Adaptive strategies in plant life forms: assessing the variations in leaf ecological stoichiometry and functional traits

Authors

  • Jingzhong SHI Guangxi University, College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Nanning 530004; Guangxi University, College of Forestry, Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning 530004 (CN)
  • Zilong OUYANG 2Nanning Botanical Garden, Nanning 530002 (CN)
  • Lihui DENG Guangxi Jinhe Famous Tree Protection Co., LTD, Nanning 530002 (CN)
  • Le KONG Guangxi University, College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Nanning 530004; Guangxi University, College of Forestry, Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning 530004 (CN)
  • Hongying LI Guangxi University, College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Nanning 530004; Guangxi University, College of Forestry, Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning 530004 (CN)
  • Yishan LUO Guangxi University, College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Nanning 530004; Guangxi University, College of Forestry, Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning 530004 (CN)
  • Shengchang HUANG Guangxi University, College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Nanning 530004; Guangxi University, College of Forestry, Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning 530004 (CN)
  • Linjuan HUANG Guangxi University, College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Nanning 530004; Guangxi University, College of Forestry, Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning 530004 (CN)
  • Weichao TENG Guangxi University, College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Cultivation of Fast-Growing Timber in Central South China, Nanning 530004; Guangxi University, College of Forestry, Guangxi Key Laboratory of Forest Ecology and Conservation, Nanning 530004; Guangxi University, College of Forestry, Guangxi Colleges and Universities Key Laboratory for Forestry Science and Engineering, Nanning 530004 (CN)

DOI:

https://doi.org/10.15835/nbha53114223

Keywords:

adaptive strategies, ecological stoichiometry, leaf functional traits, plant life forms

Abstract

The study of leaf functional traits and leaf ecological stoichiometry is of great significance for understanding plant adaptation strategies and nutrient uptake and utilization. In order to explore the adaptation mechanism of different life types to humid and hot subtropical environment, this study analyzed the leaf functional traits and ecological stoichiometric characteristics and associations of different life types of plants (trees, shrubs and herbs) with 54 common subtropical plants as research objects. The results showed that there were significant differences in leaf functional traits among different life types, and specific leaf area and leaf water content were the key functional traits to regulate ecological stoichiometry. Different life types of plants have different regulation patterns, and they adopt different ecological strategies to adapt to the heterogeneity of subtropical environment. In general, herbs showed a “fast – return on investment” strategy, and trees tended to be “slow – return on investment” strategy.

References

Arndt SK (2006). Integrated research of plant functional traits is important for the understanding of ecosystem processes. Plant and Soil 285(1-2):1-3. http://doi.org/10.1007/s11104-006-9097-0

Bagedeng Wang W, Xu Z, Jing Y, Bai Y, Li X (2023). C,N,P stoichiometric characteristics of tree, shrub, herb leaves and soil in Kanas natural forests of Xinjiang Province, China. Acta Ecologica Sinica 43(21):8749-8758. http://doi.org/10.20103/j.stxb.202208312482

Bao S (2000). 土壤农化分析.3版 [Soil Agrochemical Analysis Third Edition]. China Agriculture Press. Beijing.

Berry ZC, Emery NC, Gotsch SG, Goldsmith GR (2019). Foliar water uptake: processes, pathways, and integration into plant water budgets. Plant, Cell & Environment 42(2):410-423. http://doi.org/10.1111/pce.13439

Bosabalidis AM, Kofidis G (2002). Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Science 163(2):375-379. http://doi.org/10.1016/S0168-9452(02)00135-8

Boucher J-F, Munson AD, Bernier PY (1995). Foliar absorption of dew influences shoots water potential and root growth in Pinus strobus seedlings. Tree Physiology 15(12):819-823. http://doi.org/10.1093/treephys/15.12.819

Chen F-S, Niklas KJ, Zeng D-H (2011). Important foliar traits depend on species-grouping: analysis of a remnant temperate forest at the Keerqin Sandy Lands, China. Plant and Soil 340(1-2):337-345. http://doi.org/10.1007/s11104-010-0606-9

Chen Y, Xu Z (2014). Review on research of leaf economics spectrum. Chinese Journal of Plant Ecology 38(10):1135-1153.

