Induced mutagenesis for the development of high-yielding mutant lines of linseed (Linum usitatissimum L.) using caffeine and sodium azide

Authors

  • Nidhi SHARMA Aligarh Muslim University, Department of Botany, Cytogenetics and Plant Breeding Laboratory, Aligarh, Uttar Pradesh, 202002 (IN)
  • Sana CHOUDHARY Aligarh Muslim University, Department of Botany, Cytogenetics and Plant Breeding Laboratory, Aligarh, Uttar Pradesh, 202002 (IN)
  • Neha NAAZ Aligarh Muslim University, Department of Botany, Cytogenetics and Plant Breeding Laboratory, Aligarh, Uttar Pradesh, 202002 (IN)
  • Nazarul HASAN Aligarh Muslim University, Department of Botany, Cytogenetics and Plant Breeding Laboratory, Aligarh, Uttar Pradesh, 202002 (IN)
  • Parul VERMA Aligarh Muslim University, Department of Botany, Cytogenetics and Plant Breeding Laboratory, Aligarh, Uttar Pradesh, 202002 (IN)
  • Najat MARRAIKI King Saud University, College of Science, Department of Botany and Microbiology, Riyadh, 11451 (SA)
  • Diaa Abd EL-MONEIM Arish University, Faculty of Environmental Agricultural Sciences, Department of Plant Production (Genetic Branch), El-Arish (EG)

DOI:

https://doi.org/10.15835/nbha53114262

Keywords:

caffeine, high-yielding mutants, Linum, mutagenesis, mutation breeding, M1 generation, M2 generation, M3 generation, sodium azide

Abstract

Generating variability is key for enhancing crops in any plant breeding initiative. This study aimed to create mutant lines with improved yield through induced mutation. Linum usitatissimum L. (variety ‘Shekhar’) was subjected to various concentrations of caffeine and sodium azide (0.10, 0.25, 0.50, 0.75, and 1.00%) before being sown to produce the M1 generation. After harvesting and screening the M1 variants, they were planted to cultivate the M2 generation. The M2 mutants undertook a thorough morphological examination for different mutation types and were then planted to develop the M3 generation. Across the three generations, various parameters were analyzed, including quantitative traits (plant height, number of branches), morphological traits (cotyledonary, vegetative leaf, and flower mutants), physiological traits (chlorophyll and carotenoid content), cytological aspects, and yield characteristics. The results indicated that caffeine was more effective than sodium azide in generating beneficial mutants. In the M3 generation, nine high-yielding mutant lines, labelled A, B1, B2, C1, C2, D, E, F1, and F2, were selected based on their morphological and yield-related traits. Also, SEM analysis was conducted on selected high-yielding mutants to examine stomatal variations in their leaves and to assess their seed morphology. These mutant lines have considerable breeding significance and should be advanced to future generations to promote their trait stability, ultimately creating new linseed cultivars with enhanced yield and better adaptability.

References

Abaza GMSM, Awaad HA, Attia ZM, Abdel-Lateif KS, Gomaa MA, Abaza SMSM, Mansour E (2020). Inducing potential mutants in bread wheat using different doses of certain physical and chemical mutagens. Plant Breeding and Biotechnology 8(3):252-264. https://doi.org/10.9787/PBB.2020.8.3.252

Akter Y, Junaid M, Afrose SS, Nahrin A, Alam MS, Sharmin T, Akter R, Hosen SM (2021). A comprehensive review on Linum usitatissimum medicinal plant: its phytochemistry, pharmacology, and ethnomedicinal uses. Mini Reviews in Medicinal Chemistry 21(18):2801-2834. https://doi.org/10.2174/1389557521666210203153436

Alam Q, Khah MA, ZR AAA (2022). Comparative analysis of different chemical mutagens in inducing chromosomal aberrations in meiotic cells of Triticum aestivum L. Cytologia 87(2):99-105. https://doi.org/10.1508/cytologia.87.99

Alka A, MYK, Bhat TM, Choudhary S, Aslam R (2012). Genotoxic effect of ethylmethane sulphonate and sodium azide in Linum usitatissimum L. International Journal of Plant, Animal and Environmental Sciences 2(3):1-6.

