Emergence and N metabolism of Canavalia ensiformis (L.) DC. seedlings in soil contaminated by nickel

Authors

  • Gabriela S. RAQUETI São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, 15385-000, Ilha Solteira, São Paulo (BR)
  • Tassia Caroline FERREIRA São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, 15385-000, Ilha Solteira, São Paulo (BR)
  • Maiara Luzia G. OLIVIO São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, 15385-000, Ilha Solteira, São Paulo (BR)
  • Fabio A.A. MORAIS São Paulo State University, Ilha Solteira School of Engineering, Department of Crop Science, Food Technology, and Socio-Economics, 15385-000, Ilha Solteira, São Paulo (BR)
  • Aline Renee COSCIONE Instituto Agronômico de Campinas, 13020-902, Campinas, São Paulo (BR)
  • Liliane S. CAMARGOS São Paulo State University, Ilha Solteira School of Engineering, Department of Biology and Zootechny, 15385-000, Ilha Solteira, São Paulo (BR)

DOI:

https://doi.org/10.15835/nbha53114214

Keywords:

Fabaceae, germination, heavy metal, metabolism, micronutrient, potentially toxic element

Abstract

Heavy metals such as nickel (Ni) can lead to bioaccumulation, affecting entire ecosystems and posing significant risks to various life forms, including plants. Although Ni is a micronutrient, it can be toxic by impacting enzyme activities and inhibiting seed germination and plant growth. In Brazil, official guidelines stipulate preventive and intervention values for Ni concentrations in soil to mitigate pollution and protect soil and groundwater quality. Soil samples classified as Typic Haplustox were artificially contaminated with NiCl₂ at concentrations of 120 (T120), 240 (T240), and 360 (T360) mg dm-3, alongside a control treatment (T0). Seeds were cultivated under greenhouse conditions, and germination and growth parameters were analyzed after 15 days. Measurements included emergence speed index, germination percentage, root and shoot length, fresh and dry mass, and biochemical analyses of nitrogenous compounds and sugars. This study addresses the effects of toxic concentrations of NiCl2 on plants, focusing on the germination and early growth stages. Canavalia ensiformis (L.) DC., a tropical legume with significant roles in green manure and phytoremediation, was chosen for its adaptability to various soils. The hypothesis is that C. ensiformis can withstand high soil Ni concentrations, maintaining growth despite environmental toxicity limits. The results indicated differential impacts of Ni, the emergence percentage decreases at 360 mg dm-3 soil with greater dry mass accumulation at 120 and 240 mg dm-3, highlighting the importance of understanding plant responses to stress from potentially toxic elements for sustainable agricultural practices and environmental management.

References

Adriano DC (2001). Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. 2nd ed. Springer-Verlag, New York. https://doi.org/10.1007/978-1-4612-1392-4

Aguilar JV, Ferreira TC, Bomfim NCP, Mendes TFS, De Marcos Lapaz A, Brambilla MR, … De Camargos LS (2023). Different responses to phenological stages: a role for nickel in growth and physiology of herbaceous cotton. Plant Growth Regulation 101(3):663-678. https://doi.org/10.1007/s10725-023-01048-3

Benincasa MMP (1988). Plant growth analysis. 1st ed. Jaboticabal: FUNEP.

Bieleski RL, Turner NA (1966). Separation and estimation of amino acids in crude plant extracts by thin-layer electrophoresis and chromatography. Analytical Biochemistry 17(2):278-293. https://doi.org/10.1016/0003-2697(66)90206-5

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1):248-254. https://doi.org/10.1016/0003-2697(76)90527-3

CETESB (2021). Guiding Values for Soil and Groundwater in the State of São Paulo. Environmental Company of the State of São Paulo. https://cetesb.sp.gov.br/solo/valores-orientadores-para-solo-e-agua-subterranea/

Corte VB, Borges EEDLE, Pontes CA, Leite ITDA, Ventrella MC, Mathias ADA (2006). Mobilização de reservas durante a germinação das sementes e crescimento das plântulas de Caesalpinia peltophoroides Benth. (Leguminosae-Caesalpinoideae). Rev Árvore 30(6):941-949. https://doi.org/10.1590/S0100-67622006000600009

Dancey CP, Reidy J (2005). Statistics Without Math for Psychology. SPSS For Windows.

