The research progress and application prospects of maize intercropping systems in enhancing farmland ecosystem services
DOI:
https://doi.org/10.15835/nbha53114344Keywords:
allelopathy, ecological niche complementarity, farmland ecosystem services, interspecies facilitation, maize intercropping systems, productivity advantageAbstract
Agricultural systems increasingly face soil degradation, resource scarcity, and climate change, positioning maize intercropping systems as a promising strategy to enhance ecosystem services in farmlands. This review highlights recent advancements and future prospects of maize intercropping systems in enhancing soil fertility, resource efficiency, and ecological sustainability. Maize intercropping systems leveraging ecological niche complementarity and interspecies facilitation, boost biodiversity, improve water, nutrient, and light use efficiency, and minimize dependence on chemical inputs. Furthermore, these systems play a critical role in pest and weed management, leading to higher crop yields and improved quality with reduced environmental impact. Despite the ecological and economic benefits, challenges persist, including technical constraints, limited regional adaptability, and obstacles to widespread adoption. Overcoming these challenges requires targeted mechanization, region-specific trials, and robust policy support. Future research should prioritize refining intercropping models, integrating advanced technologies, and formulating region-specific strategies to unlock the full potential of maize intercropping systems for sustainable agriculture.
References
Ablimit R, Li W, Zhang J, Gao H, Zhao Y, Cheng M, ... Chen Y (2022). Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China. Journal of Environmental Management 321:115859. https://doi.org/10.1016/j.jenvman.2022.115859
Agbor DT, Eboh KS, Sama DK, Teche LM, Tanyi GT, Nkongho RN (2023). Maize-legume intercropping and botanical piper mitigating effect on pest populations while enhancing the yield of maize. Journal of Natural Pesticide Research 6:100060. https://doi.org/10.1016/j.napere.2023.100060
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57(1):233-266. https://doi.org/10.1146/annurev.arplant.57.032905.105159
Begam A, Pramanick M, Dutta S, Paramanik B, Dutta G, Patra PS, ... Biswas A (2024). Inter-cropping patterns and nutrient management effects on maize growth, yield and quality. Field Crops Research 310:109363. https://doi.org/10.1016/j.fcr.2024.109363
Berendse F, Van Ruijven J, Jongejans E, Keesstra S (2015). Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18:881-888. https://doi.org/10.1007/s10021-015-9869-6
Biedrzycki ML, Jilany TA, Dudley SA, Bais HP (2010). Root exudates mediate kin recognition in plants. Communicative & Integrative Biology 3(1):28-35. https://doi.org/10.4161/cib.3.1.10118
Bijl DL, Bogaart PW, Dekker SC, Stehfest E, De Vries BJ, Van Vuuren DP (2017). A physically-based model of long-term food demand. Global Environmental Change 45:47-62. https://doi.org/10.1016/j.gloenvcha.2017.04.003
Callaway RM (1995). Positive interactions among plants. The Botanical Review 61:306-349. https://doi.org/10.1007/bf02912621
Cheng YZ, Li L, Zhou Q, Guo N, Xing H, Jiang HD (2016). Growth and yield formation of maize under different maize/soybean intercropping patterns. Journal of Nanjing Agricultural University 39(1):34-39. https://doi.org/10.7685/jnau.201504030
Costanza R, D'Arge R, De Groot R, Farber S, Grasso M, Hannon B, ... Van Den Belt M (1997). The value of the world's ecosystem services and natural capital. Nature 387(6630):253-260. https://doi.org/10.1038/387253a0
Damari Y, Avital K, Tepper S, Shahar DR, Kissinger M (2024). Sustainable future food demand: integrating social, health, and environmental considerations in forecasting. Sustainable Production and Consumption 49:354-361. https://doi.org/10.1016/j.spc.2024.07.003
