Role of molecular breeding in understanding salinity tolerance in cotton: limitations and perspectives
DOI:
https://doi.org/10.15835/nbha53114297Keywords:
abiotic stress, cotton genome, genes, molecular breeding, QTLAbstract
Cotton is a significant fiber crop globally and has a considerable share in many countries’ gross domestic product (GDP). It is the most critical contributor to the textile industry and provides income to millions of farmers. Salt stress is abiotic stress, decreasing the cotton yield on a large area. Salt stress is a polygenic trait, and cotton’s response to salt stress involves a complex gene pathway. Breeders have been breeding novel salt-tolerant cotton genotypes for decades to sustain their growth on salt-affected soils. In recent years, cotton breeders have employed several breeding tools like hybridization, backcrossing, and mass selection to develop tolerant genotypes. Still, due to several limitations, these techniques are being replaced by novel molecular breeding tools. With the advancement in molecular breeding, the speed to improve crop tolerance to salt stress has been increased. Quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), transcription factors (TFs) analysis, and transcriptome have identified several genomic regions for salinity tolerance in cotton. At the same time, genetic engineering and clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) led to the development of salt-tolerant cotton cultivars. Genetic engineering is key in breeding transgenic cotton cultivars resistant to multiple abiotic stresses. CRISPR/Cas9, a new gene manipulation technique, is used to edit the genes for salt tolerance in cotton without any biological barrier. CRISPR/Cas9 could be a more powerful tool to manipulate the desired cotton genome against salinity tolerance. These research and breeding tools have been successfully used in genetic research and breeding for drought tolerance in cotton. This unique review presents a full overview of the use of different molecular tools and their role in enhancing salt tolerance in cotton. Using this information, cotton breeders can understand the salinity tolerance mechanism in cotton by choosing the most reliable genetic breeding tool.
References
Abbas A, Shah AA, Shah AN, Niaz Y, Ahmed W, Ali H, Nawaz M, Hassan MU (2023). CRISPR Revolution in Gene Editing: Targeting Plant Stress Tolerance and Physiology. In: Sustainable Agriculture in the Era of the OMICs Revolution. Springer, pp 315-325. https://doi.org/10.1007/978-3-031-15568-0_14
Abdelraheem A, Adams N, Zhang J (2020a). Effects of drought on agronomic and fiber quality in an introgressed backcross inbred line population of Upland cotton under field conditions. Field Crops Research 254:107850. https://doi.org/10.1016/j.fcr.2020.107850
Abdelraheem A, Fang DD, Dever J, Zhang J (2020b). QTL analysis of agronomic, fiber quality, and abiotic stress tolerance traits in a recombinant inbred population of Pima cotton. Crop Science 60:1823-1843. https://doi.org/10.1002/csc2.20153
Abdelraheem A, Fang DD, Zhang J (2018). Quantitative trait locus mapping of drought and salt tolerance in an introgressed recombinant inbred line population of Upland cotton under the greenhouse and field conditions. Euphytica 214:1-20. https://doi.org/10.1007/s10681-017-2095-x
Abdelraheem A, Kuraparthy V, Hinze L, Stelly D, Wedegaertner T, Zhang J (2021a). Genome-wide association study for tolerance to drought and salt tolerance and resistance to thrips at the seedling growth stage in US Upland cotton. Industrial Crops and Products 169:113645. https://doi.org/10.1016/j.indcrop.2021.113645
Abdelraheem A, Thyssen GN, Fang DD, Jenkins JN, McCarty JC, Wedegaertner T, Zhang J (2021b). GWAS reveals consistent QTL for drought and salt tolerance in a MAGIC population of 550 lines derived from intermating of 11 Upland cotton (Gossypium hirsutum) parents. Molecular Genetics and Genomics 296:119-129. https://doi.org/10.1007/s00438-020-01733-2
Akbar A, Han B, Khan AH, Feng C, Ullah A, Khan AS, He L, Yang X (2022). A transcriptomic study reveals salt stress alleviation in cotton plants upon salt tolerant PGPR inoculation. Environmental and Experimental Botany 200: 104928. https://doi.org/10.1016/j.envexpbot.2022.104928
Alamholo M, Tarinejad A (2024). Molecular mechanism of salinity stress tolerance in barley (Hordeum vulgare L.) via meta-analysis of transcriptome data. Journal of Agricultural Science and Technology 26:111-126.
