Effect of excess zinc in soil on Moringa oleifera Lam. seedlings emergence

Authors

  • Maiara L. GRIGOLI-OLIVIO São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, Department of Biology and Animal Science, Rua Monção, 26, Zona Norte, Ilha Solteira, São Paulo, 15385-086 (BR)
  • Tassia C. FERREIRA São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, Department of Biology and Animal Science, Rua Monção, 26, Zona Norte, Ilha Solteira, São Paulo, 15385-086 (BR)
  • Beatriz S. dos SANTOS São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, Department of Biology and Animal Science, Rua Monção, 26, Zona Norte, Ilha Solteira, São Paulo, 15385-086 (BR)
  • Guilherme I. da SILVA São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, Department of Biology and Animal Science, Rua Monção, 26, Zona Norte, Ilha Solteira, São Paulo, 15385-086 (BR)
  • Gabriela da S. RAQUETI São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, Department of Biology and Animal Science, Rua Monção, 26, Zona Norte, Ilha Solteira, São Paulo, 15385-086 (BR)
  • Nayane C.P. BOMFIM São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, Department of Biology and Animal Science, Rua Monção, 26, Zona Norte, Ilha Solteira, São Paulo, 15385-086 (BR)
  • Maycon A. de ARAUJO São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, Department of Biology and Animal Science, Rua Monção, 26, Zona Norte, Ilha Solteira, São Paulo, 15385-086 (BR)
  • Fábio A. de A. MORAIS São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, Department of Crop Science, Food Technology, Rua Monção, 226, Zona Norte, Ilha Solteira, São Paulo, 15385-086 (BR)
  • Aline R. COSCIONE Agronomic Institute of Campinas, Av. Barão de Itapura, Botafogo, 1.481, Campinas, São Paulo, 13020-902 (BR)
  • Liliane S. de CAMARGOS São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, Department of Biology and Animal Science, Rua Monção, 26, Zona Norte, Ilha Solteira, São Paulo, 15385-086 (BR)

DOI:

https://doi.org/10.15835/nbha53314404

Keywords:

emergence speed index, Moringaceae, potentially toxic element, seed germination, soil remediation, Zn sources

Abstract

Zinc (Zn) is an essential micronutrient in the plant life cycle, playing catalytic, structural, and regulatory roles in various physiological processes. However, when present in excess, Zn becomes a potentially toxic element (PTE), causing adverse effects ranging from impaired seed germination to inhibited plant growth and development. Understanding plant responses to increasing Zn concentrations in the soil is fundamental for the recovery of degraded areas and for assessing phytoremediation potential. This study aimed to evaluate the effects of different Zn concentrations on the emergence of Moringa oleifera Lam. seedlings, comparing the responses to two Zn sources in the soil: zinc chloride (ZnCl₂) and zinc sulfate (ZnSO₄). The experiment was conducted in a greenhouse under a completely randomized factorial design with four replicates. Treatments consisted of six Zn concentrations: 0 (control), 100, 200, 300, 400, and 500 mg Zn dm-3 of soil, for both sources. After a 30-day stabilization period (days after element application, DAE), M. oleifera seeds were sown and maintained for 15 days, after which emergence and biometric parameters were evaluated. Data were subjected to analysis of variance, and when significant differences were detected, the Scott-Knott test at a 5% significance level was applied to compare treatments and sources. High Zn concentrations (400 and 500 mg Zn dm-3 of soil) negatively affected seedling emergence, regardless of the Zn source. ZnSO₄ proved to be the more phytotoxic source, significantly reducing both the emergence percentage and speed, as well as biomass accumulation in the seedlings.

References

Araújo MS, Cunha SD, D’Abadia K L, Morais YCR, Rocha EC, Barretto VCM, Coelho GM (2017). Initial growth of African mahogany plants in response to zinc fertilization. African Journal of Agricultural Research 12:1022-1026. https://doi.org/10.5897/AJAR2017.12176

Barber SA (1984). Soil nutrient bioavailability a mechanistic approach. John Wiley & Sons (2nd ed), New York.

Benincasa MMP (1988). Análise do crescimento de plantas: Noções básicas [Plant growth analysis: The basis]. FUNEP (1st ed), Jaboticabal.

Beutler AN, Silva VN, Deak EA, Burg, GM, Schmidt MR, Toebe M (2014). Zinc doses, sources and application times: Seed physiological potential and flooded rice yield. Australian Journal of Crop Science 8(11):1517-1525.

