Assessing genetic diversity and population structure in Tulipa species from Türkiye and Kazakhstan

Authors

  • Nurdana SALYBEKOVA Khoja AkhmetYassawi International Kazakh-Turkish University, Turkistan (KZ)
  • Akife DALDA-SEKERCI Erciyes University, Faculty of Agriculture, Department of Horticulture, Kayseri (TR)
  • Amangeldi APUSHEV Khoja AkhmetYassawi International Kazakh-Turkish University, Turkistan (KZ)
  • Kahraman GURCAN Erciyes University, Faculty of Agriculture, Department of Agricultural Biotechnology, Kayseri (TR)
  • Fatma BULUT-TOPBAS Erciyes University, Faculty of Agriculture, Department of Horticulture, Kayseri (TR)
  • Mehmet TUTUNCU Ondokuz Mayıs University, Faculty of Agriculture, Department of Horticulture, Samsun (TR)
  • Omer SARI Black Sea Agricultural Research Institute, Samsun (TR)
  • Bakhadir YUSUPOV Khoja AkhmetYassawi International Kazakh-Turkish University, Turkistan (KZ)
  • Fisun Gursel CELIKEL Ondokuz Mayıs University, Faculty of Agriculture, Department of Horticulture, Samsun (TR)
  • Gulmira TURMETOVA Khoja AkhmetYassawi International Kazakh-Turkish University, Turkistan (KZ)

DOI:

https://doi.org/10.15835/nbha53114252

Keywords:

iPBS, ornamental plants, retrotransposon marker, Tulipa

Abstract

Over the past two decades, genetic diversity within the Tulipa genus has been extensively studied using various morphological and molecular methods. However, the natural diversity of the Tulipa genus in Türkiye remains largely unexplored. The purpose of this study was to reveal the diversity of novel Tulipa species sampled from Türkiye and Kazakhstan, both of which have unique cultural histories and genetic diversity. In this study, iPBS (inter-primer binding site) markers were used for the first time in tulips grown naturally in Türkiye and Kazakhstan. The ability of iPBS markers to assess the genetic relationship between the preferred tulip varieties was revealed. According to the results of our study, it became clear that methods for determining iPBS markers can be easily used in studies of the genetic diversity of Tulipa species. To achieve the aforementioned aim, this study applied the iPBS method, which provides the theoretical novelty of this research. In addition, a total of 47 genotypes belonging to 14 Tulipa species that were selected based on their natural distribution in Türkiye and Kazakhstan were characterized morphologically and molecularly using 12 iPBS primers. The findings revealed significant variability in morphological traits among the Tulipa species. Notably, high variations were observed in flower size, leaf and stem characteristics, and bulb growth traits. Similarly, iPBS revealed high diversity with similarity indices ranging from 0.35 to 0.87 among genotypes. Principal component analysis (PCA) plots, both two- and three-dimensional, grouped the species into four distinct clusters, according to their origin. Structure analysis further confirmed the population structure, identifying four subpopulations. This study highlights the importance of species/genotypes with notable morphological and genetic traits within a highly variable population, providing insights into tulip breeding programs and utilization of natural genetic resources in sustainable agricultural production.

References

Akand MSH, Sultana Z, Khatun MM, Patwary NH, Amin MR (2016). Effect of bulb size on growth and flowering of tuberose cv. single. International Journal of National and Social Science 3(2):30-37.

Asgari D, Babaei A, Naghavi MR, Kiani M (2020). Biodiversity status of Tulipa (Liliaceae) in Iran inferred from molecular characterization. Horticulture Environment and Biotechnology 61:559-567. http://dx.doi.org/10.1007/s13580-019-00158-0

Botschantzeva Z (1982). Tulips: taxonomy, morphology, cytology, phytogeogr. CRC Press.

