The research progress and application prospects of maize intercropping systems in enhancing farmland ecosystem services

Authors

  • Wenlong ZHANG Jiangxi Agricultural University, School of Agricultural Sciences, Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Nanchang, Jiangxi 330045 (CN)
  • Jinhua SHAO Jiangxi Agricultural University, School of Agricultural Sciences, Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Nanchang, Jiangxi 330045; Guangxi Hydraulic Research Institute, Guangxi Key Laboratory of Water Engineering Materials and Structures, Nanning, Guangxi 530023 (CN)
  • Kai HUANG Guangxi Hydraulic Research Institute, Guangxi Key Laboratory of Water Engineering Materials and Structures, Nanning, Guangxi 530023 (CN)
  • Jia WANG Irrigation Experiment Station of Qinzhou City, Qinzhou, Guangxi 535000 (CN)
  • Limin CHEN Irrigation Experiment Station of Qinzhou City, Qinzhou, Guangxi 535000 (CN)
  • Quan LI Irrigation Experiment Station of Qinzhou City, Qinzhou, Guangxi 535000 (CN)
  • Guanghui NIU Irrigation Experiment Station of Qinzhou City, Qinzhou, Guangxi 535000 (CN)
  • Guoqin HUANG Jiangxi Agricultural University, School of Agricultural Sciences, Key Laboratory of Crop Physiology, Ecology and Genetics Breeding, Nanchang, Jiangxi 330045 (CN)

DOI:

https://doi.org/10.15835/nbha53114344

Keywords:

allelopathy, ecological niche complementarity, farmland ecosystem services, interspecies facilitation, maize intercropping systems, productivity advantage

Abstract

Agricultural systems increasingly face soil degradation, resource scarcity, and climate change, positioning maize intercropping systems as a promising strategy to enhance ecosystem services in farmlands. This review highlights recent advancements and future prospects of maize intercropping systems in enhancing soil fertility, resource efficiency, and ecological sustainability. Maize intercropping systems leveraging ecological niche complementarity and interspecies facilitation, boost biodiversity, improve water, nutrient, and light use efficiency, and minimize dependence on chemical inputs. Furthermore, these systems play a critical role in pest and weed management, leading to higher crop yields and improved quality with reduced environmental impact. Despite the ecological and economic benefits, challenges persist, including technical constraints, limited regional adaptability, and obstacles to widespread adoption. Overcoming these challenges requires targeted mechanization, region-specific trials, and robust policy support. Future research should prioritize refining intercropping models, integrating advanced technologies, and formulating region-specific strategies to unlock the full potential of maize intercropping systems for sustainable agriculture.

References

Ablimit R, Li W, Zhang J, Gao H, Zhao Y, Cheng M, ... Chen Y (2022). Altering microbial community for improving soil properties and agricultural sustainability during a 10-year maize-green manure intercropping in Northwest China. Journal of Environmental Management 321:115859. https://doi.org/10.1016/j.jenvman.2022.115859

Agbor DT, Eboh KS, Sama DK, Teche LM, Tanyi GT, Nkongho RN (2023). Maize-legume intercropping and botanical piper mitigating effect on pest populations while enhancing the yield of maize. Journal of Natural Pesticide Research 6:100060. https://doi.org/10.1016/j.napere.2023.100060

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology 57(1):233-266. https://doi.org/10.1146/annurev.arplant.57.032905.105159

Begam A, Pramanick M, Dutta S, Paramanik B, Dutta G, Patra PS, ... Biswas A (2024). Inter-cropping patterns and nutrient management effects on maize growth, yield and quality. Field Crops Research 310:109363. https://doi.org/10.1016/j.fcr.2024.109363

Berendse F, Van Ruijven J, Jongejans E, Keesstra S (2015). Loss of plant species diversity reduces soil erosion resistance. Ecosystems 18:881-888. https://doi.org/10.1007/s10021-015-9869-6

Biedrzycki ML, Jilany TA, Dudley SA, Bais HP (2010). Root exudates mediate kin recognition in plants. Communicative & Integrative Biology 3(1):28-35. https://doi.org/10.4161/cib.3.1.10118

Bijl DL, Bogaart PW, Dekker SC, Stehfest E, De Vries BJ, Van Vuuren DP (2017). A physically-based model of long-term food demand. Global Environmental Change 45:47-62. https://doi.org/10.1016/j.gloenvcha.2017.04.003