An M, Huang X, Long Y, Wang Y, Tan Y, Qin Z, Ai X, Wang Y (2025). Salt tolerance evaluation and key salt-tolerant traits at germination stage of upland cotton. Frontiers in Plant Science 15:1489380. https://doi.org/10.3389/fpls.2024.1489380
Anwar M, Shakeel A, Saeed A, Saleem MF (2024). Deciphering salt tolerance in cotton: unveiling insights from genetic diversity seedling stage growth parameters. Pakistan Journal of Agricultural Sciences 61:339-349. https://doi.org/10.21162/PAKJAS/24.180
Barbosa EGG, Leite JP, Marin SRR, Marinho JP, de Fátima Corrêa Carvalho J, Fuganti-Pagliarini R, … de Oliveira MCN (2013). Overexpression of the ABA-dependent AREB1 transcription factor from Arabidopsis thaliana improves soybean tolerance to water deficit. Plant Molecular Biology Reporter 31:719-730. https://doi.org/10.1007/s11105-012-0541-4
Bortesi L, Fischer R (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnology Advances 33:41-52. https://doi.org/10.1016/j.biotechadv.2014.12.006
Čermák T, Baltes NJ, Čegan R, Zhang Y, Voytas DF (2015). High-frequency, precise modification of the tomato genome. Genome Biology 16: 1-15. https://doi.org/10.1186/s13059-015-0796-9
Chaudhary MT, Majeed S, Rana IA, Ali Z, Jia Y, Du X, Hinze L, Azhar MT (2024). Impact of salinity stress on cotton and opportunities for improvement through conventional and biotechnological approaches. BMC Plant Biology 24: 20. https://doi.org/10.1186/s12870-023-04558-4
Che B, Cheng C, Fang J, Liu Y, Jiang L, Yu B (2019). The recretohalophyte Tamarix TrSOS1 gene confers enhanced salt tolerance to transgenic hairy root composite cotton seedlings exhibiting virus-induced gene silencing of GhSOS1. International Journal of Molecular Sciences 20: 2930. https://doi.org/10.3390/ijms20122930
Chen G, Liu Z, Li S, Qanmber G, Liu L, Guo M, Lu L, Ma S, Li F, Yang Z (2021). Genome-wide analysis of ZAT gene family revealed GhZAT6 regulates salt stress tolerance in G. hirsutum. Plant Science 312:111055. https://doi.org/10.1016/j.plantsci.2021.111055
Chen W, Hou Z, Wu L, Liang Y, Wei C (2010). Effects of salinity and nitrogen on cotton growth in arid environment. Plant and Soil 326:61-73. https://doi.org/10.1007/s11104-008-9881-0
Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339: 819-823. doi: 10.1126/science.1231143
Cui C, Wan H, Li Z, Ai N, Zhou B (2024). Long noncoding RNA TRABA suppresses β-glucosidase-encoding BGLU24 to promote salt tolerance in cotton. Plant Physiology 194: 1120-1138. https://doi.org/10.1093/plphys/kiad530
Desingh R, Kanagaraj G, Nagar A (2007). Influence of salinity stress on photosynthesis and antioxidative systems in two cotton varieties. General and Applied Plant Physiology 33:221-234.
Dilnur T, Peng Z, Pan Z, Palanga KK, Jia Y, Gong W, Du X (2019). Association analysis of salt tolerance in Asiatic cotton (Gossypium arboretum) with SNP markers. International Journal of Molecular Sciences 20:2168. https://doi.org/10.3390/ijms20092168
Diouf L, Pan Z, He S-P, Gong W-F, Jia YH, Magwanga RO, Romy KRE, Or Rashid H, Kirungu JN, Du X (2017). High-density linkage map construction and mapping of salt-tolerant QTLs at seedling stage in upland cotton using genotyping by sequencing (GBS). International Journal of Molecular Sciences 18:2622. https://doi.org/10.3390/ijms18122622
Doğan İ, Kekeç G, Özyiğit İİ, Sakçalı MS (2012). Salinity induced changes in cotton (Gossypium hirsutum L.). Pakistan Journal of Botany 44:21-25.
Dongariyal A, Chandra AK, Dongriyal A, Kumar A, Sharma P (2023). Tending genome editing via CRISPR/Cas9-induced mutagenesis: Opportunity and challenges for yield, quality and nutritional improvement of fruit crops. Scientia Horticulturae 311: 111790. https://doi.org/10.1016/j.scienta.2022.111790
Du L, Cai C, Wu S, Zhang F, Hou S, Guo W (2016). Evaluation and exploration of favorable QTL alleles for salt stress related traits in cotton cultivars (G. hirsutum L.). PLoS One 11:e0151076. https://doi.org/10.1371/journal.pone.0151076
Fan Y, Lu X, Chen X, Wang J, Wang D, Wang S, Guo L, Rui C, Zhang Y, Cui R (2021). Cotton transcriptome analysis reveals novel biological pathways that eliminate reactive oxygen species (ROS) under sodium bicarbonate (NaHCO3) alkaline stress. Genomics 113: 1157-1169. https://doi.org/10.1016/j.ygeno.2021.02.022
Fang H, Gao X, Wu Y, Zhang K, Wu Y, Li J, Qian D, Li R, Gu H, Mehari TG, Shen X, Wang B (2025). Unveiling the role of GhP5CS1 in cotton salt stress tolerance: a comprehensive genomic and functional analysis of P5CS genes. Plants (Basel) 14: 231. https://doi.org/10.3390/plants14020231
FAO (2011). The State of the World’s Land and Water Resources for Food and Agriculture (SOLAW) — Managing Systems at Risk. Food and Agriculture Organization of the United Nations. Rome and Earthscan, London.