Dodd M, Lauenroth W, Welker J (1998). Differential water resource use by herbaceous and woody plant life-forms in a shortgrass steppe community. Oecologia 117:504-512. http://doi.org/10.1007/s004420050686

Dong Y, Liu Y (2017). Response of Korean pine’s functional traits to geography and climate. PLoS ONE 12(9). http://doi.org/10.1371/journal.pone.0184051

Duan X, Jia Z, Li J, Wu S (2022). The influencing factors of leaf functional traits variation of Pinus densiflora Sieb. et Zucc. Global Ecology and Conservation 38:e02177. http://doi.org/10.1016/j.gecco.2022.e02177

Emery NC (2016). Foliar uptake of fog in coastal California shrub species. Oecologia 182(3):731-742. http://doi.org/10.1007/s00442-016-3712-4

Fanin N, Bezaud S, Sarneel JM, Cecchini S, Nicolas M, Augusto L (2020). Relative importance of climate, soil and plant functional traits during the early decomposition stage of standardized litter. Ecosystems 23(5):1004-1018. http://doi.org/10.1007/s10021-019-00452-z

Feng Q, Shi Z, Dong L (2008). Response of plant functional traits to environment and its application. Scientia Silvae Sinicae 44(4):125-131.

Feng Y-L, Lei Y-B, Wang R-F, Callaway RM, Valiente-Banuet A, Inderjit, … Zheng Y-L (2009). Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proceedings of the National Academy of Sciences of the United States of America 106(6):1853-1856. http://doi.org/10.1073/pnas.0808434106

Freschet GT, Cornelissen JH, Van Logtestijn RS, Aerts R (2010). Evidence of the ‘plant economics spectrum in a subarctic flora. Journal of Ecology 98(2):362-373. http://doi.org/10.1111/j.1365-2745.2009.01615.x

Freschet GT, Cornelissen JHC, van Logtestijn RSP, Aerts R (2010). Evidence of the ‘plant economics spectrum’ in a subarctic flora. Journal of Ecology 98(2):362-373. http://doi.org/10.1111/j.1365-2745.2009.01615.x

Galmés J, Ribas-Carbó M, Medrano H, Flexas J (2007). Response of leaf respiration to water stress in Mediterranean species with different growth forms. Journal of Arid Environments 68(2):206-222. http://doi.org/10.1016/j.jaridenv.2006.05.005

Güsewell S (2004). N:P ratios in terrestrial plants: variation and functional significance. New Phytologist 164(2):243-266. http://doi.org/10.1111/j.1469-8137.2004.01192.x

Güsewell S, Koerselman M (2002). Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology Evolution and Systematics 5(1):37-61. http://doi.org/10.1078/1433-8319-0000022

Herbert DA, Williams M, Rastetter EB (2003). A model analysis of N and P limitation on carbon accumulation in Amazonian secondary forest after alternate land-use abandonment. Biogeochemistry 65(1):121-150. http://doi.org/10.1023/A:1026020210887

Hidalgo-Triana N, Perez Latorre AV, Thorne JH (2018). Plant functional traits and groups in a Californian serpentine chaparral. Ecological Research 33(3):525-535. http://doi.org/10.1007/s11284-017-1532-6

Hooker TD, Compton JE (2003). Forest ecosystem carbon and nitrogen accumulation during the first century after agricultural abandonment. Ecological Applications 13(2):299-313. http://doi.org/10.1890/1051-0761(2003)013[0299:FECANA]2.0.CO;2

Hu M, Zhang L, Luo T, Shen W (2012). Variations in leaf functional traits of Stipa purpurea along a rainfall gradient in Xizang, China. Acta Phytoecologica Sinica 36(2):136-143. http://doi.org/10.3724/SP.J.1258.2012.00136