Callaway RM (1995). Positive interactions among plants. The Botanical Review 61:306-349. https://doi.org/10.1007/bf02912621

Cheng YZ, Li L, Zhou Q, Guo N, Xing H, Jiang HD (2016). Growth and yield formation of maize under different maize/soybean intercropping patterns. Journal of Nanjing Agricultural University 39(1):34-39. https://doi.org/10.7685/jnau.201504030

Costanza R, D'Arge R, De Groot R, Farber S, Grasso M, Hannon B, ... Van Den Belt M (1997). The value of the world's ecosystem services and natural capital. Nature 387(6630):253-260. https://doi.org/10.1038/387253a0

Damari Y, Avital K, Tepper S, Shahar DR, Kissinger M (2024). Sustainable future food demand: integrating social, health, and environmental considerations in forecasting. Sustainable Production and Consumption 49:354-361. https://doi.org/10.1016/j.spc.2024.07.003

Dardonville M, Legrand B, Clivot H, Bernardin C, Bockstaller C, Therond O (2022). Assessment of ecosystem services and natural capital dynamics in agroecosystems. Ecosystem Services 54:101415. https://doi.org/10.1016/j.ecoser.2022.101415

Ditzler L, Rossing WA, Schulte RP, Hageman J, Van Apeldoorn DF (2023). Prospects for increasing the resolution of crop diversity for agroecosystem service delivery in a Dutch arable system. Agriculture, Ecosystems & Environment 351:108472. https://doi.org/10.1016/j.agee.2023.108472

Donmez C, Sahingoz M, Paul C, Cilek A, Hoffmann C, Berberoglu S, ... Helming K (2024). Climate change causes spatial shifts in the productivity of agricultural long-term field experiments. European Journal of Agronomy 155:127121. https://doi.org/10.1016/j.eja.2024.127121

Du JB, Han TF, Gai JY, Yong TW, Xin S, Wang XC, ... Yang WY (2018). Maize-soybean strip intercropping: achieved a balance between high productivity and sustainability. Journal of Integrative Agriculture 17(4):747-754. https://doi.org/10.1016/S2095-3119(17)61789-1

Faget M, Nagel KA, Walter A, Herrera JM, Jahnke S, Schurr U, Temperton VM (2013). Root–root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses. Annals of Botany 112(2):253-266. https://doi.org/10.1093/aob/mcs296

Feng L, Raza MA, Shi J, Ansar M, Titriku JK, Meraj TA, ... Yang W (2020). Delayed maize leaf senescence increases the land equivalent ratio of maize soybean relay intercropping system. European Journal of Agronomy 118:126092. https://doi.org/10.1016/j.eja.2020.126092

Gao R, Pan Z, Zhang J, Chen X, Qi Y, Zhang Z, ... Xu X (2023). Optimal cooperative application solutions of irrigation and nitrogen fertilization for high crop yield and friendly environment in the semi-arid region of North China. Agricultural Water Management 283:108326. https://doi.org/10.1016/j.agwat.2023.108326

Gu C, Bastiaans L, Anten NP, Makowski D, Van Der Werf W (2021). Annual intercropping suppresses weeds: a meta-analysis. Agriculture, Ecosystems & Environment 322:107658. https://doi.org/10.1016/j.agee.2021.107658

Guo Z, Luo C, Dong Y, Dong K, Zhu J, Ma L (2021). Effect of nitrogen regulation on the epidemic characteristics of intercropping faba bean rust disease primarily depends on the canopy microclimate and nitrogen nutrition. Field Crops Research 274:108339. https://doi.org/10.1016/j.fcr.2021.108339

Hetrick BD, Wilson GT, Hartnett D (1989). Relationship between mycorrhizal dependence and competitive ability of two tallgrass prairie grasses. Canadian Journal of Botany 67(9):2608-2615. https://doi.org/10.1139/b89-337

Hou M, Li Y, Biswas A, Chen X, Xie L, Liu D, ... Siddique KH (2024). Concurrent drought threaten wheat and maize production and widen crop yield gaps in the future. Agricultural Systems 220:104056. https://doi.org/10.1016/j.agsy.2024.104056

Javanmard A, Machiani MA, Lithourgidis A, Morshedloo MR, Ostadi A (2020). Intercropping of maize with legumes: a cleaner strategy for improving the quantity and quality of forage. Cleaner Engineering and Technology 1:100003. https://doi.org/10.1016/j.clet.2020.100003