Farooq MA, Shakeel A, Zafar MM, Farooq M, Chattha WS, Husnain T (2022). A study towards the development of salt tolerant upland cotton (Gossypium hirsutum L.). Journal of Natural Fibers 19:4115-4131. https://doi.org/10.1080/15440478.2020.1854144
Furihata T, Maruyama K, Fujita Y, Umezawa T, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2006). Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proceedings of the National Academy of Sciences 103:1988-1993. https://doi.org/10.1073/pnas.0505667103
Ghassemi-Golezani K, Mousavi SA, Farhangi-Abriz S (2024). Enriched biochars with silicon and calcium nanoparticles mitigated salt toxicity and improved safflower plant performance. International Journal of Phytoremediation: 26:1359-1368. ttps://doi.org/10.1080/15226514.2024.2321167
Gu Q, Ke H, Liu C, Lv X, Sun Z, Liu Z, Rong W, Yang J, Zhang Y, Wu L (2021). A stable QTL qSalt-A04-1 contributes to salt tolerance in the cotton seed germination stage. Theoretical and Applied Genetics 134:2399-2410. https://doi.org/10.1007/s00122-021-03831-0
Guo A-H, Su Y, Huang Y, Wang Y-M, Nie H-S, Zhao N, Hua J-P (2021). QTL controlling fiber quality traits under salt stress in upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics 134:661-685. https://doi.org/10.1007/s00122-020-03721-x
Guo A, Hao J, Su Y, Li B, Zhao N, Zhu M, Huang Y, Tian B, Shi G, Hua J (2022a). Two aquaporin genes, GhPIP2; 7 and GhTIP2; 1, positively regulate the tolerance of upland cotton to salt and osmotic stresses. Frontiers in Plant Science 12:780486. https://doi.org/10.3389/fpls.2021.780486
Guo A, Li H, Huang Y, Ma X, Li B, Du X, Cui Y, Zhao N, Hua J (2024). Yield‐related quantitative trait loci identification and lint percentage hereditary dissection under salt stress in upland cotton. The Plant Journal. 119:115-136. https://doi.org/10.1111/tpj.16747
Guo A, Su Y, Nie H, Li B, Ma X, Hua J (2022b). Identification of candidate genes involved in salt stress response at germination and seedling stages by QTL mapping in upland cotton. G3 Genes/Genomics/Genetics 12: jkac099. https://doi.org/10.1093/g3journal/jkac099
Guo H, Li S, Min W, Ye J, Hou Z (2019). Ionomic and transcriptomic analyses of two cotton cultivars (Gossypium hirsutum L.) provide insights into the ion balance mechanism of cotton under salt stress. PloS One 14:e0226776. https://doi.org/10.1371/journal.pone.0226776
Guo Q, Meng S, Tao S, Feng J, Fan X, Xu P, Xu Z, Shen X (2020). Overexpression of a samphire high-affinity potassium transporter gene SbHKT1 enhances salt tolerance in transgenic cotton. Acta Physiologiae Plantarum 42:1-8. https://doi.org/10.1007/s11738-020-3027-2
Guo T, Wang S, Fan B, Zou S, Chen S, Liu W, Wang S, Ai L, Han L (2023). Overexpression of the Zoysia japonica ZjABR1/ERF10 regulates plant growth and salt tolerance in transgenic Oryza sativa. Environmental and Experimental Botany 206:105171. https://doi.org/10.1016/j.envexpbot.2022.105171
Han X, Gao C, Liu L, Zhang Y, Jin Y, Yan Q, Yang L, Li F, Yang Z (2022). Integration of eQTL analysis and GWAS highlights regulation networks in cotton under stress condition. International Journal of Molecular Sciences 23: 7564. https://doi.org/10.3390/ijms23147564
He C, Yan J, Shen G, Fu L, Holaday AS, Auld D, Blumwald E, Zhang H (2005). Expression of an Arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber yield in the field. Plant and Cell Physiology 46:1848-1854. https://doi.org/10.1093/pcp/pci201
Huang XY, Zhao FJ (2020). QTL pyramiding for producing nutritious and safe rice grains. Journal of Integrative Plant Biology 62:264-268. https://doi.org/10.1111/jipb.12920
Huijun Z, Hezhong D, Yuejin S, Shouyi C, Yonghong Z (2010). Transformation of cotton Gossypium hirsutum L. with AhCMO gene and the expression of salinity tolerance. Acta Agronomica Sinica 7:1073-1078.
Ibrahim W, Zhu YM, Chen Y, Qiu CW, Zhu S, Wu F (2019). Genotypic differences in leaf secondary metabolism, plant hormones and yield under alone and combined stress of drought and salinity in cotton genotypes. Physiologia Plantarum 165:343-355. https://doi.org/10.1111/ppl.12862
Jamil A, Riaz S, Ashraf M, Foolad M (2011). Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences 30:435-458. https://doi.org/10.1080/07352689.2011.605739
Javaid A, Nazish T, Ali M, Zhu Y, Li J, Zhang H, Wu J, Xiang C, Wu S, Alfatih A (2022). Thellungiella halophila ST103 enhances salt tolerance in Gossypium hirsutum. Journal of Cotton Research 5:1-11. https://doi.org/10.1186/s42397-022-00120-z
Jia Y-H, Sun J-l, Wang X-W, Zhou Z-l, Pan Z-E, He S-P, Pang B-Y, Wang L-R, Du X-M (2014). Molecular diversity and association analysis of drought and salt tolerance in Gossypium hirsutum L. germplasm. Journal of Integrative Agriculture 13:1845-1853. https://doi.org/10.1016/S2095-3119(13)60668-1
