L. Journal of the Science of Food and Agriculture 103(10):4919-4933. https://doi.org/10.1002/jsfa.12563

Rasool F, Khan MR, Schneider M, Uzair M, Aqeel M, Ajmal W, Naz AA (2022). Transcriptome unveiled the gene expression patterns of root architecture in drought-tolerant and sensitive wheat genotypes. Plant Physiology and Biochemistry 178:20-30. https://doi.org/10.1016/j.plaphy.2022.02.025

Riaz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G … Wang X (2021). Arbuscular mycorrhizal fungi induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. Journal of Hazardous Materials 402:123919. https://doi.org/10.1016/j.jhazmat.2020.123919

Romero Muñoz M, Gálvez A, Martínez Melgarejo PA, Piñero MC, del Amor FM, Albacete A … López Marín J (2022). The interaction between hydromulching and arbuscular mycorrhiza improves escarole growth and productivity by regulating nutrient uptake and hormonal balance. Plants 11(20):2795. https://doi.org/10.3390/plants11202795

Ruiz Lozano JM, Aroca R, Zamarreño ÁM, Molina S, Andreo Jiménez B, Porcel R … López Ráez JA (2016). Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant, Cell & Environment 39(2):441-452. https://doi.org/10.1111/pce.12631

Santander C, Aroca R, Ruiz Lozano JM, Olave J, Cartes P, Borie F … Cornejo P (2017). Arbuscular mycorrhiza effects on plant performance under osmotic stress. Mycorrhiza 27(7):639-657. https://doi.org/10.1007/s00572-017-0784-x

Sharma P, Gayen D (2021). Plant protease as regulator and signaling molecule for enhancing environmental stress tolerance. Plant Cell Reports 40(11):2081-2095. https://doi.org/10.1007/s00299-021-02739-9

Smith SE, Jakobsen I, Grønlund M, Smith FA (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiology 156(3):1050-1057. https://doi.org/10.1104/pp.111.174581

Tang H, Hassan MU, Feng L, Nawaz M, Shah AN, Qari SH … Miao J (2022). The critical role of arbuscular mycorrhizal fungi to improve drought tolerance and nitrogen use efficiency in crops. Frontiers in Plant Science 13:919166. https://doi.org/10.3389/fpls.2022.919166

Teng W, Zhao YY, Zhao XQ, He X, Ma WY, Deng Y … Tong YP (2017). Genome wide identification, characterization, and expression analysis of PHT1 phosphate transporters in wheat. Frontiers in Plant Science 8:543. https://doi.org/10.3389/fpls.2017.00543

Tenhaken R (2015). Cell wall remodeling under abiotic stress. Frontiers in Plant Science 5:771. https://doi.org/10.3389/fpls.2014.00771

Varshney RK, Barmukh R, Roorkiwal M, Qi Y, Kholova J, Tuberosa R … Siddique KH (2021). Breeding custom designed crops for improved drought adaptation. Advanced Genetics 2(3):e202100017. https://doi.org/10.1002/ggn2.202100017

Verbančič J, Lunn JE, Stitt M, Persson S (2018). Carbon supply and the regulation of cell wall synthesis. Molecular Plant 11(1):75 94. https://doi.org/10.1016/j.molp.2017.10.004

Wang E, Yu N, Bano SA, Liu C, Miller AJ, Cousins D … Schultze M (2014). A H+-ATPase that energizes nutrient uptake during mycorrhizal symbioses in rice and Medicago truncatula. The Plant Cell 26(4):1818-1830. https://doi.org/10.1105/tpc.113.120527

Wang M, Wang Z, Guo M, Qu L … Biere A (2023). Effects of arbuscular mycorrhizal fungi on plant growth and herbivore infestation depend on availability of soil water and nutrients. Frontiers in Plant Science 14:1101932. https://doi.org/10.3389/fpls.2023.1101932

Wang Y, Chen YF, Wu WH (2021). Potassium and phosphorus transport and signaling in plants. Journal of Integrative Plant Biology 63(1):34-52. https://doi.org/10.1111/jipb.13053

Yanagi M (2024). Climate change impacts on wheat production: Reviewing challenges and adaptation strategies. Advances in Resources Research 4(1):89-107. https://doi.org/10.50908/arr.4.1_89

Yang X, Lu M, Wang Y, Wang Y, Liu Z, Chen S (2021). Response mechanism of plants to drought stress. Horticulturae 7(3):50. https://doi.org/10.3390/horticulturae7030050

Yemm EW, Willis AJ (1954). The estimation of carbohydrates in plant extracts by anthrone. Biochemical Journal 57(3):508-514. https://doi.org/10.1042/bj0570508

Yin Y, Qiao S, Kang Z, Luo F, Bian Q, Cao G, Yang Y (2024). Transcriptome and metabolome analyses reflect the molecular mechanism of drought tolerance in sweet potato. Plants 13(3):351. https://doi.org/10.3390/plants13030351

Yuan X, Li S, Chen J, Yu H, Yang T, Wang C … Ao X (2024). Impacts of global climate change on agricultural production: a comprehensive review. Agronomy 14(7):1360. https://doi.org/10.3390/agronomy14071360

Zhang F, Zou YN, Wu QS, Kuča K (2020). Arbuscular mycorrhizas modulate root polyamine metabolism to enhance drought tolerance of trifoliate orange. Environmental and Experimental Botany 171:103926. https://doi.org/10.1016/j.envexpbot.2019.103926

Zhang Q, Yang W, Wang M, Chen J, Zhang Z, Wei Y … Gong M (2025). Transcriptome analysis reveals the molecular mechanisms for mycorrhiza enhanced drought tolerance in maize by regulating the Ca2+ signaling pathway. Journal of Fungi 11(5):375. https://doi.org/10.3390/jof11050375

Zhang X, Li C, Lu W, Wang X, Ma B, Fu K … Li C (2022). Comparative analysis of combined phosphorus and drought stress responses in two winter wheat. PeerJ 10:e13887. https://doi.org/10.7717/peerj.13887

Zhao Q, Ma Y, Huang X, Song L, Li N, Qiao M … Cheng Y (2023). GABA application enhances drought stress tolerance in wheat seedlings (Triticum aestivum L.). Plants 12(13):2495. https://doi.org/10.3390/plants12132495

Zong J, Zhang Z, Huang P … Yang Y (2023). Arbuscular mycorrhizal fungi alleviate salt stress in Xanthoceras sorbifolium through improved osmotic tolerance, antioxidant activity, and photosynthesis. Frontiers in Microbiology 14:1138771. https://doi.org/10.3389/fmicb.2023.1138771

Zou YN, Wu QS, Kuča K (2021). Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biology 23:50-57. https://doi.org/10.1111/plb.13161

Downloads

Additional Files

Published

2025-09-23

How to Cite

DOOKHE, E., IRANBAKHSH, A., AHMADVAND, R., EBADI, M., & MEHREGAN, I. (2025). Transcriptome analysis of wheat (Triticum aestivum) reveals regulatory mechanisms of adaptation to water deficit stress induced by arbuscular mycorrhizal fungi. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 53(3), 14529. https://doi.org/10.15835/nbha53314529

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha53314529