Karlidag H, Yildirim E (2009). Strawberry intercropping with vegetables for proper utilization of space and resources. Journal of Sustainable Agriculture 33(1):107-116. https://doi.org/10.1080/10440040802587462

Kazemi H, Klug H, Kamkar B (2018). New services and roles of biodiversity in modern agroecosystems: a review. Ecological Indicators 93:1126-1135. https://doi.org/10.1016/j.ecolind.2018.06.018

Khokhar A, Yousuf A, Singh M, Sharma V, Sandhu PS, Chary GR (2021). Impact of land configuration and strip-intercropping on runoff, soil loss and crop yields under rainfed conditions in the Shivalik foothills of north-west, India. Sustainability 13(11):6282. https://doi.org/10.3390/su13116282

Knörzer H, Grözinger H, Graeff-Hönninger S, Hartung K, Piepho HP, Claupein W (2011). Integrating a simple shading algorithm into CERES-wheat and CERES-maize with particular regard to a changing microclimate within a relay-intercropping system. Field Crops Research 121(2):274-285. https://doi.org/10.1016/j.fcr.2010.12.016

Kong CH, Hu F, Wang P (2016). Plant allelopathy and its application. Higher Education Press, Beijing.

Kou H, Liao Z, Zhang H, Lai Z, Liu Y, Kong H, ... Fan J (2024). Grain yield, water-land productivity and economic profit responses to row configuration in maize-soybean strip intercropping systems under drip fertigation in arid northwest China. Agricultural Water Management 297:108817. https://doi.org/https://doi.org/10.1016/j.agwat.2024.108817

Kumari VV, Balloli S, Kumar M, Ramana D, Prabhakar M, Osman M, ... Timsina J (2024). Diversified cropping systems for reducing soil erosion and nutrient loss and for increasing crop productivity and profitability in rainfed environments. Agricultural Systems 217:103919. https://doi.org/10.1016/j.agsy.2024.103919

Latif S, Chiapusio G, Weston LA (2017). Allelopathy and the role of allelochemicals in plant defence. Advances in Botanical Research 82:19-54. https://doi.org/10.1016/bs.abr.2016.12.001

Li L, Sun J, Zhang F, Li X, Rengel Z, Yang S (2001). Wheat/maize or wheat/soybean strip intercropping: II. Recovery or compensation of maize and soybean after wheat harvesting. Field Crops Research 71(3):173-181. https://doi.org/10.1016/S0378-4290(01)00157-5

Li L, Tilman D, Lambers H, Zhang FS (2014). Plant diversity and overyielding: insights from belowground facilitation of intercropping in agriculture. New Phytologist 203(1):63-69. https://doi.org/10.1111/nph.12778

Li XF, Han YC, Wang GP, Wang ZB, Feng L, Yang BF, ... Li YB (2020). Recent advances in the enhancement of agroecosystem services and functioning by cotton-based intercropping systems. Cotton Science 32(5):472-482. https://doi.org/10.11963/1002-7807.lxflyb.20200826

Li XF, Wang ZG, Bao XG, Sun JH, Yang SC, Wang P, ... Li L (2021). Long-term increased grain yield and soil fertility from intercropping. Nature Sustainability 4(11):943-950. https://doi.org/10.1038/s41893-021-00767-7

Lin R, Liang H, Zhang R, Tian C, Ma Y (2003). Impact of alfalfa/cotton intercropping and management on some aphid predators in China. Journal of Applied Entomology 127(1):33-36. https://doi.org/10.1046/j.1439-0418.2003.00672.x

Liu Q, Sun X, Wu W, Liu Z, Fang G, Yang P (2022). Agroecosystem services: a review of concepts, indicators, assessment methods and future research perspectives. Ecological Indicators 142:109218. https://doi.org/10.1016/j.ecolind.2022.109218

Liu R, Yang L, Zhang J, Zhou G, Chang D, Chai Q, Cao W (2024). Maize and legume intercropping enhanced crop growth and soil carbon and nutrient cycling through regulating soil enzyme activities. European Journal of Agronomy 159:127237. https://doi.org/10.1016/j.eja.2024.127237