Huang X, Chen Z, Huang M, Yang W, Shi S, Li J, … Wang G (2022). Functional traits of woody plants along the environmental gradients in eastern Tibet. Acta Ecologica Sinica 42(22):8964-8976. http://doi.org/10.5846/stxb202205071265

Huo C, Zhu L, Long M, Zhao L (2023). Functional characters and eco stoichiometric characteristics of leaves of seven landscape shrubs. Chinese Journal of Tropical Crops 44(2):337-346. http://doi.org/10.3969/j.issn.1000-2561.2023.02.013

Klich MG (2000). Leaf variations in Elaeagnus angustifolia related to environmental heterogeneity. Environmental and Experimental Botany 44(3): 171-183. http://doi.org/10.1016/S0098-8472(00)00056-3

Koerselman W, Meuleman AFM (1996). The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33(6):1441-1450. http://doi.org/10.2307/2404783

Kraft NJB, Valencia R, Ackerly DD (2008). Functional traits and niche-based tree community assembly in an amazonian forest. Science 322(5901):580-582. http://doi.org/10.1126/science.1160662

Lai J, Zou Y, Zhang J, Peres‐Neto PR. (2022). Generalizing hierarchical and variation partitioning in multiple regression and canonical analyses using the rdacca. hp R package. Methods in Ecology and Evolution 13(4):782-788. http://doi.org/10.1111/2041-210X.13800

Laughlin DC, Lusk CH, Bellingham PJ, Burslem DFRP, Simpson AH, Kramer-Walter KR (2017). Intraspecific trait variation can weaken interspecific trait correlations when assessing the whole-plant economic spectrum. Ecology and Evolution 7(21):8936-8949. http://doi.org/10.1002/ece3.3447

Lefcheck JS (2016). piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods in Ecology and Evolution 7(5):573-579. http://doi.org/10.1111/2041-210X.12512

Lehmann MM, Goldsmith GR, Schmid L, Gessler A, Saurer M, Siegwolf RT (2018). The effect of 18O‐labelled water vapour on the oxygen isotope ratio of water and assimilates in plants at high humidity. New Phytologist 217(1):105-116. http://doi.org/10.1111/nph.14788

Li X, Liu Q, Cai Z, Ma Z (2007). Specific leaf area and leaf area index of conifer plantations in Qianyanzhou station of subtropical China. Acta Phytoecologica Sinica 31(1):93-101. http://doi.org/10.17521/cjpe.2007.0012

Liang X, Liu S, Wang H, Wang J (2018). Variation of carbon and nitrogen stoichiometry along a chrono sequence of natural temperate forest in northeastern China. Journal of Plant Ecology 11(3):339-350. http://doi.org/10.1093/jpe/rtx008

Ling SL, Qing T, Guang L, Zong-Xing L, Xiaoying L, Juan G, … Yue Z (2022). Variation in characteristics of leaf functional traits of alpine vegetation in the Three-River Headwaters Region, China. Ecological Indicators 145. http://doi.org/10.1016/j.ecolind.2022.109557

Liu K, He N, Hou J (2022). Spatial patterns and influencing factors of specific leaf area in typical temperate forests. Acta Ecologica Sinica 42(3):872-883. http://doi.org/10.5846/stxb202101040020

Liu L, Yang J, Cao M, Song Q (2022). Intraspecific trait variation of woody species reduced in a savanna community, southwest China. Plant Diversity 44(2):163-169. http://doi.org/10.1016/j.pld.2021.06.002

Liu R, Liang S, Long W, Jiang Y (2018). Variations in leaf functional traits across ecological scales in riparian plant communities of the Lijiang River, Guilin, Southwest China. Tropical Conservation Science 11. http://doi.org/10.1177/1940082918804680

Liu Y, Xu L, Wei T, Shen L, Liu D, Liu Y (2023). Response of leaf functional traits and their relationships to seasonal changes in four Acer species. Bulletin of Botanical Research 43(2):242-250. http://doi.org/10.7525/j.issn.1673-5102.2023.02.009