Christenhusz MJ, Govaert R, David JC, Hall T, Borland K, Roberts PS, Fay MF (2013). Tiptoe through the tulips–cultural history, molecular phylogenetic and classification of Tulipa (Liliaceae). Botanical Journal of the Linnean Society 172(3):280-328. http://dx.doi.org/10.1111/boj.12061

Clennett JC, Chase MW, Forest F, Maurin O, Wilkin P (2012). Phylogenetic systematics of Erythronium (Liliaceae): morphological and molecular analyses. Botanical Journal of the Linnean Society 170(4):504-528. http://dx.doi.org/10.1111/j.1095-8339.2012.01302.x

Dalda-Sekerci A (2023). Comprehensive assessment of genetic diversity in chrysanthemum germplasm using morphological, biochemical and retrotransposon-based molecular markers. Genetic Resources and Crop Evolution 70(8):2321-2336. http://dx.doi.org/10.1007/s10722-023-01634-4

Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297-302. https://doi.org/10.2307/1932409

Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19:11-15.

Eker I, Babac MT, Koyuncu M (2014). Revision of the genus Tulipa L. (Liliaceae) in Türkiye. Phytotaxa 157(1):001-112. http://dx.doi.org/10.11646/phytotaxa.157.1.1

Eker İ, Tanış E (2022). Taxonomic implications of anatomical characteristics of the genus Tulipa (Liliaceae) in Türkiye and their place in the historical subgeneric classifications. Phytotaxa 552(4):221-251. http://dx.doi.org/10.11646/phytotaxa.552.4.1

Eker İ, Yıldırım H, Altıoğlu Y (2016). Tulipa cinnabarina subsp. toprakii (Liliaceae), a new subspecies from southwestern Anatolia. PhytoKeys (69):65. https://doi.org/10.3897/phytokeys.69.9302

Fay MF, Chase MW, Rønsted N, Devey DS, Pillon Y, Pires JC, Davis JI (2006). Phylogenetics of Liliales. Aliso: A Journal of Systematic and Floristic Botany 22(1):559-565.

Kalendar R, Flavell AJ, Ellis THN, Sjakste T, Moisy C, Schulman AH (2011). Analysis of plant diversity with retrotransposon-based molecular markers. Heredity 106(4):520-530. https://doi.org/10.1038/hdy.2010.93

Kalendar R, Schulman AH (2014). Transposon-based tagging: IRAP, REMAP, and iPBS. Molecular Plant Taxonomy: Methods and Protocols 233-255. https://doi.org/10.1007/978-1-62703-767-9_12

Khaleghi A, Khadivi A, Zonneveld BJ (2018). Morphological variations among and within species of wild tulip (Tulipa L.) from Iran. Genetic Resources and Crop Evolution 65:2241-2266. https://link.springer.com/article/10.1007/s10722-018-0688-4

Kiani M, Memariani F, Zarghami H (2012). Molecular analysis of species of Tulipa L. from Iran based on ISSR markers. Plant Systematics and Evolution 298:1515-1522. http://dx.doi.org/10.1007/s00606-012-0654-0

Kiran Y, Dogan G, Demirkan Z (2016). Karyotype Analysis of Tulipapulchella (Liliaceae)(Fenzl ex Regel) Baker. Natural Science and Discovery 2(4):62-67. http://dx.doi.org/10.20863/nsd.277890

Kutlunina NA, Polezhaeva MA, Permyakova MV (2013). Morphologic and AFLP analysis of relationships between tulip species Tulipa biebersteiniana (Liliaceae). Russian journal of genetics 49:401-410. http://dx.doi.org/10.1134/S1022795413040091

Li F, Zhang H, Zhao H, Gao T, Song A, Jiang J, Chen S (2018). Chrysanthemum Cm HSFA 4 gene positively regulate salt stress tolerance in transgenic chrysanthemum. Plant Biotechnology Journal 16(7):1311-1321. https://doi.org/10.1111/pbi.12871

Nikitina EV, Karimov FI, Savina, NV, Kubrak SV, Kilchevsky AV (2021). Inventory of some Tulipa species from Uzbekistan using DNA barcoding. BIO Web of Conferences 38:00086. http://dx.doi.org/10.1051/bioconf/20213800086

Pechenitsyn VP, Turgunov MD, Beshko NY, Abdullaev DA (2020). Rare species of Tulipa (Liliaceae) from Tashkent Botanical Garden. Acta Biologica Sibirica 6:385-397. http://dx.doi.org/10.3897/abs.6.e55940