Jian H, Sadau SB, Wei F, Ahmad A, Lu Z, Ma L, Fu X, Zhang N, Lu J, Yin G (2024). GhMAPK3, a mitogen-activated protein kinase, enhance salt and drought tolerance in cotton (Gossypium hirsutum). Industrial Crops and Products 214:118492. https://doi.org/10.1016/j.indcrop.2024.118492
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-821. https://doi.org/10.1126/science.1225829
Ju F, Pang J, Huo Y, Zhu J, Yu K, Sun L, Loka DA, Hu W, Zhou Z, Wang S (2021). Potassium application alleviates the negative effects of salt stress on cotton (Gossypium hirsutum L.) yield by improving the ionic homeostasis, photosynthetic capacity and carbohydrate metabolism of the leaf subtending the cotton boll. Field Crops Research 272: 108288. https://doi.org/10.1016/j.fcr.2021.108288
Kang BH, Chowdhury S, Kang S-H, Shin S-Y, Lee W-H, Lee H-S, Ha B-K (2024). Transcriptome profiling of a soybean mutant with salt tolerance induced by gamma-ray irradiation. Plants 13:254. https://doi.org/10.3390/plants13020254
Khan Z, Khan SH, Ahmed A, Iqbal MU, Mubarik MS, Ghouri MZ, Ahmad F, Yaseen S, Ali Z, Khan AA (2023). Genome editing in cotton: challenges and opportunities. Journal of Cotton Research 6:1-21. https://doi.org/10.1186/s42397-023-00140-3
Lan Thi Hoang X, Du Nhi NH, Binh Anh Thu N, Phuong Thao N, Phan Tran L-S (2017). Transcription factors and their roles in signal transduction in plants under abiotic stresses. Current genomics 18:483-497. https://doi.org/10.2174/1389202918666170227150057
Li H, Liu L, Kong X, Wang X, Si A, Zhao F, Huang Q, Yu Y, Chen Z (2025). Time-course transcriptomics analysis reveals molecular mechanisms of salt-tolerant and salt-sensitive cotton cultivars in response to salt stress. International Journal of Molecular Sciences 26:329. https://doi.org/10.3390/ijms26010329
Li X, Liu X, Pan F, Hu J, Han Y, Bi R, … Li J (2024). Dissection of major QTLs and candidate genes for seedling stage salt/drought tolerance in tomato. BMC Genomics 25:1170. https://doi.org/10.1186/s12864-024-11101-8
Lian B, Wu A, Wu H, Lv X, Sun M, Li Y, Lu Z, Li S, An L, Guo X (2024). GhVOZ1-AVP1 module positively regulates salt tolerance in upland cotton (Gossypium hirsutum L.). International Journal of Biological Macromolecules 258:129116. https://doi.org/10.1016/j.ijbiomac.2023.129116
Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin KM, Lin F, Wang Y, Sun G, Zhou T (2016). GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (Gossypium hirsutum L.). Scientific reports 6:1-14. https://doi.org/10.1038/srep35040
Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2014a). OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Molecular Biology 84:19-36. https://doi.org/10.1007/s11103-013-0115-3
Liu G, Li X, Jin S, Liu X, Zhu L, Nie Y, Zhang X (2014b). Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9: e86895. https://doi.org/10.1371/journal.pone.0086895
Liu H, Chen W, Li Y, Sun L, Chai Y, Chen H, Nie H, Huang C (2022a). CRISPR/Cas9 technology and its utility for crop improvement. International Journal of Molecular Sciences 23:10442. https://doi.org/10.3390/ijms231810442
Liu Q, Li P, Cheng S, Zhao Z, Liu Y, Wei Y, Lu Q, Han J, Cai X, Zhou Z (2022b). Protoplast dissociation and transcriptome analysis provides insights to salt stress response in cotton. International Journal of Molecular Sciences 23: 2845. https://doi.org/10.3390/ijms23052845
Liu Q, Li P, Umer MJ, Abbas M, Zhao Y, Chen Y, … Peng R (2025). Identification of EXPA4 as a key gene in cotton salt stress adaptation through transcriptomic and coexpression network analysis of root tip protoplasts. BMC Plant Biology 25:65. https://doi.org/10.1186/s12870-024-05958-w
Long L, Yang W-W, Liao P, Guo Y-W, Kumar A, Gao W (2019). Transcriptome analysis reveals differentially expressed ERF transcription factors associated with salt response in cotton. Plant Science 281:72-81. https://doi.org/10.1016/j.plantsci.2019.01.012
Long L, Zhao J-R, Guo D-D, Ma X-N, Xu F-C, Yang W-W, Gao W (2020). Identification of NHXs in Gossypium species and the positive role of GhNHX1 in salt tolerance. BMC Plant Biology 20:1-13. https://doi.org/10.1186/s12870-020-02345-z
Lu Z, Yin G, Chai M, Sun L, Wei H, Chen J, Yang Y, Fu X, Li S (2022). Systematic analysis of CNGCs in cotton and the positive role of GhCNGC32 and GhCNGC35 in salt tolerance. BMC Genomics 23:1-13. https://doi.org/10.1186/s12864-022-08800-5
Luo X, Wu J, Li Y, Nan Z, Guo X, Wang Y, Zhang A, Wang Z, Xia G, Tian Y (2013). Synergistic effects of GhSOD1 and GhCAT1 overexpression in cotton chloroplasts on enhancing tolerance to methyl viologen and salt stresses. PLoS One 8:e54002. https://doi.org/10.1371/journal.pone.0054002
Lv S, Zhang K, Gao Q, Lian L, Song Y, Zhang J (2008). Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant and Cell Physiology 49: 1150-1164. https://doi.org/10.1093/pcp/pcn090
Makarova KS, Haft DH, Barrangou R, Brouns SJ, Charpentier E, Horvath P, Moineau S, Mojica FJ, Wolf YI, Yakunin AF (2011). Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology 9:467-477. https://doi.org/10.1038/nrmicro2577