Dwyer W, Ibe CN, Rhee SY (2022). Renaming indigenous crops and addressing colonial bias in scientific language. Trends in Plant Science 27(12):1189-1192. https://doi.org/10.1016/j.tplants.2022.08.022

Ferreira EB, Cavalcanti PP, Nogueira DA (2021). ExpDes.pt: Experimental designs package (Portuguese). Version 1.2.2. https://cran.r-project.org/web/packages/ExpDes.pt/index.html

Formentini EA, Lóss FR, Bayerl MP, Lovati RD, Baptista E (2008). Cartilha sobre adubação verde e compostagem. Incaper, Vitória, pp 27. http://biblioteca.incaper.es.gov.br/digital/handle/123456789/3718

Hasanuzzaman M, Araújo S, Gill SS (2020). The Plant Family Fabaceae. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-15-4752-2

Hunt R (1990). Basic Growth Analysis. Academic Division of Unwin Hyman Ltd. http://dx.doi.org/10.1007/978-94-010-9117-6

Kabata-Pendias A, Szteke B (2015). Trace elements in abiotic and biotic environments. Taylor & Francis.

https://www.taylorfrancis.com/books/oa-mono/10.1201/b18198/trace-elements-abiotic-biotic-environments-alina-kabata-pendias-barbara-szteke

Kassambara A (2023). ggpubr: «ggplot2» based publication ready plots. CRAN. https://cran.r-project.org/web/packages/ggpubr/index.html

Kawade K, Tabeta H, Ferjani A, Hirai MY (2023). The roles of functional amino acids in plant growth and development. Plant and Cell Physiology 64(12):1482-1493. https://doi.org/10.1093/pcp/pcad071

Maguire JD (1962). Speed of germination—Aid in selection and evaluation for seedling emergence and vigor. Crop Science 2(2):176-177. https://doi.org/10.2135/cropsci1962.0011183X000200020033x

Majhi S, Sikdar M (2023). How heavy metal stress affects the growth and development of pulse crops: insights into germination and physiological processes. Biotech 13(5):155. https://doi.org/10.1007/s13205-023-03585-0

Mangaravite JCS, Passos RR, Andrade FV, Silva VM da, Marin EB, Mendonça ES de S (2023). Decomposition and release of nutrients from species of tropical green manure. Revista Ceres 70:114-124. https://doi.org/10.1590/0034-737X202370030012

Mendes TF, Ferreira TC, Pires Bomfim NC, Aguilar JV, de Camargos LS (2024). Differential mechanisms of tolerance and accumulation in Cajanus cajan (L.) Millsp. and Canavalia ensiformis (L.) DC in response to soil manganese concentration. Soil and Sediment Contamination: An International Journal 34(1):85-103. https://doi.org/10.1080/15320383.2024.2332960

Nie J, Pan Y, Shi J, Guo Y, Yan Z, Duan X, Xu M (2015). A comparative study on the uptake and toxicity of nickel added in the form of different salts to maize seedlings. International Journal of Environmental Research and Public Health 12:15075-15087. https://doi.org/10.3390/ijerph121214972

Oliveira JBD, Rodrigues Marques JP, Rodak BW, Galindo FS, Carr NF, Almeida E, … Lavres J (2022). Fate of nickel in soybean seeds dressed with different forms of nickel. Rhizosphere 21:100464. https://doi.org/10.1016/j.rhisph.2021.100464

Pokorska-Niewiada K, Rajkowska-Myśliwiec M, Protasowicki M (2018). Acute lethal toxicity of heavy metals to the seeds of plants of high importance to humans. Bulletin of Environmental Contamination and Toxicology 101(2):222-228. https://doi.org/10.1007/s00128-018-2382-9

Posit Team (2023). RStudio: Integrated Development Environment for R. Posit Software. http://www.posit.co/

Prado RM (2021). Mineral nutrition of tropical plants. Springer Nature, Cham, Switzerland. https://doi.org/10.1007/978-3-030-73448-8

R Core Team (2022). R: The R Project for Statistical Computing. https://www.r-project.org/

Raij BV, Andrade JC, Cantarella H, Guaggio JA (2001). Análise química para avaliação da fertilidade de solos tropicais. Campinas: Instituto Agronômico, pp 285.