Alkhatib R, Alkhatib B, Al-Eitan L, Abdo N, Tadros M, Bsoul E (2018). Physio-anatomical responses of tobacco under caffeine stress. Photosynthetica 56:1140-1146. https://doi.org/10.1007/s11099-018-0798-4

Amin R, Wani MR, Raina A, Khursheed S, Khan S (2019). Induced morphological and chromosomal diversity in the mutagenized population of black cumin (Nigella sativa L.) Using single and combination treatments of gamma rays and ethyl methane sulfonate. Jordan Journal of Biological Sciences 12(1).

Arisha MH, Shah SN, Gong ZH, Jing H, Li C, Zhang HX (2015). Ethyl methane sulfonate induced mutations in M2 generation and physiological variations in M1 generation of peppers (Capsicum annuum L.). Frontiers in Plant Science 6:399. https://doi.org/10.3389/fpls.2015.00399

Arslanoğlu F, Aytaç S (2020). The important in terms of health of flax (Linum usitatissimum L.). International Journal of Life Sciences and Biotechnology 3(1):95-107.

Arumingtyas EL, Ahyar AN (2022). Genetic diversity of chili pepper mutant (Capsicum frutescens L.) resulted from gamma-ray radiation. In: IOP Conference Series: Earth and Environmental Science 1097:012059. IOP Publishing. https://doi.org/10.1088/1755-1315/1097/1/012059

Asare AT, Mensah F, Acheampong S, Asare-Bediako E, Armah J (2017). Effects of gamma irradiation on agromorphological characteristics of okra (Abelmoschus esculentus L. Moench.). Advances in Agriculture 2017(1):2385106. https://doi.org/10.1155/2017/2385106

Aslam R, Bhat TM, Choudhary S, Ansari MYK, Shahwar D (2017). Estimation of genetic variability, mutagenic effectiveness and efficiency in M2 flower mutant lines of Capsicum annuum L. treated with caffeine and their analysis through RAPD markers. Journal of King Saud University-Science 29(3):274-283. https://doi.org/10.1016/j.jksus.2016.04.008

Azizan NI, Shamsiah A, Hasan NA, Hussein S (2021). Morphological characterization of colchicine-induced mutants in Stevia rebaudiana. In: IOP Conference Series: Earth and Environmental Science 757:012006. IOP Publishing. https://doi.org/10.1088/1755-1315/757/1/012006

Bhat IA, Pandit UJ, Sheikh IA, Hassan ZU (2017). Physical and chemical mutagenesis in Linum usitatissimum L. to induce variability in seed germination, survival and growth rate traits. Current Botany 7:28-32. https://doi.org/10.19071/cb.2016.v7.3054

Chaudhary L, Sharma R, Kumar M (2021). Estimation of LD50 and effect of sodium azide on germination and seedling parameters of different cultivars of Cajanus cajan (L.) Millspaugh. Toxicology and Environmental Health Sciences 13(3):279-285. https://doi.org/10.1007/s13530-021-00105-6

Chen W, Wan S, Shen L, Zhou Y, Huang C, Chu P, Guan R (2018). Histological, physiological, and comparative proteomic analyses provide insights into leaf rolling in Brassica napus. Journal of Proteome Research 17(5):1761-1772. https://doi.org/10.1021/acs.jproteome.7b00744

Choudhary S, Ansari MYK, Khan Z, Gupta H (2012). Cytotoxic action of lead nitrate on cytomorphology of Trigonella foenum-graecum L. Turkish Journal of Biology 36(3):267-273. https://doi.org/10.3906/biy-1010-167