Maryum Z, Luqman T, Nadeem S, Khan SMUD, Wang B, Ditta A, Khan MKR (2022). An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton. Frontiers in Plant Science 13: 907937. https://doi.org/10.3389/fpls.2022.907937
Meloni DA, Oliva MA, Ruiz HA, Martinez CA (2001). Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress. Journal of Plant Nutrition 24:599-612. https://doi.org/10.1081/PLN-100104983
Muhammad N, Dong Q, Luo T, Zhang X, Song M, Wang X, Ma X (2025). New developments in understanding cotton's physiological and molecular responses to salt stress. Plant Stress: 100742. https://doi.org/10.1016/j.stress.2025.100742
Murtaza G, Ahmed Z, Iqbal R, Deng G (2025). Biochar from agricultural waste as a strategic resource for promotion of crop growth and nutrient cycling of soil under drought and salinity stress conditions: a comprehensive review with context of climate change. Journal of Plant Nutrition 1-52. https://doi.org/10.1080/01904167.2025.2460769
Nazish T, Javaid A, Ali M, Zhu Y, LI J, Zhang H, Wu J, Xiang C, Wu S, Alfatih A (2022). Thellungiella halophila ST5 improves salt tolerance in cotton. Journal of Cotton Research 5:1-12. https://doi.org/10.1186/s42397-022-00112-z
Nieves-Cordones M, Al Shiblawi FR, Sentenac H (2016). Roles and Transport of Sodium and Potassium in Plants. Metal Ions in Life Science. Springer, Cham 16: 291-324. https://doi.org/10.1007/978-3-319-21756-7_9
Oluoch G, Zheng J, Wang X, Khan MKR, Zhou Z, Cai X, Wang C, Wang Y, Li X, Wang H (2016). QTL mapping for salt tolerance at seedling stage in the interspecific cross of Gossypium tomentosum with Gossypium hirsutum. Euphytica 209:223-235. https://doi.org/10.1007/s10681-016-1674-6
Peng Z, He S, Gong W, Xu F, Pan Z, Jia Y, Geng X, Du X (2018). Integration of proteomic and transcriptomic profiles reveals multiple levels of genetic regulation of salt tolerance in cotton. BMC Plant Biology 18:1-19. https://doi.org/10.1186/s12870-018-1350-1
Peng Z, Jiang X, Wang Z, Wang X, Li H, He S, Pan Z, Qayyum A, Rehman A, Du X (2021). Identification of Raf-Like kinases B subfamily genes in gossypium species revealed GhRAF42 enhanced salt tolerance in cotton. International Journal of Molecular Sciences 22:12649. https://doi.org/10.3390/ijms222312649
Peng Z, Rehman A, Jiang X, Tian C, Wang Z, Li H, Wang X, Ahmad A, Azhar MT, Du X (2025). Comparative transcriptome analysis and functional verification revealed that GhSAP6 negatively regulates salt tolerance in upland cotton. Plant Physiology and Biochemistry 219: 109406. https://doi.org/10.1016/j.plaphy.2024.10940
Peng Z, Rehman A, Li X, Jiang X, Tian C, Wang X, Li H, Wang Z, He S, Du X (2023). Comprehensive evaluation and transcriptome analysis reveal the salt tolerance mechanism in semi-wild cotton (Gossypium purpurascens). International Journal of Molecular Sciences 24: 12853. https://doi.org/10.3390/ijms241612853
Phour M, Sindhu SS (2023). Soil salinity and climate change: microbiome-based strategies for mitigation of salt stress to sustainable agriculture. In "Climate Change and Microbiome Dynamics", Climate Change Management. Springer, Cham. https://doi.org/10.1007/978-3-031-21079-2_13
Puchta H, Fauser F (2014). Synthetic nucleases for genome engineering in plants: prospects for a bright future. The Plant Journal 78:727-741. https://doi.org/10.1111/tpj.12338
Rasheed A, Raza A, Jie H, Mahmood A, Ma Y, Zhao L, Xing H, Li L, Hassan MU, Qari SH (2022). Molecular tools and their applications in developing salt-tolerant soybean (Glycine max L.) cultivars. Bioengineering 9:495. https://doi.org/10.3390/bioengineering9100495
Rehman A, Atif RM, Azhar MT, Peng Z, Li H, Qin G, Jia Y, Pan Z, He S, Qayyum A (2021a). Genome wide identification, classification and functional characterization of heat shock transcription factors in cultivated and ancestral cottons (Gossypium spp.). International Journal of Biological Macromolecules 182:1507-1527. https://doi.org/10.1016/j.ijbiomac.2021.05.016
Rehman A, Tian C, Li X, Wang X, Li H, He S, Jiao Z, Qayyum A, Du X, Peng Z (2024). GhiPLATZ17 and GhiPLATZ22, zinc-dependent DNA-binding transcription factors, promote salt tolerance in upland cotton. Plant Cell Reports 43:140. https://doi.org/10.1007/s00299-024-03178-y
Rehman A, Wang N, Peng Z, He S, Zhao Z, Gao Q, Wang Z, Li H, Du X (2021b). Identification of C2H2 subfamily ZAT genes in Gossypium species reveals GhZAT34 and GhZAT79 enhanced salt tolerance in Arabidopsis and cotton. International Journal of Biological Macromolecules 184:967-980. https://doi.org/10.1016/j.ijbiomac.2021.06.166
Saddique MAB, Ali Z, Sher MA, Farid B, Ahmad F, Arshad SF (2022). Gene Mapping in Cotton. In: Cotton Breeding and Biotechnology. CRC Press, pp 69-85.
Saeed M, Wangzhen G, Tianzhen Z (2014). Association mapping for salinity tolerance in cotton ('Gossypium hirsutum'L.) germplasm from US and diverse regions of China. Australian Journal of Crop Science 8:338-346.