Liu TT, Teng YX, Yang T, Li B, Wan SM, Chen GD, Zhang W (2019). Study on physiological and root morphological characteristics of maize and cotton intercropping. Agricultural Research in the Arid Areas 37(6):160-165. https://doi.org/10.7606/j.issn.1000-7601.2019.06.23

Liu W, Deng Y, Hussain S, Zou J, Yuan J, Luo L, ... Yang W (2016). Relationship between cellulose accumulation and lodging resistance in the stem of relay intercropped soybean [Glycine max (L.) Merr.]. Field Crops Research 196:261-267. https://doi.org/10.1016/j.fcr.2016.07.008

Liu W, Wang J, Li C, Chen B, Sun Y (2019). Using bibliometric analysis to understand the recent progress in agroecosystem services research. Ecological Economics 156:293-305. https://doi.org/10.1016/j.ecolecon.2018.09.001

Liu X, Rahman T, Song C, Yang F, Su B, Cui L, ... Yang W (2018). Relationships among light distribution, radiation use efficiency and land equivalent ratio in maize-soybean strip intercropping. Field Crops Research 224:91-101. https://doi.org/10.1016/j.fcr.2018.05.010

Liu X, Zhang X, Wang Y, Sui Y, Zhang S, Herbert S, Ding G (2010). Soil degradation: a problem threatening the sustainable development of agriculture in Northeast China. Plant, Soil and Environment 56(2):87-97. https://doi.org/10.17221/155/2009-PSE

Long L (2016). Intercropping enhances agroecosystem services and functioning: current knowledge and perspectives. Chinese Journal of Eco-Agriculture 24(4):403-415. https://doi.org/10.13930/j.cnki.cjea.160061

Lv Y, Wu PT, Chen XL, Wang YB, Zhao XN (2014). Crop resource competition in maize/soybean intercropping system. Chinese Journal of Applied Ecology 25(1):139-146. https://doi.org/10.13287/j.1001-9332.2014.01.019

Ma L, Li Y, Wu P, Zhao X, Gao X, Chen X (2020). Recovery growth and water use of intercropped maize following wheat harvest in wheat/maize relay strip intercropping. Field Crops Research 256:107924. https://doi.org/10.1016/j.fcr.2020.107924

Men X, Ge F, Yardim E, Parajulee M (2004). Evaluation of winter wheat as a potential relay crop for enhancing biological control of cotton aphids. Biocontrol 49:701-714. https://doi.org/10.1007/s10526-004-5278-z

Ning T, Zheng Y, Han H, Jiang G, Li Z (2012). Nitrogen uptake, biomass yield and quality of intercropped spring-and summer-sown maize at different nitrogen levels in the North China Plain. Biomass and Bioenergy 47:91-98. https://doi.org/10.1016/j.biombioe.2012.09.059

Pierre JF, Latournerie-Moreno L, Garruña R, Jacobsen KL, Laboski CA, Us-Santamaría R, Ruiz-Sánchez E (2022). Effect of maize–legume intercropping on maize physio-agronomic parameters and beneficial insect abundance. Sustainability 14(19):12385. https://doi.org/10.3390/su141912385

Poveda K, Gómez MI, Martinez E (2008). Diversification practices: their effect on pest regulation and production. Revista Colombiana de Entomologia 34(2):131-144. https://doi.org/10.25100/socolen.v34i2.9269

Qian X, Zang H, Xu H, Hu Y, Ren C, Guo L, ... Zeng Z (2018). Relay strip intercropping of oat with maize, sunflower and mung bean in semi-arid regions of Northeast China: yield advantages and economic benefits. Field Crops Research 223:33-40. https://doi.org/10.1016/j.fcr.2018.04.004

Qiu M, Van De Voorde T, Li T, Yuan C, Yin G (2021). Spatiotemporal variation of agroecosystem service trade-offs and its driving factors across different climate zones. Ecological Indicators 130:108154. https://doi.org/10.1016/j.ecolind.2021.108154

Raza MA, Gul H, Wang J, Yasin HS, Qin R, Khalid MHB, ... Yang W (2021). Land productivity and water use efficiency of maize-soybean strip intercropping systems in semi-arid areas: a case study in Punjab Province, Pakistan. Journal of Cleaner Production 308:127282. https://doi.org/10.1016/j.jclepro.2021.127282

Saudy HS (2015). Maize–cowpea intercropping as an ecological approach for nitrogen-use rationalization and weed suppression. Archives of Agronomy and Soil Science 61(1):1-14. https://doi.org/10.1080/03650340.2014.920499