Beygi M, Jalali M (2019). Assessment of trace elements (Cd, Cu, Ni, Zn) fractionation and bioavailability in vineyard soils from the Hamedan, Iran. Geoderma 337:1009-1020. https://doi.org/10.1016/j.geoderma.2018.11.009

Bomfim NCP, Aguilar JV, de Paiva WdS, de Souza LA, Justino GC, Faria GA, Camargos LS (2021). Iron phytostabilization by Leucaena leucocephala. South African Journal of Botany 138:318-327. https://doi.org/10.1016/j.sajb.2021.01.013

Bomfim NCP, Aguilar JV, Ferreira TC, de Souza LA, Camargos LS (2023). Could nitrogen compounds be indicators of tolerance to high doses of Cu and Fe in the cultivation of Leucaena leucocephala? Plant Physiology and Biochemistry 194:489-498. https://doi.org/10.1016/j.plaphy.2022.11.042

Bradl HB (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science 277:1-18. https://doi.org/10.1016/j.jcis.2004.04.005

Brazil. Ministry of Agriculture, Livestock, and Supply (2009). Regras para análise de sementes [Rules for seed analysis]. Ministério da Agricultura, Pecuária e Abastecimento, Secretaria de Defesa Agropecuária, Brasília DF pp 398. Retrieved 2025 January 7 from https://www.gov.br/agricultura/pt-br/assuntos/insumos-agropecuarios/arquivos-publicacoes-insumos/2946_regras_analise__sementes.pdf

Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007). Zinc in plants. New Phytologist 173:677-702. https://doi.org/10.1111/j.1469-8137.2007.01996.x

Brunetto G, Comin JJ, Miotto A, de Moraes MP, Sete PB, Schimitt DE, … Morais GP (2018). Copper and zinc accumulation, fractionation and migration in vineyard soils from Santa Catarina State, Brazil. Soil and Plant Nutrition 77:141-151. http://dx.doi.org/10.1590/1678-4499.2016391

Casagrande JC, Soares MR, Mouta ER (2008). Zinc adsorption in highly weathered soils. Pesquisa Agropecuária Brasileira 43:131-139. https://doi.org/10.1590/S0100-204X2008000100017

Cavalcante JA, Lopes KP, Evangelista NA, Pinheiro R de M, Sedrez F da S (2018). Morfologia de sementes e plântulas de moringa (Moringa oleifera Lam) Moringaceae [Morphology of seed and seedling of moringa (Moringa oleifera Lam) Moringaceae]. Magistra 29:290-297. Retrieved 2025 January 24 from https://periodicos.ufrb.edu.br/index.php/magistra/article/view/4100

CETESB (2021). Environmental Company of the State of São Paulo. Valores orientadores para o solo e as águas subterrâneas no Estado de São Paulo [Guiding Values for Soil and Groundwater in the State of São Paulo]. Companhia Ambiental do Estado de São Paulo. Retrieved 2024 January 24 from https://cetesb.sp.gov.br/solo/valores-orientadores-para-solo-e-agua-subterranea/

Cherubin MR, Schiebelbein BE (2022). Saúde do solo: múltiplas perspectivas e percepções [Soil health: multiple perspectives and perceptions]. Universidade de São Paulo. Escola Superior de Agricultura Luiz de Queiroz. https://doi.org/10.11606/9786587391342

Costa TR, Reis VCR, Ferreira RR, Silva LS da, Gonzaga APD (2021). Influência dos tratamentos pré-germinativos, térmicos e regime de luz na germinação de sementes de moringa (Moringa oleifera Lam.) [Influence of pre-germination treatments, thermal treatments, and light regime on moringa seed germination (Moringa oleifera Lam.)]. Diversitas Journal 6(4):3763-3778. https://doi.org/10.48017/dj.v6i4.1712

Couto R de R, Ribeiro-Lazzari CJ, Trapp T, de Conti L, Comin JJ, Martins SR, … Brunetto G (2015). Accumulation and distribution of copper and zinc in soils following the application of pig slurry for three to thirty years in a microwatershed of southern Brazil. Archives of Agronomy and Soil Science 62(5):593-616. https://doi.org/10.1080/03650340.2015.1074183

Duke JA (1978). The quest for tolerant germplasm. In Gerald AJ (Ed). Crop tolerance to suboptimal land conditions. American Society of Agronomy, USA pp 1-61. https://doi.org/10.2134/asaspecpub32.c1