Saikia B, S R, Debbarma J, Maharana J, Sastry GN, Chikkaputtaiah C (2024). CRISPR/Cas9-based genome editing and functional analysis of SlHyPRP1 and SlDEA1 genes of Solanum lycopersicum L. in imparting genetic tolerance to multiple stress factors. Frontiers in Plant Science 15:1304381. https://doi.org/10.3389/fpls.2024.1304381
Shahbaz M, Ashraf M (2013). Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences 32:237-249. https://doi.org/10.1080/07352689.2013.758544
Shakir AM, Geng M, Tian J, Wang R (2025). Dissection of QTLs underlying the genetic basis of drought resistance in wheat: a meta-analysis. Theoretical and Applied Genetics 138:1-28. https://doi.org/10.1007/s00122-024-04811-w
Sharif I, Aleem S, Farooq J, Rizwan M, Younas A, Sarwar G, Chohan SM (2019). Salinity stress in cotton: effects, mechanism of tolerance and its management strategies. Physiology and Molecular Biology of Plants 25:807-820. https://doi.org/10.1007/s12298-019-00676-2
Shehzad M, Shafeeq-ur-rahman DA, Iqbal M, Malik T, Hussain S, Khan M, Ramzan M (2019a). Effect of salinity stress on Cotton growth and role of marker assisted breeding and agronomic practices (chemical, biological and physical) for salinity tolerance. Scholars Reports 4:1-14.
Sikder RK, Xiang-ru W, Heng-heng Z, Hui-ping G, Qiang D, Ding-sha J, Mei-zhen S (2022). Influence of nitrogen on the growth and yield of cotton under salinity stress. Journal of Plant Nutrition 45:1181-1197. https://doi.org/10.1080/01904167.2021.1994598
Song J, Zhang R, Yue D, Chen X, Guo Z, Cheng C, Hu M, Zhang J, Zhang K (2018). Co-expression of ApGSMT2g and ApDMT2g in cotton enhances salt tolerance and increases seed cotton yield in saline fields. Plant Science 274:369-382. https://doi.org/10.1016/j.plantsci.2018.06.007
Su Y, Geng S, Guo A, Ijaz B, Li B, Chen Q, Zheng K, Chen Q, Hua J (2021). Genetic dissection of QTLs linked with seedling, yield and fiber quality traits of upland cotton under salt stress field conditions. Euphytica 217:1-20. https://doi.org/10.1007/s10681-021-02947-0
Su Y, Guo A, Huang Y, Wang Y, Hua J (2020). GhCIPK6a increases salt tolerance in transgenic upland cotton by involving in ROS scavenging and MAPK signaling pathways. BMC Plant Biology 20:1-19. https://doi.org/10.1186/s12870-020-02548-4
Sun F, Chen Q, Chen Q, Jiang M, Qu Y (2023). Yield-based drought tolerance index evaluates the drought tolerance of cotton germplasm lines in the interaction of genotype-by-environment. PeerJ 11:e14367. https://doi.org/10.7717/peerj.14367
Sun H, Meng M, Yan Z, Lin Z, Nie X, Yang X (2019). Genome-wide association mapping of stress-tolerance traits in cotton. The Crop Journal 7: 77-88. https://doi.org/10.1016/j.cj.2018.11.002
Sun Z, Li H, Zhang Y, Li Z, Ke H, Wu L, Zhang G, Wang X, Ma Z (2018). Identification of SNPs and candidate genes associated with salt tolerance at the seedling stage in cotton (Gossypium hirsutum L.). Frontiers in Plant Science 9:1011. https://doi.org/10.3389/fpls.2018.01011
Tiwari RS (2012). "Germplasm evaluation and mapping of candidate genes and quantitative trait loci for salt tolerance in a backcross inbred population of cotton. New Mexico State University.
Wang F, Wang L, Zou X, Duan S, Li Z, Deng Z, Luo J, Lee SY, Chen S (2019). Advances in CRISPR-Cas systems for RNA targeting, tracking and editing. Biotechnology Advances 37:708-729. https://doi.org/10.1016/j.biotechadv.2019.03.016
Wang Q, Lu X, Chen X, Malik WA, Wang D, Zhao L, Wang J, Wang S, Guo L, Cui R (2021a). Transcriptome analysis of upland cotton revealed novel pathways to scavenge reactive oxygen species (ROS) responding to Na2SO4 tolerance. Scientific Reports 11:1-15. https://doi.org/10.1038/s41598-021-87999-x
Wang T, Xun H, Wang W, Ding X, Tian H, Hussain S, Dong Q, Li Y, Cheng Y, Wang C (2021b). Mutation of GmAITR genes by CRISPR/Cas9 genome editing results in enhanced salinity stress tolerance in soybean. Frontiers in Plant Science 12:779598. https://doi.org/10.3389/fpls.2021.779598
Wang W, Li W, Cheng Z, Sun J, Gao J, Li J, Niu X, Amjid MW, Yang H, Zhu G (2022a). Transcriptome-wide N6-methyladenosine profiling of cotton root provides insights for salt stress tolerance. Environmental and Experimental Botany 194:104729. https://doi.org/10.1016/j.envexpbot.2021.104729
Wang Y, Yu Y, Wan H, Tang J, Ni Z (2022b). The sea-island cotton GbTCP4 transcription factor positively regulates drought and salt stress responses. Plant Science: 111329. https://doi.org/10.1016/j.plantsci.2022.111329
Wei Y, Xu Y, Lu P, Wang X, Li Z, Cai X, Zhou Z, Wang Y, Zhang Z, Lin Z (2017). Salt stress responsiveness of a wild cotton species (Gossypium klotzschianum) based on transcriptomic analysis. PLoS One 12:e0178313. https://doi.org/10.1371/journal.pone.0178313
Wu C, Xiao S, Zuo D, Cheng H, Zhang Y, Wang Q, Lv L, Song G (2023a). Genome-wide analysis elucidates the roles of GhHMA genes in different abiotic stresses and fiber development in upland cotton. Plant Physiology and Biochemistry 194:281-301. https://doi.org/10.1016/j.plaphy.2022.11.022