Long Q, Du H, Su L, Zeng F, Lian Z, Peng W, … Tan W (2023Variation of plant functional traits and adaptive strategies in Karst evergreen deciduous broad-leaved forest. Acta Ecologica Sinica 43(21):8875-8883. http://doi.org/10.20103/j.stxb.202211053171

Long W, Zang R, Schamp BS, Ding Y (2011). Within-and among-species variation in specific leaf area drive community assembly in a tropical cloud forest. Oecologia 167:1103-1113. http://doi.org/10.1007/s00442-011-2050-9

Lu Z, Liu B, Chang F, Ma Z, Cao Q (2023). Relationship between plant functional diversity and ecosystem multifunctionality in Bayanbulak alpine meadow along an altitude gradient. Chinese Journal of Plant Ecology 47(6):822-832. http://doi.org/10.17521/cjpe.2022.0195

Mason NWH, Richardson SJ, Peltzer DA, de Bello F, Wardle DA, Allen RB (2012). Changes in coexistence mechanisms along a long-term soil chrono sequence revealed by functional trait diversity. Journal of Ecology 100(3):678-689. http://doi.org/10.1111/j.1365-2745.2012.01965.x

McGroddy ME, Baisden WT, Hedin LO (2008). Stoichiometry of hydrological C, N, and P losses across climate and geology: An environmental matrix approach across New Zealand primary forests. Global Biogeochemical Cycles 22(1). http://doi.org/10.1029/2007GB003005

Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage? Oikos 90(3):517-524. http://doi.org/10.1034/j.1600-0706.2000.900310.x

Niklas KJ, Cobb ED (2005). N, P, and C stoichiometry of Eranthis hyemalis (Ranunculaceae) and the allometry of plant growth. American Journal of Botany 92(8):1256-1263. http://doi.org/10.3732/ajb.92.8.1256

Nunes A, Kobel M, Pinho P, Matos P, de Bello F, Correia O, Branquinho C (2017). Which plant traits respond to aridity? A critical step to assess functional diversity in Mediterranean drylands. Agricultural and Forest Meteorology 239:176-184. http://doi.org/10.1016/j.agrformet.2017.03.007

Osnas JLD, Katabuchi M, Kitajima K, Wright SJ, Reich PB, Van Bael SA, … Lichstein JW (2018). Divergent drivers of leaf trait variation within species, among species, and among functional groups. Proceedings of the National Academy of Sciences of The United States of America 115(21):5480-5485. http://doi.org/10.1073/pnas.1803989115

Pan F, Zhang W, Liu S, Li D, Wang K (2015). Leaf N:P stoichiometry across plant functional groups in the karst region of southwestern China. Trees-Structure and Function 29(3):883-892. http://doi.org/10.1007/s00468-015-1170-y

Peng A, Wang G, Luo J, Yang Y, Ran F, Yang Y (2016). Leaf functional traits of main plants in a mixed evergreen and deciduous broad-leaved forest in Mt.Gongga. Chinese Journal of Ecology 35(10): 2599-2605. http://doi.org/10.13292/j.1000-4890.201610.035

Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, . . . Wright IJ (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist 190(3):724-739. http://doi.org/10.1111/j.1469-8137.2010.03615.x

Perez-Harguindeguy N, Diaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, . . . Cornelissen JHC (2016). New handbook for standardised measurement of plant functional traits worldwide Australian Journal of Botany 64(7-8):715-716. http://doi.org/10.1071/BT12225_CO

Pezner AK, Pivovaroff AL, Sun W, Sharifi MR, Rundel PW, Seibt U (2020). Plant functional traits predict the drought response of native California plant species. International Journal of Plant Sciences 181(2):256-265. http://doi.org/10.1086/706451

Pringle EG, Adams RI, Broadbent E, Busby PE, Donatti CI, Kurten EL, … Dirzo R (2011). Distinct leaf-trait syndromes of evergreen and deciduous trees in a seasonally dry tropical forest. Biotropica 43(3):299-308. http://doi.org/10.1111/j.1744-7429.2010.00697.x