Peterson A, Levichev IG, Peterson J (2008). Systematics of Gagea and Lloydia (Liliaceae) and infrageneric classification of Gagea based on molecular and morphological data. Molecular Phylogenetics and Evolution 46(2):446-465. https://doi.org/10.1016/j.ympev.2007.11.016

Pourkhaloee A, Khosh-Khui M, Arens P, Salehi H, Razi H, Niazi A, van Tuyl J (2018). Molecular analysis of genetic diversity, population structure, and phylogeny of wild and cultivated tulips (Tulipa L.) by genic microsatellites. Horticulture Environment and Biotechnology 59:875-888. http://dx.doi.org/10.1007/s13580-018-0055-6

Qi-fu L, Tong O, Yan-Cheng J, Cai-xia W (2008). Tulip RAPD analysis of cultivars and wild species in Xinjiang. Acta Agri Universitatis Jiangxiensis 30:656-660.

Shoji K, Miki N, Nakajima N, Momonoi K, Kato C, Yoshida K (2007). Perianth bottom-specific blue color development in tulip cv. Murasakizuisho requires ferric ions. Plant and Cell Physiology 48(2):243-251. http://dx.doi.org/10.1093/pcp/pcl060

Sutula M, Kakanay A, Tussipkan D, Dzhumanov S, Manabayeva S (2024). Phylogenetic analysis of rare and endangered Tulipa species (Liliaceae) of Kazakhstan based on universal barcoding markers. Biology 13(6):365. https://doi.org/10.3390/biology13060365

Tang N, Shahin A, Bijman P, Liu J, van Tuyl J, Arens P (2013). Genetic diversity and structure in a collection of tulip cultivars assessed by SNP markers. Scientia Horticulturae 161:286-292. https://doi.org/10.1016/j.scienta.2013.07.016

Tarikahya-Hacioğlu B, Eker İ (2024). Revealing genetic diversity of tulips in Türkiye with inter-simple sequence repeat markers. Genetic Resources and Crop Evolution 71(3):1025-1034. http://dx.doi.org/10.1007/s10722-023-01674-w

Turktas M, Aslay M, Kaya E, Ertuğrul F (2012). Molecular characterization of phylogenetic relationships in Fritillaria species inferred from chloroplast trnL-trnF sequences. Turkish Journal of Biology 36(5):552-560. http://dx.doi.org/10.3906/biy-1201-30

Turktas M, Metin ÖK, Bastug B, Ertuğrul F, Sarac YI, Kaya E (2013). Molecular phylogenetic analysis of Tulipa (Liliaceae) based on noncoding plastid and nuclear DNA sequences with an emphasis on Türkiye. Botanical Journal of the Linnean Society 172(3):270-279. http://dx.doi.org/10.1111/boj.12040

Van Eijk JP, Eikelboom W (1983). Breeding for resistance to Fusarium oxysporum sp. tulipae in tulip (Tulipa L.). 3. Genotypic evaluation of cultivars and effectiveness of pre-selection. Euphytica 32:505-510.

Vvedensky AI, Kovalevskaja SS (1971). Tulipa L. In Conspectus Florae Asiae Mediae; Academy of Sciences Press: Tashkent, Uzbekistan, Volume 2:94-109.

Xing G, Qu L, Zhang Y, Xue L, Su J, Lei J (2017). Collection and evaluation of wild tulip (Tulipa spp.) resources in China. Genetic Resources and Crop Evolution 64:641-652. http://dx.doi.org/10.1007/s10722-017-0488-2

Zhao D, Tao J (2015). Recent advances on the development and regulation of flower color in ornamental plants. Frontiers in Plant Science 6:261. https://doi.org/10.3389/fpls.2015.00261

Downloads

Published

2025-02-26

How to Cite

SALYBEKOVA, N., DALDA-SEKERCI, A., APUSHEV, A., GURCAN, K., BULUT-TOPBAS, F., TUTUNCU, M., SARI, O., YUSUPOV, B., CELIKEL, F. G., & TURMETOVA, G. (2025). Assessing genetic diversity and population structure in Tulipa species from Türkiye and Kazakhstan. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 53(1), 14252. https://doi.org/10.15835/nbha53114252

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha53114252

Most read articles by the same author(s)