Secco D, Bassegio D, De Marins AC, Chang P, Savioli MR, Castro MBS, ... Wendt EJ (2023). Short-term impacts of different intercropping times of maize and ruzigrass on soil physical properties in subtropical Brazil. Soil and Tillage Research 234:105838. https://doi.org/10.1016/j.still.2023.105838

Sekiya N, Yano K (2004). Do pigeon pea and sesbania supply groundwater to intercropped maize through hydraulic lift?—Hydrogen stable isotope investigation of xylem waters. Field Crops Research 86(2-3):167-173. https://doi.org/10.1016/j.fcr.2003.08.007

Shah MA, Farooq M, Hussain M (2016). Productivity and profitability of cotton–wheat system as influenced by relay intercropping of insect resistant transgenic cotton in bed planted wheat. European Journal of Agronomy 75:33-41. https://doi.org/10.1016/j.eja.2015.12.014

Shah WUH, Lu Y, Liu J, Rehman A, Yasmeen R (2024). The impact of climate change and production technology heterogeneity on China's agricultural total factor productivity and production efficiency. Science of the Total Environment 907:168027. https://doi.org/10.1016/j.scitotenv.2023.168027

Sharma N, Singh RJ, Mandal D, Kumar A, Alam N, Keesstra S (2017). Increasing farmer’s income and reducing soil erosion using intercropping in rainfed maize-wheat rotation of Himalaya, India. Agriculture, Ecosystems & Environment 247:43-53. https://doi.org/10.1016/j.agee.2017.06.026

Shen L, Wang X, Liu T, Wei W, Zhang S, Keyhani AB, ... Zhang W (2023). Border row effects on the distribution of root and soil resources in maize–soybean strip intercropping systems. Soil and Tillage Research 233:105812. https://doi.org/10.1016/j.still.2023.105812

Shi F, Huang HJ, Chen YT, Chen LL (2022). Effects of intercropping functional plants on the ecosystem functions and services in tea garden. Journal of Tea Science 42:151-168. https://doi.org/10.5555/20230012136

Silberg TR, Chimonyo VGP, Richardson RB, Snapp SS, Renner K (2019). Legume diversification and weed management in African cereal-based systems. Agricultural Systems 174:83-94. https://doi.org/10.1016/j.agsy.2019.05.004

Soujanya PL, Vanisree K, Giri GS, Mahadik S, Jat S, Sekhar J, Jat H (2024). Intercropping in maize reduces fall armyworm Spodoptera frugiperda (JE Smith) infestation, supports natural enemies, and enhances yield. Agriculture, Ecosystems & Environment 373:109130. https://doi.org/10.1016/j.agee.2024.109130

Stoltz E, Nadeau E (2014). Effects of intercropping on yield, weed incidence, forage quality and soil residual N in organically grown forage maize (Zea mays L.) and faba bean (Vicia faba L.). Field Crops Research 169:21-29. https://doi.org/10.1016/j.fcr.2014.09.004

Swinton SM, Lupi F, Robertson GP, Hamilton SK (2007). Ecosystem services and agriculture: cultivating agricultural ecosystems for diverse benefits. Ecological Economics 64(2):245-252. https://doi.org/10.1016/j.ecolecon.2007.09.020

Tao D, Delgado-Baquerizo M, Zhou G, Revillini D, He Q, Swanson CS, Gao Y (2024). Maize-alfalfa intercropping alleviates the dependence of multiple ecosystem services on nonrenewable fertilization. Agriculture, Ecosystems & Environment 373:109141. https://doi.org/10.1016/j.agee.2024.109141

Te X, Din AMU, Cui K, Raza MA, Ali MF, Xiao J (2023). Inter-specific root interactions and water use efficiency of maize/soybean relay strip intercropping. Field Crops Research 291:108793. https://doi.org/10.1016/j.fcr.2022.108793

Van Dijk M, Morley T, Rau ML, Saghai Y (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food 2(7):494-501. https://doi.org/10.1038/s43016-021-00322-9

Vandermeer JH (1989). The ecology of intercropping. Cambridge University Press, Cambridge.