Qin Z, Tang S, Kuang Y, Wen D, Wang J (2022). Leaf traits and their ecological adaptability of different life-form plants in tropical Coral Islands. Journal of Tropical and Subtropical Botany 30(6):855-862. http://doi.org/10.11926/jtsb.4526

Rastetter EB, Yanai RD, Thomas RQ, Vadeboncoeur MA, Fahey TJ, Fisk MC, … Hamburg SP (2013). Recovery from disturbance requires resynchronization of ecosystem nutrient cycles. Ecological Applications 23(3):621-642. http://doi.org/10.1890/12-0751.1

Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: Traits, spectra, and strategies. International Journal of Plant Sciences 164(3):S143-S164. http://doi.org/10.1086/374368

Roa-Fuentes LL, Templer PH, Campo J (2015). Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico. Oecologia 179(2):585-597. http://doi.org/10.1007/s00442-015-3354-y

Sack L, Frole K (2006). Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87(2):483-491. http://doi.org/10.1890/05-0710

Scalon MC, Haridasan M, Franco AC (2017). Influence of long-term nutrient manipulation on specific leaf area and leaf nutrient concentrations in savanna woody species of contrasting leaf phenologies. Plant and Soil 421(1-2):233-244. http://doi.org/10.1007/s11104-017-3437-0

Sellin A, Tullus A, Niglas A, Ounapuu E, Karusion A, Lohmus K (2013). Humidity-driven changes in growth rate, photosynthetic capacity, hydraulic properties and other functional traits in silver birch (Betula pendula). Ecological Research 28(3): 523-535. http://doi.org/10.1007/s11284-013-1041-1

Shipley B, Vile D, Garnier E, Wright I, Poorter H (2005). Functional linkages between leaf traits and net photosynthetic rate: reconciling empirical and mechanistic models. Functional Ecology 19(4):602-615. http://doi.org/10.1111/j.1365-2435.2005.01008.x

Shui W, Feng J, Li H, Jiang C, Sun X, Liu Y, … Sun X (2022). Phylogeny and functional traits structure of plant communities with different slope aspects in the degraded karst tiankeng. Acta Ecologica Sinica 42(19):8050-8060.

Sundqvist MK, Giesler R, Wardle DA (2011). Within- and across-species responses of plant traits and litter decomposition to elevation across contrasting vegetation types in subarctic tundra. Plos One 6(10). http://doi.org/10.1371/journal.pone.0027056

Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos 116(5): 882-892. http://doi.org/10.1111/j.2007.0030-1299.15559.x

Wang H, Liu C (2000). Advances in crop water use efficiency research. Advances in Water Science 11(1):99-99. http://doi.org/10.14042/j.cnki.32.1309.2000.01.018

Wang J, Liu B, Chang F, Ma Z, Fan J, He X, … Shen X (2022). Plant functional traits and ecological stoichiometric characteristics under water-salt gradient in the lakeshore zone of Bosten Lake. Chinese Journal of Plant Ecology 46(8):961-970. http://doi.org/10.17521/cjpe.2021.0434

Wang J, Wang Y, He N, Ye Z, Chen C, Zang R, … Li J (2020). Plant functional traits regulate soil bacterial diversity across temperate deserts. Science of the Total Environment 715:136976. http://doi.org/10.1016/j.scitotenv.2020.136976

Willis RB, Montgomery ME, Allen PR (1996). Improved method for manual, colorimetry determination of total Kjeldahl nitrogen using salicylate. Journal of Agricultural and Food Chemistry 44(7):1804-1807. http://doi.org/10.1021/jf950522b

Wright IJ, Reich PB, Westoby M (2001). Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low-rainfall and high- and low-nutrient habitats. Functional Ecology 15(4):423-434. http://doi.org/10.1046/j.0269-8463.2001.00542.x

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, … Villar R (2004). The worldwide leaf economics spectrum. Nature 428(6985):821-827. http://doi.org/10.1038/nature02403

Wu P, Cui Y, Zhao W, Hou Y, Zhu J, Ding F, Yang W (2020). Leaf stoichiometric characteristics of 68 typical plant species in Maolan National Nature Reserve, Guizhou, China. Acta Ecologica Sinica 40(14):5063-5080.