Dardonville M, Legrand B, Clivot H, Bernardin C, Bockstaller C, Therond O (2022). Assessment of ecosystem services and natural capital dynamics in agroecosystems. Ecosystem Services 54:101415. https://doi.org/10.1016/j.ecoser.2022.101415
Ditzler L, Rossing WA, Schulte RP, Hageman J, Van Apeldoorn DF (2023). Prospects for increasing the resolution of crop diversity for agroecosystem service delivery in a Dutch arable system. Agriculture, Ecosystems & Environment 351:108472. https://doi.org/10.1016/j.agee.2023.108472
Donmez C, Sahingoz M, Paul C, Cilek A, Hoffmann C, Berberoglu S, ... Helming K (2024). Climate change causes spatial shifts in the productivity of agricultural long-term field experiments. European Journal of Agronomy 155:127121. https://doi.org/10.1016/j.eja.2024.127121
Du JB, Han TF, Gai JY, Yong TW, Xin S, Wang XC, ... Yang WY (2018). Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture 17(4):747-754. https://doi.org/10.1016/S2095-3119(17)61789-1
Faget M, Nagel KA, Walter A, Herrera JM, Jahnke S, Schurr U, Temperton VM (2013). Root–root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses. Annals of Botany 112(2):253-266. https://doi.org/10.1093/aob/mcs296
Feng L, Raza MA, Shi J, Ansar M, Titriku JK, Meraj TA, ... Yang W (2020). Delayed maize leaf senescence increases the land equivalent ratio of maize soybean relay intercropping system. European Journal of Agronomy 118:126092. https://doi.org/10.1016/j.eja.2020.126092
Gao R, Pan Z, Zhang J, Chen X, Qi Y, Zhang Z, ... Xu X (2023). Optimal cooperative application solutions of irrigation and nitrogen fertilization for high crop yield and friendly environment in the semi-arid region of North China. Agricultural Water Management 283:108326. https://doi.org/10.1016/j.agwat.2023.108326
Gu C, Bastiaans L, Anten NP, Makowski D, Van Der Werf W (2021). Annual intercropping suppresses weeds: a meta-analysis. Agriculture, Ecosystems & Environment 322:107658. https://doi.org/10.1016/j.agee.2021.107658
Guo Z, Luo C, Dong Y, Dong K, Zhu J, Ma L (2021). Effect of nitrogen regulation on the epidemic characteristics of intercropping faba bean rust disease primarily depends on the canopy microclimate and nitrogen nutrition. Field Crops Research 274:108339. https://doi.org/10.1016/j.fcr.2021.108339
Hetrick BD, Wilson GT, Hartnett D (1989). Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Canadian Journal of Botany 67(9):2608-2615. https://doi.org/10.1139/b89-337
Hou M, Li Y, Biswas A, Chen X, Xie L, Liu D, ... Siddique KH (2024). Concurrent drought threaten wheat and maize production and widen crop yield gaps in the future. Agricultural Systems 220:104056. https://doi.org/10.1016/j.agsy.2024.104056
Javanmard A, Machiani MA, Lithourgidis A, Morshedloo MR, Ostadi A (2020). Intercropping of maize with legumes: a cleaner strategy for improving the quantity and quality of forage. Cleaner Engineering and Technology 1:100003. https://doi.org/10.1016/j.clet.2020.100003
Karlidag H, Yildirim E (2009). Strawberry intercropping with vegetables for proper utilization of space and resources. Journal of Sustainable Agriculture 33(1):107-116. https://doi.org/10.1080/10440040802587462
Kazemi H, Klug H, Kamkar B (2018). New services and roles of biodiversity in modern agroecosystems: a review. Ecological Indicators 93:1126-1135. https://doi.org/10.1016/j.ecolind.2018.06.018
Khokhar A, Yousuf A, Singh M, Sharma V, Sandhu PS, Chary GR (2021). Impact of land configuration and strip-intercropping on runoff, soil loss and crop yields under rainfed conditions in the Shivalik foothills of north-west, India. Sustainability 13(11):6282. https://doi.org/10.3390/su13116282
Knörzer H, Grözinger H, Graeff-Hönninger S, Hartung K, Piepho HP, Claupein W (2011). Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system. Field Crops Research 121(2):274-285. https://doi.org/10.1016/j.fcr.2010.12.016
Kong CH, Hu F, Wang P (2016). Plant allelopathy and its application. Higher Education Press, Beijing.