Vashisht B, Nigon T, Mulla D, Rosen C, Xu H, Twine T, Jalota S (2015). Adaptation of water and nitrogen management to future climates for sustaining potato yield in Minnesota: field and simulation study. Agricultural Water Management 152:198-206. https://doi.org/10.1016/j.agwat.2015.01.011

Wang M, Shi W, Kamran M, Chang S, Jia Q, Hou F (2024). Effects of intercropping and regulated deficit irrigation on the yield, water and land resource utilization, and economic benefits of forage maize in arid region of Northwest China. Agricultural Water Management 298:108876. https://doi.org/10.1016/j.agwat.2024.108876

Wang X, Deng X, Pu T, Song C, Yong T, Yang F, ... Yang W (2017). Contribution of interspecific interactions and phosphorus application to increasing soil phosphorus availability in relay intercropping systems. Field Crops Research 204:12-22. https://doi.org/10.1016/j.fcr.2016.12.020

Willey R (1979). Intercropping its importance and research needs part 1. competition and yield advantages vol-32. Field Crop Abstracts 32:1-10.

Wu K, Jiang C, Zhou S, Yang H (2022). Optimizing arrangement and density in maize and alfalfa intercropping and the reduced incidence of the invasive fall armyworm (Spodoptera frugiperda) in southern China. Field Crops Research 287:108637. https://doi.org/10.1016/j.fcr.2022.108637

Xia H, Li X, Qiao Y, Xue Y, Yan W, Xue Y, ... Van Der Werf W (2024). Diversification of wheat-maize double cropping with legume intercrops improves nitrogen-use efficiency: evidence at crop and cropping system levels. Field Crops Research 307:109262. https://doi.org/10.1016/j.fcr.2024.109262

Xia HY, Zhao JH, Sun JH, Bao XG, Christie P, Zhang FS, Li L (2013). Dynamics of root length and distribution and shoot biomass of maize as affected by intercropping with different companion crops and phosphorus application rates. Field Crops Research 150:52-62. https://doi.org/10.1016/j.fcr.2013.05.027

Xu R, Zhao H, Liu G, Li Y, Li S, Zhang Y, ... Ma L (2022). Alfalfa and silage maize intercropping provides comparable productivity and profitability with lower environmental impacts than wheat–maize system in the North China plain. Agricultural Systems 195:103305. https://doi.org/10.1016/j.agsy.2021.103305

Yang F, Liao D, Wu X, Gao R, Fan Y, Raza MA, ... Yang W (2017). Effect of aboveground and belowground interactions on the intercrop yields in maize-soybean relay intercropping systems. Field Crops Research 203:16-23. https://doi.org/10.1016/j.fcr.2016.12.007

Yang H, Su Y, Wang L, Whalen JK, Pu T, Wang X, ... Wu Y (2025). Strip intercropped maize with more light interception during post-silking promotes photosynthesized carbon sequestration in the soil. Agriculture, Ecosystems & Environment 378:109301. https://doi.org/10.1016/j.agee.2024.109301

Yang WY, Yang F (2019). We will develop belt and compound planting of jade bean to ensure national food security. Scientia Agricultura Sinica 52(21):3748-3750. https://doi.org/10.3864/j.issn.0578-1752.2019.21.003

Yang XC, Hu YG, Qian X, Ren CZ, Lin YC, Guo LC, ... Zeng ZH (2012). Effects of nitrogen applicaton level on system productivity, nitrogen absorption and accumulation in mung bean ‖ oat intercropping system. Journal of China Agricultural University 17(4):46-52.

Yin W (2017). Water competition and complementary utilization mechanism of wheat intercropping maize under alternating strip mulching of straw mulch. PhD Thesis, Gansu Agricultural University.

Zhang LZ, Van Der Werf W, Zhang SP, Li B, Spiertz J (2007). Growth, yield and quality of wheat and cotton in relay strip intercropping systems. Field Crops Research 103(3):178-188. https://doi.org/10.1016/j.fcr.2007.06.002

Zhang R, Liang H, Tian C, Zhang G (2000). Biological mechanism of controlling cotton aphid (Homoptera: aphididae) by the marginal alfalfa zone surrounding cotton field. Chinese Science Bulletin 45:355-358. https://doi.org/10.1007/BF02909768

Zhang SB, Liang KM, Guo J, Luo H (2016). Yield improvement by intercropping-viewed from a niche perspective. Fujian Journal of a Gricultural Sciences 31(9):1005-1012. https://doi.org/10.19303/j.issn.1008-0384.2016.09.020

Zhang W, Wei YX, Khan A, Lu JS, Xiong JL, Zhu SG, ... Xiong Y (2023). Intercropped soybean boosts nitrogen benefits and amends nitrogen use pattern under plastic film mulching in the semiarid maize field. Field Crops Research 295:108881. https://doi.org/10.1016/j.fcr.2023.108881

Zhang WL (2021). Effects of maize on crop growth, water use and economic benefit. MSc Dissertation, Shihezi University.