Wu D, Chen C, Liu Y, Yang L, Yong JWH (2023b). Iso-osmotic calcium nitrate and sodium chloride stresses have differential effects on growth and photosynthetic capacity in tomato. Scientia Horticulturae 312: 111883. https://doi.org/10.1016/j.scienta.2023.111883
Wu K, Wang X, Zhang H, Tian L, Luo H, Chen Y, Liang Q, Ma Y, Bate N (2023c). Responses of cotton seed germination characteristics and storage substance metabolism to saline-alkali stress. Research Square https://doi.org/10.21203/rs.3.rs-2414291/v1
Wu Z, Meng R, Feng W, Wongsnansilp T, Li Z, Lu X, Wang X (2024). Study of Dandelion (Taraxacum mongolicum Hand.-Mazz.) Salt response and caffeic acid metabolism under saline stress by transcriptome analysis. Genes 15:220. https://doi.org/10.3390/genes15020220
Xu P, Guo Q, Meng S, Zhang X, Xu Z, Guo W, Shen X (2021). Genome-wide association analysis reveals genetic variations and candidate genes associated with salt tolerance related traits in Gossypium hirsutum. BMC Genomics 22:1-14. https://doi.org/10.1186/s12864-020-07321-3
Xu Y, Magwanga RO, Cai X, Zhou Z, Wang X, Wang Y, Zhang Z, Jin D, Guo X, Wei Y (2019). Deep transcriptome analysis reveals reactive oxygen species (ROS) network evolution, response to abiotic stress, and regulation of fiber development in cotton. International Journal of Molecular Sciences 20:1863. https://doi.org/10.3390/ijms20081863
Xu Y, Magwanga RO, Jin D, Cai X, Hou Y, Juyun Z, Agong SG, Wang K, Liu F, Zhou Z (2020). Comparative transcriptome analysis reveals evolutionary divergence and shared network of cold and salt stress response in diploid D-genome cotton. BMC Plant Biology 20:1-17. https://doi.org/10.1186/s12870-020-02726-4
Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009). Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. Journal of Experimental Botany 60:339-349. https://doi.org/10.1093/jxb/ern291
Yamaguchi-Shinozaki K, Shinozaki K (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. The Plant Cell 6:251-264. https://doi.org/10.1105/tpc.6.2.251
Yan Q, Zhang J, Li X, Wang Y (2019). Effects of salinity stress on seed germination and root growth of seedlings in island cotton. Acta Agronomica Sinica 45:100-110.
Yang X, Bai Z, He Y, Wang N, Sun L, Li Y, Yin Z, Wang X, Zhang B, Han M (2024a). Genome-wide characterization of DNA methyltransferase family genes implies GhDMT6 improving tolerance of salt and drought on cotton. BMC Plant Biology 24:1-16. https://doi.org/10.1186/s12870-024-04985-x
Yang X, Liu D, Liu C, Li M, Yan Z, Zhang Y, Feng G (2024b). Possible melatonin-induced salt stress tolerance pathway in Phaseolus vulgaris L. using transcriptomic and metabolomic analyses. BMC Plant Biology 24:72. https://doi.org/10.1186/s12870-023-04705-x
Yasir M, He S, Sun G, Geng X, Pan Z, Gong W, Jia Y, Du X (2019). A genome-wide association study revealed key SNPs/genes associated with salinity stress tolerance in upland cotton. Genes 10:829. https://doi.org/10.3390/genes10100829
Yu H, Guo Q, Ji W, Wang H, Tao J, Xu P, Chen X, Ali W, Wu X, Shen X (2024). Transcriptome expression profiling reveals the molecular response to salt stress in gossypium anomalum seedlings. Plants 13:312. https://doi.org/10.3390/plants13020312
Yu LH, Wu SJ, Peng YS, Liu RN, Chen X, Zhao P, Xu P, Zhu JB, Jiao GL, Pei Y (2016). Arabidopsis EDT 1/HDG 11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field. Plant Biotechnology Journal 14:72-84. https://doi.org/10.1111/pbi.12358
Yu Z, Duan X, Luo L, Dai S, Ding Z, Xia G (2020). How plant hormones mediate salt stress responses. Trends in Plant Science 25:1117-1130. https://doi.org/10.1016/j.tplants.2020.06.008
Yu Z, Niu L, Cai Q, Wei J, Shang L, Yang X, Ma R (2023). Improved salt-tolerance of transgenic soybean by stable over-expression of AhBADH gene from Atriplex hortensis. Plant Cell Reports 42:1291-1310. https://doi.org/10.1007/s00299-023-03031-8
Yuan Y, Xing H, Zeng W, Xu J, Mao L, Wang L, Feng W, Tao J, Wang H, Zhang H (2019). Genome-wide association and differential expression analysis of salt tolerance in Gossypium hirsutum L at the germination stage. BMC Plant Biology 19:1-19. https://doi.org/10.1186/s12870-019-1989-2
Zafar MM, Ijaz A, Anwar Z, Iqbal MS, Zafar S, Subhan M, Seleiman MF, Alhammad BA, Aljabri M, Qiao F (2025). Harnessing genetic diversity in cotton for enhanced resilience against salt stress by using agro-physiological characters. Plant Production Science 28:51-68. https://doi.org/10.1080/1343943X.2024.2439874
Zafar MM, Shakeel A, Haroon M, Manan A, Sahar A, Shoukat A, Mo H, Farooq MA, Ren M (2022). Effects of salinity stress on some growth, physiological, and biochemical parameters in cotton (Gossypium hirsutum L.) germplasm. Journal of Natural Fibers 19:8854-8886. https://doi.org/10.1080/15440478.2021.1975596
Zahra N, Uzair M, Zaid IU, Attia KA, Inam S, Fiaz S, Abdallah RM, Naeem MK, Farooq U, Rehman N (2024). The comparative transcriptome analysis of two green super rice genotypes with varying tolerance to salt stress. Molecular Biology Reports 51:22. https://doi.org/10.1007/s11033-023-08998-x
Zeb S, Sana J, Hafsa K, Ayesha F (2016). Effect of salt stress on growth and antioxidant enzymes in two cultivars of maize (Zea mays L.). Pakistan Journal of Botany 48:1361-1370.