Chung WH (2021). Pleiotropic effects of caffeine leading to chromosome instability and cytotoxicity in eukaryotic microorganisms. Journal of Microbiology and Biotechnology 31(2):171. https://doi.org/10.4014/jmb.2011.11042

Crops and Livestock Products (2024). Retrieved 2024 August 27 form: https://www.fao.org/faostat/en/#data/QCL

Dabiré MT, Nikié MP, Yonli D, Sanna S, Josué W, Traoré H, Batieno JT, … Hingane AJ (2024). Genetic enhancement of indigenous cowpea with gamma-ray induced trait variation. American Journal of Plant Sciences 15(8):651-676. https://doi.org/10.4236/ajps.2024.158044

Dhamayanthi KPM, Reddy VRK (2000). Cytogenetic effects of gamma rays and ethyl methane sulphonate in chilli pepper (Capsicum annuum L.). Cytologia (Tokyo) 65:129-133. https://doi.org/10.1508/cytologia.65.129

Diouf M, Diallo S, Badiane FA, Diack O, Diouf D (2020). Development of new cowpea (Vigna unguiculata) mutant genotypes, analysis of their agromorphological variation, genetic diversity and population structure. bioRxiv 2020-05. https://doi.org/10.1101/2020.05.22.109041

FAO (2017). The Future of Food and Agriculture: Trends and Challenges; FAO: Rome, Italy.

Gandhi S, Umavathi S, Mullainathan L (2013). Gamma rays and ethyl methanesulphonate induced cytotoxicity in green gram Vigna radiata (L.) Wilczek. Journal of Current Research in Science 1(6):518.

Gaswanto R, Syukur M, Purwoko BS, Hidayat SH (2016). Induced mutation by gamma rays irradiation to increase chilli resistance to Begomovirus. AGRIVITA Journal of Agricultural Science 38(1):24-32. http://doi.org/10.17503/agrivita.v38i1.581

Gaur PM, Gour VK (2003). Broad‐few‐leaflets and outwardly curved wings: two new mutants of chickpea. Plant Breeding 122(2):192-194.

Goraya GS, Ved DK (2017). Medicinal plants in India: an assessment of their demand and supply. National Medicinal Plants Board, Ministry of AYUSH, Government of India, New Delhi and Indian Council of Forestry Research and Education, Dehradun, 1-430.

Goyal A, Patel A, Sihag MK, Shah N, Tanwar B (2018). Therapeutic potential of flaxseed. In: Therapeutic, probiotic, and unconventional foods. Academic Press, pp 255-274. https://doi.org/10.1016/B978-0-12-814625-5.00013-3

Goyal S, Khan S (2010). Cytology of induced morphological mutants in Vigna mungo (L.) Hepper. Egyptian Journal of Biology 12(2):81-85.

Goyal S, Wani MR, Raina A, Laskar RA, Khan S (2022). Quantitative assessments on induced high yielding mutant lines in urdbean [Vigna mungo (L.) hepper]. Legume Science 4(2):e125. https://doi.org/10.1002/leg3.125

Grover IS, Virk GS (1984). Induced chlorophyll mutants in mungbean Vigna-radiata. Acta Botanica Indica.

Gruszka D, Szarejko I, Maluszynski M (2012). Sodium azide as a mutagen. In: Plant mutation breeding and biotechnology. Wallingford UK: CABI, pp 159-166.

Gulfishan M, Khan AH, Jafri IF, Bhat TA (2012). Assessment of mutagenicity induced by MMS and DES in Capsicum annuum L. Saudi Journal of Biological Sciences 19(2):251-255. https://doi.org/10.1016/j.sjbs.2012.01.008

Hasan N, Choudhary S, Laskar RA, Naaz N, Sharma N (2022). Comparative study of cadmium nitrate and lead nitrate [Cd (NO3) 2 and Pb (NO3) 2] stress in cyto-physiological parameters of Capsicum annuum L. Horticulture, Environment, and Biotechnology 63(5):627-641. https://doi.org/10.1007/s13580-021-00417-z