Kou H, Liao Z, Zhang H, Lai Z, Liu Y, Kong H, ... Fan J (2024). Grain yield, water-land productivity and economic profit responses to row configuration in maize-soybean strip intercropping systems under drip fertigation in arid northwest China. Agricultural Water Management 297:108817. https://doi.org/https://doi.org/10.1016/j.agwat.2024.108817
Kumari VV, Balloli S, Kumar M, Ramana D, Prabhakar M, Osman M, ... Timsina J (2024). Diversified cropping systems for reducing soil erosion and nutrient loss and for increasing crop productivity and profitability in rainfed environments. Agricultural Systems 217:103919. https://doi.org/10.1016/j.agsy.2024.103919
Latif S, Chiapusio G, Weston LA (2017). Allelopathy and the role of allelochemicals in plant defence. Advances in Botanical Research 82:19-54. https://doi.org/10.1016/bs.abr.2016.12.001
Li L, Sun J, Zhang F, Li X, Rengel Z, Yang S (2001). Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research 71(3):173-181. https://doi.org/10.1016/S0378-4290(01)00157-5
Li L, Tilman D, Lambers H, Zhang FS (2014). Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist 203(1):63-69. https://doi.org/10.1111/nph.12778
Li XF, Han YC, Wang GP, Wang ZB, Feng L, Yang BF, ... Li YB (2020). Recent advances in the enhancement of agroecosystem services and functioning by cotton-based intercropping systems. Cotton Science 32(5):472-482. https://doi.org/10.11963/1002-7807.lxflyb.20200826
Li XF, Wang ZG, Bao XG, Sun JH, Yang SC, Wang P, ... Li L (2021). Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability 4(11):943-950. https://doi.org/10.1038/s41893-021-00767-7
Lin R, Liang H, Zhang R, Tian C, Ma Y (2003). Impact of alfalfa/cotton intercropping and management on some aphid predators in China. Journal of Applied Entomology 127(1):33-36. https://doi.org/10.1046/j.1439-0418.2003.00672.x
Liu Q, Sun X, Wu W, Liu Z, Fang G, Yang P (2022). Agroecosystem services: a review of concepts, indicators, assessment methods and future research perspectives. Ecological Indicators 142:109218. https://doi.org/10.1016/j.ecolind.2022.109218
Liu R, Yang L, Zhang J, Zhou G, Chang D, Chai Q, Cao W (2024). Maize and legume intercropping enhanced crop growth and soil carbon and nutrient cycling through regulating soil enzyme activities. European Journal of Agronomy 159:127237. https://doi.org/10.1016/j.eja.2024.127237
Liu TT, Teng YX, Yang T, Li B, Wan SM, Chen GD, Zhang W (2019). Study on physiological and root morphological characteristics of maize and cotton intercropping. Agricultural Research in the Arid Areas 37(6):160-165. https://doi.org/10.7606/j.issn.1000-7601.2019.06.23
Liu W, Deng Y, Hussain S, Zou J, Yuan J, Luo L, ... Yang W (2016). Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. Field Crops Research 196:261-267. https://doi.org/10.1016/j.fcr.2016.07.008
Liu W, Wang J, Li C, Chen B, Sun Y (2019). Using bibliometric analysis to understand the recent progress in agroecosystem services research. Ecological Economics 156:293-305. https://doi.org/10.1016/j.ecolecon.2018.09.001
Liu X, Rahman T, Song C, Yang F, Su B, Cui L, ... Yang W (2018). Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Research 224:91-101. https://doi.org/10.1016/j.fcr.2018.05.010
Liu X, Zhang X, Wang Y, Sui Y, Zhang S, Herbert S, Ding G (2010). Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China. Plant, Soil and Environment 56(2):87-97. https://doi.org/10.17221/155/2009-PSE
Long L (2016). Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chinese Journal of Eco-Agriculture 24(4):403-415. https://doi.org/10.13930/j.cnki.cjea.160061
Lv Y, Wu PT, Chen XL, Wang YB, Zhao XN (2014). Crop resource competition in maize/soybean intercropping system. Chinese Journal of Applied Ecology 25(1):139-146. https://doi.org/10.13287/j.1001-9332.2014.01.019
Ma L, Li Y, Wu P, Zhao X, Gao X, Chen X (2020). Recovery growth and water use of intercropped maize following wheat harvest in wheat/maize relay strip intercropping. Field Crops Research 256:107924. https://doi.org/10.1016/j.fcr.2020.107924
Men X, Ge F, Yardim E, Parajulee M (2004). Evaluation of winter wheat as a potential relay crop for enhancing biological control of cotton aphids. Biocontrol 49:701-714. https://doi.org/10.1007/s10526-004-5278-z
Ning T, Zheng Y, Han H, Jiang G, Li Z (2012). Nitrogen uptake, biomass yield and quality of intercropped spring-and summer-sown maize at different nitrogen levels in the North China Plain. Biomass and Bioenergy 47:91-98. https://doi.org/10.1016/j.biombioe.2012.09.059
Pierre JF, Latournerie-Moreno L, Garruña R, Jacobsen KL, Laboski CA, Us-Santamaría R, Ruiz-Sánchez E (2022). Effect of maize–legume intercropping on maize physio-agronomic parameters and beneficial insect abundance. Sustainability 14(19):12385. https://doi.org/10.3390/su141912385