Ferrari-Gualberto A, Ferrari GM, Pedra de Abreu KM, Preto B de L, Ferrari JL (2014). Características, propriedades e potencialidades da moringa (Moringa oleifera Lam.): Aspectos agroecológicos [Portuguese Characteristics, properties, and potential of moringa (Moringa oleifera Lam.): Agroecological aspects]. Revista Verde Agroecologia e Desenvolvimento Sustentável 9(5):19-25. Retrieved 2025 January 12 from https://www.gvaa.com.br/revista/index.php/RVADS/article/view/2889

Ferreira EB, Cavalcanti PP, Nogueira DA (2021). Package ‘ExpDes.pt’: Pacote Experimental Designs [Experimental Drawings Package] pp 68. Retrieved 2025 January 24 from https://cran.r-project.org/web/packages/ExpDes.pt/ExpDes.pt.pdf

Fogaça CA, Malavasi M de M, Zucareli C, Malavasi UC (2006). Aplicação do teste de tetrazólio em sementes de Gleditschia amorphoides Taub. Caesalpinaceae [Application of the tetrazolium test in Gleditschia amorphoides Taub. seeds Caesalpinaceae]. Revista Brasileira de Sementes 28(3):101-107. https://doi.org/10.1590/S0101-31222006000300015

França-Neto J de B, Krzyzanowski FC (2018). Metodologia do teste de tetrazólio em sementes de soja [Methodology of the tetrazolium test on soybean seeds]. Embrapa Soja (1st ed.). Londrina. Retrieved 2025 January 24 from https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1098452/1/Doc406OL.pdf

Freitas RCS, Souza MA, Miranda PRB, Costa G (2021). Contaminação ambiental por metais pesados provenientes do descarte irregular de resíduos sólidos urbanos [Environmental contamination by heavy metals from the irregular disposal of urban solid waste]. Revista Ibero Americano de Ciências Ambientais 12(9):433-441. http://doi.org/10.6008/CBPC2179-6858.2021.009.0033

Guimarães RN, Matos AT de, Carpanez TG (2022). Alterações químicas e sanitárias em solos e estéril de mineração receptores de lodo de esgoto sanitário, composto orgânico e fertilizante mineral [Chemical and sanitary changes in soils and sterile of mining receiving sewage slude, organic compost and mineral fertilizer]. Engenharia Sanitária e Ambiental 27(4):783-793. https://doi.org/10.1590/S1413-415220200225

Hunt AJ, Anderson CWN, Bruce N, García AM, Graedel TE, Hodson M, … Clark JH (2014). Phytoextraction as a tool for green chemistry. Green Processing and Synthesis 3:3-22. https://doi.org/10.1515/gps-2013-0103

Jia W, Miao F, Lv S, Feng J, Zhou F, Zhang X, Wang D, Li S, Li Y (2017) Identication for the capability of Cd-tolerance, accumulation and translocation of 96 sorghum genotypes. Ecotoxicology and Environmental Safety 145:391-397. https://doi.org/10.1016/j.ecoenv.2017.07.002

Kabata-Pendias A (2010). Trace Elements in Soils and Plants. Taylor & Francis Group (4th ed.) CRC Press. https://doi.org/10.1201/b10158

Kalil-Filho AN, Lopes AJ, Rêgo GM, Tomachitz A (2008). Avaliação da Qualidade Fisiológica de Sementes de Imbuia pelo Teste do Tetrazólio [Physiological Quality Evaluation of Imbuia Seeds by the Tetrazolium Test]. Pesquisa Florestal Brasileira 57:69-72.

Korchagin J, Moterle DF, Escosteguy PAV, Bortoluzzi EC (2020). Distribution of copper and zinc fractions in a Regosol profile under centenary vineyard. Environmental Earth Sciences 79:439. https://doi.org/10.1007/s12665-020-09209-7

Kranner I, Colville L (2011). Metals and seeds: Biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany 72(1):93-105. https://doi.org/10.1016/j.envexpbot.2010.05.005

de Lima LB, Marcos Filho J (2011). Procedimentos para condução de testes de vigor baseados na tolerância ao estresse térmico em sementes de pepino [Procedures for vigor tests based on the thermal stress tolerance of cucumber seeds]. Revista Brasileira de Sementes 33:45–53. https://doi.org/10.1590/S0101-31222011000100005

Maguire JD (1962). Speed of germination-Aid in selection and evaluation for seedling emergence and vigor. Crop Science 2(2):176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x

Malavolta E, Vitti GC, Oliveira SA (1997). Avaliação do estado nutricional das plantas: princípios e aplicações [Evaluation of plant nutritional status: principles and applications]. Potafos (2nd ed), Piracicaba.