Hasan N, Choudhary S, Naaz N, Sharma N, Farooqui SA, Budakoti M, Joshi DC (2024b). Identification and characterization of Capsicum mutants using, biochemical, physiological, and single sequence repeat (SSR) markers. Journal of Genetic Engineering and Biotechnology 22(4):100447. https://doi.org/10.1016/j.jgeb.2024.100447

Hasan N, Choudhry S, Laskar RA (2020). Studies on qualitative and quantitative characters of mutagenised chili populations induced through MMS and EMS. Vegetos 33(4):793-799. https://doi.org/10.1007/s42535-020-00164-z

Hasan N, Laskar RA, Farooqui SA, Naaz N, Sharma N, Budakoti M, Joshi DC, Choudhary S, Bhinda MS (2024a). Genetic improvement of medicinal and aromatic plant species: breeding techniques, conservative practices and future prospects. Crop Design 100080. https://doi.org/10.1016/j.cropd.2024.100080

Hassan N, Laskar RA, Raina A, Khan S (2018). Maleic hydrazide induced variability in fenugreek (Trigonella foenum-graecum L.) cultivars CO1 and Rmt-1. Research & Reviews: Journal of Botanical Sciences 7(1):19-28.

Ingle AT, Sable AD, Zote RK (2018). Studies on morphological and phytochemical variation between two varieties of fenugreek (Trigonella foenum-graecum L.) at different concentration of sodium azide. International Journal of Current Microbiology and Applied Sciences 7:1655-1661. https://doi.org/10.20546/ijcmas.2018.710.189

Jade SS, Gaikwad VN, Jadhav SP, Takawale PS, Bahulikar RA (2023). Phenotypic variations in M2 generation by ethyl methanesulfonate mutagenesis in lucerne (Medicago sativa L.). Crop and Pasture Science 75(1). https://doi.org/10.1071/CP23047

Jahan R, Ansari SB, Malik S, khan S (2020). Cytological aberrations in M2 morphological mutants of Linum usitatissimum (L.) induced by physical and chemical mutagens. Plant Archives 20:1343-1348.

Karim KR, Rafii MY, Misran A, Ismail MF, Harun AR, Ridzuan R, Chowdhury MFN, Hosen M, Yusuff O, Haque MA (2022) Genetic diversity analysis among Capsicum annuum mutants based on morpho-physiological and yield traits. Agronomy 12(10):2436. https://doi.org/10.3390/agronomy12102436

Khah MA,Verma RC (2017). Effect of gamma irradiation on seed germination and chromosomal behaviour at meiotic division in bread wheat (Triticum aestivum L.). The Journal of Indian Botanical Society 96(3-4):198-204.

Khan Z, Gupta H, Ansari MYK, Chaudhary S (2009). Methyl methanesulphonate induced chromosomal variations in a medicinal plant Cichorium intybus L. during microsporogenesis. Biology and Medicine 1(2):66-69.

Khursheed S, Laskar RA, Raina A, Amin R, Khan S (2015). Comparative analysis of cytological abnormalities induced in Vicia faba L. genotypes using physical and chemical mutagenesis. Chromosome Science 18(3-4):47-51. https://doi.org/10.11352/scr.18.47

Konzak CF, Nilan RA, Wagner J, Foster RJ (1965). Efficient chemical mutagenesis. In: The Use of Induced Mutations in Plant Breeding Radiation Botany. Pergamon, Oxford 5:49-70.

Kumar A, Paul S, Sood VK, Thakur G, Thakur R (2021). Effectiveness and efficiency of gamma rays and EMS (Ethyl methane sulphonate) in linseed (Linum usitatissimum L.). Himachal Journal of Agricultural Research 47(2):163-168.