Poveda K, Gómez MI, Martinez E (2008). Diversification practices: their effect on pest regulation and production. Revista Colombiana de Entomologia 34(2):131-144. https://doi.org/10.25100/socolen.v34i2.9269
Qian X, Zang H, Xu H, Hu Y, Ren C, Guo L, ... Zeng Z (2018). Relay strip intercropping of oat with maize, sunflower and mung bean in semi-arid regions of Northeast China: yield advantages and economic benefits. Field Crops Research 223:33-40. https://doi.org/10.1016/j.fcr.2018.04.004
Qiu M, Van De Voorde T, Li T, Yuan C, Yin G (2021). Spatiotemporal variation of agroecosystem service trade-offs and its driving factors across different climate zones. Ecological Indicators 130:108154. https://doi.org/10.1016/j.ecolind.2021.108154
Raza MA, Gul H, Wang J, Yasin HS, Qin R, Khalid MHB, ... Yang W (2021). Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: a case study in Punjab Province, Pakistan. Journal of Cleaner Production 308:127282. https://doi.org/10.1016/j.jclepro.2021.127282
Saudy HS (2015). Maize–cowpea intercropping as an ecological approach for nitrogen-use rationalization and weed suppression. Archives of Agronomy and Soil Science 61(1):1-14. https://doi.org/10.1080/03650340.2014.920499
Secco D, Bassegio D, De Marins AC, Chang P, Savioli MR, Castro MBS, ... Wendt EJ (2023). Short-term impacts of different intercropping times of maize and ruzigrass on soil physical properties in subtropical Brazil. Soil and Tillage Research 234:105838. https://doi.org/10.1016/j.still.2023.105838
Sekiya N, Yano K (2004). Do pigeon pea and sesbania supply groundwater to intercropped maize through hydraulic lift?—Hydrogen stable isotope investigation of xylem waters. Field Crops Research 86(2-3):167-173. https://doi.org/10.1016/j.fcr.2003.08.007
Shah MA, Farooq M, Hussain M (2016). Productivity and profitability of cotton–wheat system as influenced by relay intercropping of insect resistant transgenic cotton in bed planted wheat. European Journal of Agronomy 75:33-41. https://doi.org/10.1016/j.eja.2015.12.014
Shah WUH, Lu Y, Liu J, Rehman A, Yasmeen R (2024). The impact of climate change and production technology heterogeneity on China's agricultural total factor productivity and production efficiency. Science of the Total Environment 907:168027. https://doi.org/10.1016/j.scitotenv.2023.168027
Sharma N, Singh RJ, Mandal D, Kumar A, Alam N, Keesstra S (2017). Increasing farmer’s income and reducing soil erosion using intercropping in rainfed maize-wheat rotation of Himalaya, India. Agriculture, Ecosystems & Environment 247:43-53. https://doi.org/10.1016/j.agee.2017.06.026
Shen L, Wang X, Liu T, Wei W, Zhang S, Keyhani AB, ... Zhang W (2023). Border row effects on the distribution of root and soil resources in maize–soybean strip intercropping systems. Soil and Tillage Research 233:105812. https://doi.org/10.1016/j.still.2023.105812
Shi F, Huang HJ, Chen YT, Chen LL (2022). Effects of intercropping functional plants on the ecosystem functions and services in tea garden. Journal of Tea Science 42:151-168. https://doi.org/10.5555/20230012136
Silberg TR, Chimonyo VGP, Richardson RB, Snapp SS, Renner K (2019). Legume diversification and weed management in African cereal-based systems. Agricultural Systems 174:83-94. https://doi.org/10.1016/j.agsy.2019.05.004
Soujanya PL, Vanisree K, Giri GS, Mahadik S, Jat S, Sekhar J, Jat H (2024). Intercropping in maize reduces fall armyworm Spodoptera frugiperda (JE Smith) infestation, supports natural enemies, and enhances yield. Agriculture, Ecosystems & Environment 373:109130. https://doi.org/10.1016/j.agee.2024.109130
Stoltz E, Nadeau E (2014). Effects of intercropping on yield, weed incidence, forage quality and soil residual N in organically grown forage maize (Zea mays L.) and faba bean (Vicia faba L.). Field Crops Research 169:21-29. https://doi.org/10.1016/j.fcr.2014.09.004
Swinton SM, Lupi F, Robertson GP, Hamilton SK (2007). Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecological Economics 64(2):245-252. https://doi.org/10.1016/j.ecolecon.2007.09.020
Tao D, Delgado-Baquerizo M, Zhou G, Revillini D, He Q, Swanson CS, Gao Y (2024). Maize-alfalfa intercropping alleviates the dependence of multiple ecosystem services on nonrenewable fertilization. Agriculture, Ecosystems & Environment 373:109141. https://doi.org/10.1016/j.agee.2024.109141
Te X, Din AMU, Cui K, Raza MA, Ali MF, Xiao J (2023). Inter-specific root interactions and water use efficiency of maize/soybean relay strip intercropping. Field Crops Research 291:108793. https://doi.org/10.1016/j.fcr.2022.108793
Van Dijk M, Morley T, Rau ML, Saghai Y (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food 2(7):494-501. https://doi.org/10.1038/s43016-021-00322-9
Vandermeer JH (1989). The ecology of intercropping. Cambridge University Press, Cambridge.