Marcos-Filho J (2015). Fisiologia de sementes de plantas cultivadas [Physiology of cultivated plant seeds]. Júlio Marcos-Filho, ABRATES (2nd ed), Londrina.

Missio EL, Nicoloso FT, Jucoski de OG, Sartori L (2004). Exigências nutricionais da grápia ao fósforo e enxofre em Argissolo Vermelho distrófico arênico: efeito da adubação no crescimento [Nutritional demand of grápia to phophorus and sulfur in paleaudalf soil: fertilization effects on growth]. Ciência Rural 34(4):1051-1057. https://doi.org/10.1590/S0103-84782004000400013

Muccifora S, Bellani LM (2013). Effects of copper on germination and reserve mobilization in Vicia sativa L. seeds. Environmental Pollution 179:68-74. https://doi.org/10.1016/j.envpol.2013.03.061

do Nascimento CWA, Biondi CM, da Silva FBV, Lima LHV (2021). Using plants to remediate or manage metal-polluted soils: an overview on the current state of phytotechnologies. Acta Scientiarum Agronomy 43(1):e58283 https://doi.org/10.4025/actasciagron.v43i1.58283

Nedjimi B (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences 3:286. https://doi.org/10.1007/s42452-021-04301-4

Nogueira NW, Torres SB, de Freitas RMO (2014). Teste de tetrazólio em sementes de Timbaúba [Tetrazolium test in Timbaúba seeds]. Ciências Agrárias 35(6):2967-2976. https://doi.org/10.5433/1679-0359.2014v35n6p2967

Pereira ACC, do Amaral Sobrinho NMB, Sampaio Junior J, Oliveira JA, Santos FS, Mazur N (2013). Comportamento da Cordia africana Lam. cultivada em solo contaminado por metais pesados e tratado com materiais amenizantes [Behavior of Cordia africana Lam. cultivated in heavy metal-contaminated soil and treated with materials]. Ciência Florestal 23:329-336. https://doi.org/10.5902/1980509810544

Pilon-Smits E (2005). Phytoremediation. Annual Review of Plant Biology 56:15-39. https://doi.org/10.1146/annurev.arplant.56.032604.144214

Pollard AJ, Powell KD, Harper FA, Smith JAC (2002). The genetic basis of metal hyperaccumulation in plants. Critical Reviews in Plant Sciences 21(6):539-566. https://doi.org/10.1080/0735-260291044359

Posit Team RStudio: Integrated development environment for R. Posit Software 2023.

R Core Team R (2024). The R project for statistical computing. Retrieved 2024 January 24 from https://www.r-project.org/

Radić S, Babić M, Škobić D, Roje V, Pevalek-Kozlina B (2010). Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicology and Environmental Safety 73(3):336-342. https://doi.org/10.1016/j.ecoenv.2009.10.014

Rahman MM, Azirun SM, Boyce AN (2013). Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus). PLoS ONE 8(5):e62941 https://doi.org/10.1371/journal.pone.0062941

van Raij BV, de Andrade JC, Cantarella H, Quaggio JA (2001). Análise química para avaliação da fertilidade de solos tropicais [Chemical analysis for evaluating the fertility of tropical soils]. Instituto Agronômico de Campinas, Spain, pp 285.

Robinson BH, Bañuelos G, Conesa HM, Evangelou MWH, Schulin R (2009). The phytomanagement of trace elements in soil. Critical Reviews in Plant Sciences 28(4):240-266. https://doi.org/10.1080/07352680903035424

dos Santos HG, Jacomine PKT, dos Anjos LHC, de Oliveira VA, Lumbreras JF, Coelho MR, … Filho JC de A (2022). Proposta de atualização da quinta edição do sistema Brasileiro de classificação de solos -ano 2022 [Proposal for updating the fifth edition of the Brazilian coil classification system - 2022]. Empresa Brasileira de Pesquisa Agropecuária, Embrapa Solos.

Retrieved 2024 January 24 from https://ainfo.cnptia.embrapa.br/digital/bitstream/doc/1147080/1/CNPS-DOC-233-2022.pdf

Sharma P, Pandey S (2014). Status of phytoremediation in world scenario. International Journal of Environmental Bioremediation and Biodegradation 2(4):178-191.