Kumar G, Gupta P (2009). Induced karyomorphological variations in three phenodeviants of Capsicum annuum L. Turkish Journal of Biology 33(2):123-128. https://doi.org/10.3906/biy-0807-29

Laskar RA, Khan S (2017). Assessment on induced genetic variability and divergence in the mutagenized lentil populations of microsperma and macrosperma cultivars developed using physical and chemical mutagenesis. PloS One 12(9):e0184598. https://doi.org/10.1371/journal.pone.0184598

Mackinney G (1941). Absorption of light by chlorophyll solutions. Journal of Biological Chemistry 140(2):315-322. https://doi.org/10.1016/S0021-9258(18)51320-X

Mahadevamma M, Dinesh MR, Kumari VR, Shankarappa TH (2012). Evaluation of induced variability in papaya (Carica papaya L.) by physical mutagenesis. CIBTech Journal of Biotechnology 1(1):66-71.

Maherchandani N (1975). Effects of gamma radiation on the dormant seed of Avena fatua L. Radiation Botany 15(4):439-443. https://doi.org/10.1016/0033-7560(75)90018-6

Mallick M, Awasthi OP, Paul V, Verma MK, Jha G (2016). Effect of physical and chemical mutagens on leaf sclerophylly and stomatal characteristics of Kinnow mandarin mutants. Indian Journal of Horticulture 73(2):291-293. https://doi.org/10.5958/0974-0112.2016.00063.3

Mukherjee S, Datta AK (2011). Mitotic and meiotic consequences of gamma irradiations on dry seeds of Nigella sativa L. (black cumin). Journal of Plant Development Sciences 3:233-238.

Naaz N, Ansari SB, Khan S, Choudhary S, Jahan R (2020). Physio-morphological Variations induced by methyl methane Sulphonate in Trigonella foenum-graecum L. International Journal of Botany Studies 5(6):37-42.

Naaz N, Choudhary S, Hasan N, Sharma N, Al Aboud NM, Shehata WF (2024b). Biochemical and molecular profiling of induced high yielding M3 mutant lines of two Trigonella species: Insights into improved yield potential. PloS One 19(7):e0305691. https://doi.org/10.1371/journal.pone.0305691

Naaz N, Choudhary S, Hasan N, Sharma N, Alharbi K, Abd El Moneim D (2024a). Enhancing genetic variability in Trigonella species through sodium azide induction: morpho-physiological and chromosomal amelioration. Frontiers in Genetics 15:1378368. https://doi.org/10.3389/fgene.2024.1378368

Naaz N, Choudhary S, Sharma N, Hasan N, Al Shaye NA, Abd El-Moneim D (2023). Frequency and spectrum of M2 mutants and genetic variability in cyto-agronomic characteristics of fenugreek induced by caffeine and sodium azide. Frontiers in Plant Science,13:1030772. https://doi.org/10.3389/fpls.2022.1030772

Opoku Gyamfi M, Eleblu JSY, Sarfoa LG, Asante IK, Opoku-Agyemang F, Danquah EY (2022). Induced variations of ethyl methane sulfonate mutagenized cowpea (Vigna unguiculata L. walp) plants. Frontiers in Plant Science 13:952247. https://doi.org/10.3389/fpls.2022.952247

Parry MA, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, … Phillips AL (2009). Mutation discovery for crop improvement. Journal of Experimental Botany 60(10):2817-2825. https://doi.org/10.1093/jxb/erp189

Pradhan M, Paul A (2019). Induced genetic variability for different quantitative characters in sesame (Sesamum indicum). Journal of Pharmacognosy and Phytochemistry 8(3):1026-1031.

Raina A, Khan S (2023). Field assessment of yield and its contributing traits in cowpea treated with lower, intermediate, and higher doses of gamma rays and sodium azide. Frontiers in Plant Science 14:1188077. https://doi.org/10.3389/fpls.2023.1188077

Raina A, Tantray YR, Khan S (2023). Assessment of Bio-physiological damages and cytological aberrations in cowpea varieties treated with gamma rays and sodium azide. PloS One 18(7):e0288590. https://doi.org/10.1371/journal.pone.0288590

Raina A, Wani MR, Laskar RA, Khan S (2022). Chemical mutagenesis: Role in breeding and biofortification of lentil (Lens culinaris Medik) mutant lines. Molecular Biology Reports 49(12):11313-11325.