Vashisht B, Nigon T, Mulla D, Rosen C, Xu H, Twine T, Jalota S (2015). Adaptation of water and nitrogen management to future climates for sustaining potato yield in Minnesota: field and simulation study. Agricultural Water Management 152:198-206. https://doi.org/10.1016/j.agwat.2015.01.011
Wang M, Shi W, Kamran M, Chang S, Jia Q, Hou F (2024). Effects of intercropping and regulated deficit irrigation on the yield, water and land resource utilization, and economic benefits of forage maize in arid region of Northwest China. Agricultural Water Management 298:108876. https://doi.org/10.1016/j.agwat.2024.108876
Wang X, Deng X, Pu T, Song C, Yong T, Yang F, ... Yang W (2017). Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research 204:12-22. https://doi.org/10.1016/j.fcr.2016.12.020
Willey R (1979). Intercropping its importance and research needs part 1. competition and yield advantages vol-32. Field Crop Abstracts 32:1-10.
Wu K, Jiang C, Zhou S, Yang H (2022). Optimizing arrangement and density in maize and alfalfa intercropping and the reduced incidence of the invasive fall armyworm (Spodoptera frugiperda) in southern China. Field Crops Research 287:108637. https://doi.org/10.1016/j.fcr.2022.108637
Xia H, Li X, Qiao Y, Xue Y, Yan W, Xue Y, ... Van Der Werf W (2024). Diversification of wheat-maize double cropping with legume intercrops improves nitrogen-use efficiency: evidence at crop and cropping system levels. Field Crops Research 307:109262. https://doi.org/10.1016/j.fcr.2024.109262
Xia HY, Zhao JH, Sun JH, Bao XG, Christie P, Zhang FS, Li L (2013). Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research 150:52-62. https://doi.org/10.1016/j.fcr.2013.05.027
Xu R, Zhao H, Liu G, Li Y, Li S, Zhang Y, ... Ma L (2022). Alfalfa and silage maize intercropping provides comparable productivity and profitability with lower environmental impacts than wheat–maize system in the North China plain. Agricultural Systems 195:103305. https://doi.org/10.1016/j.agsy.2021.103305
Yang F, Liao D, Wu X, Gao R, Fan Y, Raza MA, ... Yang W (2017). Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research 203:16-23. https://doi.org/10.1016/j.fcr.2016.12.007
Yang H, Su Y, Wang L, Whalen JK, Pu T, Wang X, ... Wu Y (2025). Strip intercropped maize with more light interception during post-silking promotes photosynthesized carbon sequestration in the soil. Agriculture, Ecosystems & Environment 378:109301. https://doi.org/10.1016/j.agee.2024.109301
Yang WY, Yang F (2019). We will develop belt and compound planting of jade bean to ensure national food security. Scientia Agricultura Sinica 52(21):3748-3750. https://doi.org/10.3864/j.issn.0578-1752.2019.21.003
Yang XC, Hu YG, Qian X, Ren CZ, Lin YC, Guo LC, ... Zeng ZH (2012). Effects of nitrogen applicaton level on system productivity, nitrogen absorption and accumulation in mung bean ‖ oat intercropping system. Journal of China Agricultural University 17(4):46-52.
Yin W (2017). Water competition and complementary utilization mechanism of wheat intercropping maize under alternating strip mulching of straw mulch. PhD Thesis, Gansu Agricultural University.