Zhang X, Li Z, Siddique KH, Shayakhmetova A, Jia Z, Han Q (2020). Increasing maize production and preventing water deficits in semi-arid areas: a study matching fertilization with regional precipitation under mulch planting. Agricultural Water Management 241:106347. https://doi.org/10.1016/j.agwat.2020.106347

Zhao Y, Guo S, Zhu X, Zhang L, Long Y, Wan X, Wei X (2024). How maize-legume intercropping and rotation contribute to food security and environmental sustainability. Journal of Cleaner Production 434:140150. https://doi.org/10.1016/j.jclepro.2023.140150

Zheng BC, Zhou Y, Chen P, Zhang XN, Du Q, Yang H, ... Yong TW (2022). Maize–legume intercropping promote N uptake through changing the root spatial distribution, legume nodulation capacity, and soil N availability. Journal of Integrative Agriculture 21(6):1755-1771. https://doi.org/10.1016/S2095-3119(21)63730-9

Zhou T, Du Y, Ahmed S, Liu T, Ren M, Liu W, Yang W (2016). Genotypic differences in phosphorus efficiency and the performance of physiological characteristics in response to low phosphorus stress of soybean in southwest of China. Frontiers in Plant Science 7:1776. https://doi.org/10.3389/fpls.2016.01776

Zhou T, Wang L, Sun X, Wang X, Pu T, Yang H, ... Yang W (2021). Improved post-silking light interception increases yield and P-use efficiency of maize in maize/soybean relay strip intercropping. Field Crops Research 262:108054. https://doi.org/10.1016/j.fcr.2020.108054

Zhu SG, Cheng ZG, Batool A, Wang YB, Wang J, Zhou R, ... Xiong YC (2022). Plant facilitation shifts along with soil moisture and phosphorus gradients via rhizosphere interaction in the maize-grass pea intercropping system. Ecological Indicators 139:108901. https://doi.org/10.1016/j.ecolind.2022.108901

Zi SH, Wu KX, Ouyang CR, Fan ZW, Yang YQ, Zhou F, Wu BZ (2019). Effects of root exudates of maize and potato on potato growth. Agricultural Research in the Arid Areas 37(2):88-94. https://doi.org/10.7606/j.issn.1000-7601.2019.02.13

Zou X, Liu Y, Huang M, Li F, Si T, Wang Y, ... Shi P (2023). Rotational strip intercropping of maize and peanut enhances productivity by improving crop photosynthetic production and optimizing soil nutrients and bacterial communities. Field Crops Research 291:108770. https://doi.org/10.1016/j.fcr.2022.108770

Zou XX, Shi PX, Zhang CJ, Si T, Wang YF, Zhang XJ, ... Wang ML (2021). Rotational strip intercropping of maize and peanuts has multiple benefits for agricultural production in the northern agropastoral ecotone region of China. European Journal of Agronomy 129:126304. https://doi.org/10.1016/j.eja.2021.126304

Zuazo VHD, Pleguezuelo CRR (2008). Soil-erosion and runoff prevention by plant covers. A review. Agronomy for Sustainable Development 28(1):65-86. https://doi.org/10.1051/agro:2007062

Zuo YM, Zhang FS (2003). Effects of peanut intercropping with different gramineous species and their intercropping model on iron nutrition of peanut. Scientia Agricultura Sinica 36(3):300-306. https://doi.org/10.3321/j.issn:0578-1752.2003.03.012

Downloads

Published

2025-03-18

How to Cite

ZHANG, W., SHAO, J., HUANG, K., WANG, J., CHEN, L., LI, Q., NIU, G., & HUANG, G. (2025). The research progress and application prospects of maize intercropping systems in enhancing farmland ecosystem services. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 53(1), 14344. https://doi.org/10.15835/nbha53114344

Issue

Section

Review Articles
CITATION
DOI: 10.15835/nbha53114344

Most read articles by the same author(s)