Rasik S, Raina A, Laskar RA, Wani MR, Reshi ZA, Khan S, Ndhlala AR (2022). Lower doses of sodium azide and methyl methanesulphonate improved yield and pigment contents in vegetable cowpea [Vigna unguiculata (L.) Walp.]. South African Journal of Botany 148:727-736. https://doi.org/10.1016/j.sajb.2022.04.034

Sarfraz H, Ahmad IZ (2023). A systematic review on the pharmacological potential of Linum usitatissimum L.: a significant nutraceutical plant. Journal of Herbal Medicine 100755. https://doi.org/10.1016/j.hermed.2023.100755

Sarfraz H, Ahmad IZ (2024). Antidiabetic properties of Linum usitatissimum L. seed: A promising medicinal plant. In: Antidiabetic Medicinal Plants. Academic Press, pp 551-563. https://doi.org/10.1016/b978-0-323-95719-9.00019-7

Sato M, Gaul H (1967). Effect of ethyl methanesulfonate on the fertility of barley. Radiation Botany 7(1):7-15. https://doi.org/10.1016/0033-7560(67)90028-2

Shahwar D, Ansari MYK, Bhat TM (2016). Assessment of genetic variability, morphology and productivity response of Vicia faba under the stress of lead nitrate. International Journal of Advanced Life Sciences 9:58-65.

Shahwar D, Ansari MYK, Bhat TM, Choudhary S, Aslam R (2017a). Evaluation of high yielding mutant of lentil developed through caffeine of an exotic germplasm. Journal of Plant Breeding and Genetics 11(2):55-62. https://doi.org/10.1016/j.heliyon.2019.e01722

Shahwar D, Ansari MYK, Choudhary S (2019). Induction of phenotypic diversity in mutagenized population of lentil (Lens culinaris Medik) by using heavy metal. Heliyon 5(5). https://doi.org/10.3923/ijpbg.2017.55.62

Shahwar D, Ansari MYK, Choudhary S, Aslam R (2017b). Evaluation of yield attributing variants developed through ethyl methane sulphonate in an important proteinaceous crop-Vicia faba. Asian Journal of Crop Science 9:20-27. https://doi.org/10.3923/ajcs.2017.20.27

Shahwar D, Khan Z, Ansari MY, Park Y. (2023) Relative mutagenic effectiveness and efficiency of chemical mutagens (Caffeine and EMS) and heavy metals [(Pb (NO3) 2 and Cd (NO3) 2)] in developing chlorophyll and morphological mutants in lentil. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 1:503668. https://doi.org/10.1016/j.mrgentox.2023.503668

Shahwar D, Khan Z, Ansari MYK (2020). Evaluation of mutagenized lentil populations by caffeine and EMS for exploration of agronomic traits and mutant phenotyping. Ecological Genetics and Genomics 14:100049. https://doi.org/10.1016/j.egg.2019.100049

Sharma N, Shahwar D, Choudhary S (2022). Induction of chromosomal and morphological amelioration in lentil (Lens culinaris Medik.) mutagenized population developed through chemical mutagenesis. Vegetos 35(2):474-483. https://doi.org/10.1007/s42535-021-00319-6

Shimazaki KI, Doi M, Assmann SM, Kinoshita T (2007). Light regulation of stomatal movement. Annual Review of Plant Biology 58(1):219-247.

Shukla SK (2023). Conservation of medicinal plants: challenges and opportunities. Journal of Medicinal Botany 7:5-10.