Zhang LZ, Van Der Werf W, Zhang SP, Li B, Spiertz J (2007). Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Research 103(3):178-188. https://doi.org/10.1016/j.fcr.2007.06.002
Zhang R, Liang H, Tian C, Zhang G (2000). Biological mechanism of controlling cotton aphid (Homoptera: aphididae) by the marginal alfalfa zone surrounding cotton field. Chinese Science Bulletin 45:355-358. https://doi.org/10.1007/BF02909768
Zhang SB, Liang KM, Guo J, Luo H (2016). Yield improvement by intercropping-viewed from a niche perspective. Fujian Journal of a Gricultural Sciences 31(9):1005-1012. https://doi.org/10.19303/j.issn.1008-0384.2016.09.020
Zhang W, Wei YX, Khan A, Lu JS, Xiong JL, Zhu SG, ... Xiong Y (2023). Intercropped soybean boosts nitrogen benefits and amends nitrogen use pattern under plastic film mulching in the semiarid maize field. Field Crops Research 295:108881. https://doi.org/10.1016/j.fcr.2023.108881
Zhang WL (2021). Effects of maize on crop growth, water use and economic benefit. MSc Dissertation, Shihezi University.
Zhang X, Li Z, Siddique KH, Shayakhmetova A, Jia Z, Han Q (2020). Increasing maize production and preventing water deficits in semi-arid areas: a study matching fertilization with regional precipitation under mulch planting. Agricultural Water Management 241:106347. https://doi.org/10.1016/j.agwat.2020.106347
Zhao Y, Guo S, Zhu X, Zhang L, Long Y, Wan X, Wei X (2024). How maize-legume intercropping and rotation contribute to food security and environmental sustainability. Journal of Cleaner Production 434:140150. https://doi.org/10.1016/j.jclepro.2023.140150
Zheng BC, Zhou Y, Chen P, Zhang XN, Du Q, Yang H, ... Yong TW (2022). Maize–legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. Journal of Integrative Agriculture 21(6):1755-1771. https://doi.org/10.1016/S2095-3119(21)63730-9
Zhou T, Du Y, Ahmed S, Liu T, Ren M, Liu W, Yang W (2016). Genotypic differences in phosphorus efficiency and the performance of physiological characteristics in response to low phosphorus stress of soybean in southwest of China. Frontiers in Plant Science 7:1776. https://doi.org/10.3389/fpls.2016.01776
Zhou T, Wang L, Sun X, Wang X, Pu T, Yang H, ... Yang W (2021). Improved post-silking light interception increases yield and P-use efficiency of maize in maize/soybean relay strip intercropping. Field Crops Research 262:108054. https://doi.org/10.1016/j.fcr.2020.108054
Zhu SG, Cheng ZG, Batool A, Wang YB, Wang J, Zhou R, ... Xiong YC (2022). Plant facilitation shifts along with soil moisture and phosphorus gradients via rhizosphere interaction in the maize-grass pea intercropping system. Ecological Indicators 139:108901. https://doi.org/10.1016/j.ecolind.2022.108901
Zi SH, Wu KX, Ouyang CR, Fan ZW, Yang YQ, Zhou F, Wu BZ (2019). Effects of root exudates of maize and potato on potato growth. Agricultural Research in the Arid Areas 37(2):88-94. https://doi.org/10.7606/j.issn.1000-7601.2019.02.13
Zou X, Liu Y, Huang M, Li F, Si T, Wang Y, ... Shi P (2023). Rotational strip intercropping of maize and peanut enhances productivity by improving crop photosynthetic production and optimizing soil nutrients and bacterial communities. Field Crops Research 291:108770. https://doi.org/10.1016/j.fcr.2022.108770
Zou XX, Shi PX, Zhang CJ, Si T, Wang YF, Zhang XJ, ... Wang ML (2021). Rotational strip intercropping of maize and peanuts has multiple benefits for agricultural production in the northern agropastoral ecotone region of China. European Journal of Agronomy 129:126304. https://doi.org/10.1016/j.eja.2021.126304
Zuazo VHD, Pleguezuelo CRR (2008). Soil-erosion and runoff prevention by plant covers. A review. Agronomy for Sustainable Development 28(1):65-86. https://doi.org/10.1051/agro:2007062
Zuo YM, Zhang FS (2003). Effects of peanut intercropping with different gramineous species and their intercropping model on iron nutrition of peanut. Scientia Agricultura Sinica 36(3):300-306. https://doi.org/10.3321/j.issn:0578-1752.2003.03.012

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Wenlong ZHANG, Jinhua SHAO, Kai HUANG, Jia WANG, Limin CHEN, Quan LI, Guanghui NIU, Guoqin HUANG

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.