Zeng Q, Peng F, Wang J, Wang S, Lu X, Bakhsh A, Li Y, Qaraevna BZ, Ye W, Yin Z (2025). Identification of the MAP4K gene family reveals GhMAP4K13 regulates drought and salt stress tolerance in cotton. Physiologia Plantarum 177:e70031. https://doi.org/10.1111/ppl.70031
Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J (2019). Enhanced rice salinity tolerance via CRISPR/Cas9-targeted mutagenesis of the OsRR22 gene. Molecular Breeding 39:1-10. https://doi.org/10.1007/s11032-019-0954-y
Zhang B, Chen X, Lu X, Shu N, Wang X, Yang X, Wang S, Wang J, Guo L, Wang D (2018). Transcriptome analysis of Gossypium hirsutum L. reveals different mechanisms among NaCl, NaOH and Na2CO3 stress tolerance. Scientific Reports 8:1-14. https://doi.org/10.1038/s41598-018-31668-z
Zhang D, Li J, Niu X, Deng C, Song X, Li W, Cheng Z, Zhang B, Guo W (2021a). GhANN1 modulates the salinity tolerance by regulating ABA biosynthesis, ion homeostasis and phenylpropanoid pathway in cotton. Environmental and Experimental Botany 185:104427. https://doi.org/10.1016/j.envexpbot.2021.104427
Zhang H, Mao L, Xin M, Xing H, Zhang Y, Wu J, Xu D, Wang Y, Shang Y, Wei L (2022). Overexpression of GhABF3 increases cotton (Gossypium hirsutum L.) tolerance to salt and drought. BMC Plant Biology 22:1-15. https://doi.org/10.1186/s12870-022-03705-7
Zhang J, Zhang P, Huo X, Gao Y, Chen Y, Song Z, Wang F, Zhang J (2021b). Comparative phenotypic and transcriptomic analysis reveals key responses of upland cotton to salinity stress during post germination. Frontiers in Plant Science 12:639104. https://doi.org/10.3389/fpls.2021.639104
Zhang X, Zhao J, Wu X, Hu G, Fan S, Ma Q (2021c). Evolutionary relationships and divergence of KNOTTED1-Like family genes involved in salt tolerance and development in cotton (Gossypium hirsutum L.). Frontiers in Plant Science 12:774161. https://doi.org/10.3389/fpls.2021.774161
Zhao Y, Wang H, Shao B, Chen W, Guo Z, Gong H, Sang X, Wang J, Ye W (2016). SSR-based association mapping of salt tolerance in cotton (Gossypium hirsutum L.). Genetics and Molecular Research 15:15027370. http://doi.org/10.4238/gmr.15027370
Zheng J, Zhang Z, Gong Z, Liang Y, Sang Z, Xu Y, Li X, Wang J (2021). Genome-wide association analysis of salt-tolerant traits in terrestrial cotton at seedling stage. Plants 11:97. https://doi.org/10.3390/plants11010097
Zhou H, Shi H, Yang Y, Feng X, Chen X, Xiao F, Lin H, Guo Y (2023). Insights into plant salt stress signaling and tolerance. Journal of Genetics and Genomics 51:16-34. https://doi.org/10.1016/j.jgg.2023.08.007
Zhou L, Wang N-N, Gong S-Y, Lu R, Li Y, Li X-B (2015). Overexpression of a cotton (Gossypium hirsutum) WRKY gene, GhWRKY34, in Arabidopsis enhances salt-tolerance of the transgenic plants. Plant Physiology and Biochemistry 96: 311-320. https://doi.org/10.1016/j.plaphy.2015.08.016
Zhu G, Gao W, Song X, Sun F, Hou S, Liu N, Huang Y, Zhang D, Ni Z, Chen Q (2020). Genome-wide association reveals genetic variation of lint yield components under salty field conditions in cotton (Gossypium hirsutum L.). BMC Plant Biology 20:1-13. https://doi.org/10.1186/s12870-019-2187-y
Zhu W, Ren X, Liu Z, Li Y, Li G, Wang J, Li D, Shi Y, Wang C, Sun H (2024). Identification of salt-responsive genes in melatonin regulated alfalfa salt tolerance by transcriptome analysis. Journal? https://doi.org.10.20944/preprints202403.1815.v2
Zhu Y-N, Shi D-Q, Ruan M-B, Zhang L-L, Meng Z-H, Liu J, Yang W-C (2013). Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PloS One 8:e80218. https://doi.org/10.1371/journal.pone.0080218
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Shicong WANG, Meiling HOU, Hadiqa HASSAN, Fatima M. ABBAS, Zehbah A. AL AHMAD, Sameer H. QARI, Nurul A.B. HANIFAH

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.