Rangel TS, Santana NA, Jacques RJS, Ramos RF, Scheid DL, Koppe E, Tabaldi LA, de Oliveira Silveira A (2023). Organic fertilization and mycorrhization increase copper phytoremediation by Canavalia ensiformis in a sandy soil. Environmental Science and Pollution Research 30(26):68271-68289. https://doi.org/10.1007/s11356-023-27126-7

Rodak BW, Freitas DS, Rossi ML, Linhares FS, Moro E, Campos CNS, Reis AR, Guilherme LRG, Lavres J (2024). A study on nickel application methods for optimizing soybean growth. Scientific Reports 14(1):10556. https://doi.org/10.1038/s41598-024-58149-w

Servín Niz A, Da Silva Oviedo MO, Morel López E, López Ávalos D, González Villalba H, Fernández Sánchez A, … Insfrán W (2023). Implementation and use of green manures for weed suppression in sequential maize cropping. International Journal of Agronomy 2023(1):3034572. https://doi.org/10.1155/2023/3034572

Sethy SK, Ghosh S (2013). Effect of heavy metals on germination of seeds. Journal of Natural Science, Biology, and Medicine 4(2):272-275. https://doi.org/10.4103/0976-9668.116964

Soil Survey Staff (Éd.) (2022). Keys to soil taxonomy. Vol. 13. Pp 395. https://www.nrcs.usda.gov/sites/default/files/2022-09/Keys-to-Soil-Taxonomy.pdf

Tadele Z (2019). Orphan crops: their importance and the urgency of improvement. Planta 250:677-694. https://doi.org/10.1007/s00425-019-03210-6

Teixeira PC, Donagemma GK, Fontana A (2017). Manual de Métodos de Análise de Solo. Vol. 3. Embrapa, Brasília.

Tsadilas C, Rinklebe J, Selim M (2019). Nickel in Soils and Plants. CRC Press, pp 414. https://doi.org/10.1201/9781315154664

Umbreit W. W., Burris R. H., Stauffer J. F. (1945). Manometric Techniques and Related Methods for the Study of Tissue Metabolism. Burgess publishing Company, pp 216.

US EPA O (2015). SW-846 Test Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. https://www.epa.gov/hw-sw846/sw-846-test-method-3051a-microwave-assisted-acid-digestion-sediments-sludges-soils-and

US EPA O (2015). SW-846 Test Method 6010D: Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). https://www.epa.gov/hw-sw846/sw-846-test-method-6010d-inductively-coupled-plasma-optical-emission-spectrometry-icp-oes

Wei T, Simko V (2010). corrplot: Visualization of a Correlation Matrix. https://cran.r-project.org/web/packages/corrplot/corrplot.pdf

Wickham H (2008). plyr: Tools for Splitting, Applying and Combining Data. https://github.com/hadley/plyr

Wickham H, Chang W, Henry L, Pedersen TL, Takahashi K, Wilke C, Woo K, Yutani H, Dunnington D, Posit, PBC (2023). ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. (Version 3.4.4). https://cran.r-project.org/web/packages/ggplot2/index.html

Wickham H, François R, Henry L, Müller K, Vaughan D (2014). dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr

Yemm EW, Cocking EC, Ricketts RE (1955). The determination of amino-acids with ninhydrin. Analyst 80(948):209-214. https://doi.org/10.1039/AN9558000209

Downloads

Published

2025-03-12

How to Cite

RAQUETI, G. S., FERREIRA, T. C., OLIVIO, M. L. G., MORAIS, F. A., COSCIONE, A. R., & CAMARGOS, L. S. (2025). Emergence and N metabolism of Canavalia ensiformis (L.) DC. seedlings in soil contaminated by nickel. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 53(1), 14214. https://doi.org/10.15835/nbha53114214

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha53114214