Soria‐Lopez A, Garcia‐Perez P, Carpena M, Garcia‐Oliveira P, Otero P, Fraga‐Corral M, Cao H, Prieto MA, Simal‐Gandara J (2023). Challenges for future food systems: From the Green Revolution to food supply chains with a special focus on sustainability. Food Frontiers 4(1):9-20. https://doi.org/10.1002/fft2.173

Stavropoulos P, Mavroeidis A, Papadopoulos G, Roussis I, Bilalis D, Kakabouki I (2023). On the path towards a “greener” EU: A mini review on flax (Linum usitatissimum L.) as a case study. Plants 12(5):1102. https://doi.org/10.38001/ijlsb.690295

Swaminathan MS (1965). The experimental manipulation of genes. Current Science 34(4):108-111.

Szarejko I, Szurman-Zubrzycka M, Nawrot M, Marzec M, Gruszka D, Kurowska M, … Maluszynski M (2017). Creation of a TILLING population in barley after chemical mutagenesis with sodium azide and MNU. Biotechnologies for Plant Mutation Breeding: Protocols 91-111.

Thakur G, Paul S, Kumar A (2020). Mutagenic effectiveness and efficiency of ethyl methane sulphonate (EMS) mutagen in linseed (Linum usitatissimum L.). Indian Society of Oilseeds Research 37:260-266.

Thombre MV, Mehetre SS (1981). A pistillate mutant in cotton. Indian Journal of Genetics and Plant Breeding 40(2):388-390.

Tomlekova N, Todorova V, Petkova V, Yancheva S, Nikolova V, Panchev I, Penchev E (2009). Creation and evaluation of induced mutants and valuable tools for pepper breeding programmes. Induced Plant Mutations in the Genomics Era, Rome, Italy: Food and Agriculture Organization of the United Nations, pp 187-90.

Ulukapi K, Ozmen SF (2018). Study of the effect of irradiation (60Co) on M1 plants of common bean (Phaseolus vulgaris L.) cultivars and determined of proper doses for mutation breeding. Journal of Radiation Research and Applied Sciences 11(2):157-161. https://doi.org/10.1016/j.jrras.2017.12.004

United Nations Department of Economic and Social Affairs, Population Division (2024). World Population Prospects 2024: Summary of Results (UN DESA/POP/2024/TR/NO. 9).

Utsunomiya KS, Bione NCP, Pagliarini MS (2002). How many different kinds of meiotic abnormalities could be found in a unique endogamous maize plant. Cytologia 67(2):169-176. https://doi.org/10.1508/cytologia.67.169

Veni K, Vanniarajan C, Souframanien J (2017). Probit analysis and effect of electron beam and gamma rays in blackgram (Vigna mungo (L.) Hepper). Electronic Journal of Plant Breeding 8(3):950-955. https://doi.org/10.5958/0975-928X.2017.00112.0

Wani AA, Anis M (2008). Gamma ray-and EMS-induced bold-seeded high-yielding mutants in chickpea (Cicer arietinum L.). Turkish Journal of Biology 32(3):161-166.

Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, Hu L, Yamasaki M, Yoshida S, Kitano H, Hirano K, Matsuoka M (2016). Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nature Genetics 48(8):927-934.

Yousuf J, Raina A, Rasik S, Reshi ZA, Shahwar D (2023). Comparative effects of caffeine and lead nitrate on the bio-physiological and yield associated traits of lentil (Lens culinaris Medik.). Heliyon 9(6). https://doi.org/10.1016/j.heliyon.2023.e16351

Downloads

Published

2025-02-26

How to Cite

SHARMA, N., CHOUDHARY, S., NAAZ, N., HASAN, N., VERMA, P., MARRAIKI, N., & EL-MONEIM, D. A. (2025). Induced mutagenesis for the development of high-yielding mutant lines of linseed (Linum usitatissimum L.) using caffeine and sodium azide. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 53(1), 14262. https://doi.org/10.15835/nbha53114262

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha53114262

Most read articles by the same author(s)