Wu T, Long C, Xiong L, Liu Q (2023). Variation and adaptation of functional leaf traits of different plant types in karst forests. Chinese Journal of Applied and Environmental Biology 29(5):1043-1049. http://doi.org/10.19675/j.cnki.1006-687x.2022.06032

Yang Y, Xu X, Xu Y, Ni J (2020). Adaptation strategies of three dominant plants in the trough-valley karst region of Northern Guizhou Province, Southwestern China, evidence from associated plant functional traits and ecostoichiometry. Earth and Environment 48(4): 413-423. https://webofscience.clarivate.cn/wos/alldb/full-record/CSCD:6745492

Zeng Q, Lal R, Chen Y, An S (2017). Soil, leaf and root ecological stoichiometry of Caragana korshinskii on the Loess Plateau of China in relation to plantation age. PLoS ONE 12(1). http://doi.org/10.1371/journal.pone.0168890

Zeng W, Wang W (2015). Combination of nitrogen and phosphorus fertilization enhance ecosystem carbon sequestration in a nitrogen-limited temperate plantation of Northern China. Forest Ecology and Management 341:59-66. http://doi.org/10.1016/j.foreco.2015.01.004

Zeng Z, Wang K, Liu X, Zeng F, Song T, Peng W, … Du H (2016). Stoichiometric characteristics of live fresh leaves and leaf litter from typical plant communities in a karst region of northwestern Guangxi, China. Acta Ecologica Sinica 36(7):1907-1914. http://doi.org/10.5846/stxb201409211866

Zhang J-L, Poorter L, Hao G-Y, Cao K-F (2012). Photosynthetic thermotolerance of woody savanna species in China is correlated with leaf life span. Annals Of Botany 110(5):1027-1033. http://doi.org/10.1093/aob/mcs172

Zhang S, Zhang Y, Xiong K, Yu Y, Min X (2020). Changes of leaf functional traits in karst rocky desertification ecological environment and the driving factors. Global Ecology and Conservation 24. http://doi.org/10.1016/j.gecco.2020.e01381

Zhang Y, Liang G, Qin Y, Liu W, Jia Z, Liu Y, Ma X (2022). Characteristics of chlorophyll and photosynthesis in leaves and their response to nutrients during aging of Elymus sibiricus. Acta Prataculturae Sinica 31(1):229-237. http://doi.org/10.11686/cyxb2020514

Zhang Y, Zhu L, Liu N (2020). C, N, and P concentrations and their stoichiometry of leaves and roots with different life forms in Hainan Province. Journal of Tropical and Subtropical Botany 28(2):131-135. http://doi.org/10.11926/jtsb.4115

Zhao W, Huang L (2022). Stoichiometric characteristics and influencing factors of soil nutrients under different land use types in an alpine mountain region. Acta Ecologica Sinica 42(11):4415-4427. http://doi.org/10.5846/stxb202105061179

Zhu X, Wen Z, Zheng C, Gao Y, Zhang G, Wang W, … Wan J (2023). Functional traits of plant life forms and their responses to environmental factors in the Yanhe River Basin. Research of Soil and Water Conservation 30(6):328-336. http://doi.org/10.13869/j.cnki.rswc.2023.06.024

Downloads

Additional Files

Published

2025-02-27

How to Cite

SHI, J., OUYANG, Z., DENG, L., KONG, L., LI, H., LUO, Y., HUANG, S., HUANG, L., & TENG, W. (2025). Adaptive strategies in plant life forms: assessing the variations in leaf ecological stoichiometry and functional traits. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 53(1), 14223. https://doi.org/10.15835/nbha53114223

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha53114223

Most read articles by the same author(s)