Silva DJ, Venegas VHA, Ruiz HA (2002). Transporte de enxofre para as raízes de soja em três solos de Minas Gerais [Sulphur transport toward soybean roots in three soils from Minas Gerais State, Brazil]. Pesquisa Agropecuária Brasileira 37(8):1161-1167. https://doi.org/10.1590/S0100-204X2002000800014

da Silva FC (2009). Manual de análises químicas de solos, plantas e fertilizantes [Manual for chemical analysis of soils, plants, and fertilizers]. Embrapa (2nd ed), Brasília. Retrieved January 24 2024 from https://www.infoteca.cnptia.embrapa.br/handle/doc/330496

da Silva RF, Antoniolli ZI, Weirich SW, Dellai A, Missio EL, Scheid D (2016). Potencial da associação Pisolithus microcarpus com mudas de Corymbia citriodora em solo contaminado com zinco [Potential of the association Pisolithus microcarpus with Corymbia citriodora seedlings in zinc-contaminated soil]. Ciência Florestal 26(1):181-191. https://doi.org/10.5902/1980509821109

da Silva RF, Antoniolli ZI, Grolli AL, Scheid DL, Bertollo GM, Missio EL (2018). Crescimento e tolerância de mudas de Enterolobium contortisiliquum Vell. cultivadas em solo contaminado com zinco [Growth and tolerance of Enterolobium contortisiliquum Vell. seedlings cultivated in zinc-contaminated soil]. Ciência Florestal 28(3):979-986. https://doi.org/10.5902/1980509833374

Soil Survey Staff (2022). Keys to soil taxonomy (13th ed). USDA Natural Resources Conservation Service. Retrieved 2024 January 25 from https://www.nrcs.usda.gov/sites/default/files/2022-09/Keys-to-Soil-Taxonomy.pdf

Souto JS (2017). Moringa: 333 perguntas e respostas [Moringa: 333 Questions and Answers]. Editora Da Universidade Federal De Campina Grande, Patos, Brazil. Retrieved January 24 2025 from http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/30205

Souza LZS, de Andrade-Lima LRP (2022). Avaliação de risco dos rejeitos da usina desativada de flotação de galena e esfalerita da Mineração Boquira (Bahia, Brasil) [Risk assessment of tailings from the deactivated galena and sphalerite flotation plant of Boquira Mining (Bahia, Brazil)]. Tecnologia em Metalurgica, Materiais e Mineração 19:e2570. http://dx.doi.org/10.4322/2176-1523.20222570

Stanton C, Sanders D, Krämer U, Podar D (2022). Zinc in plants: Integrating homeostasis and biofortification. Molecular Plant 15(1):65-85. https://doi.org/10.1016/j.molp.2021.12.008

Teixeira NL, Caxito FA, Rosière CA, Pecoits E, Vieira L, Frei R, … Poitrasson F (2017). Trace elements and isotope geochemistry (C, O, Fe, Cr) of the Cauê iron formation, Quadrilátero Ferrífero, Brazil: Evidence for widespread microbial dissimilatory iron reduction at the Archean/Paleoproterozoic transition. Precambrian Research 298:39-55. https://doi.org/10.1016/j.precamres.2017.05.009

Viégas I de JM, Thomaz MAA, da Silva JF, da Conceição HEO, Naiff APM (2004). Efeito da omissão de macronutrientes e boro no crescimento, nos sintomas de deficiências nutricionais e na composição mineral de plantas de camucamuzeiro [Effect of omission of macronutrient and boron on growth, on symptoms of nutritional deficiency and mineral composition in camucamuzeiro plants (Myrciaria dubia)]. Revista Brasileira de Fruticultura 26(2):315-319. https://doi.org/10.1590/S0100-29452004000200032

Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, … Brand TVD (2025). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag (Version 3.5.2). Springer-Verlag New York. Retrieved 2025 August 21 from https://ggplot2.tidyverse.org/

Downloads

Published

2025-09-10

How to Cite

GRIGOLI-OLIVIO, M. L., FERREIRA, T. C., dos SANTOS, B. S., da SILVA, G. I., RAQUETI, G. da S., BOMFIM, N. C., de ARAUJO, M. A., MORAIS, F. A. de A., COSCIONE, A. R., & de CAMARGOS, L. S. (2025). Effect of excess zinc in soil on Moringa oleifera Lam. seedlings emergence. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 53(3), 14404. https://doi.org/10.15835/nbha53314404

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha53314404