Complete chloroplast genome sequence and characteristic analysis of Paeonia suffruticosa from the lower reaches of the Yangtze River basin

Authors

  • Jiaqiang ZHANG Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, 311251 (CN)
  • Kaiyuan ZHU Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, 311251 (CN)
  • Huichun LIU Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, 311251 (CN)
  • Xiao WAN Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, 311251 (CN)
  • Wenting XU Zhejiang Institute of Landscape Plants and Flowers, Hangzhou, 311251 (CN)

DOI:

https://doi.org/10.15835/nbha52414202

Keywords:

chloroplast genome, comparative genomics, P. suffruticosa, phylogenetic analysis

Abstract

Paeonia suffruticosa cv. ‘Yu Luo Chun’ is an important representative of the peony groups from the Jiangnan region of China. However, little is known about the genetic basis of chloroplast genome phylogeny and the adaptive evolution of this group. In this study, high-throughput sequencing technology was used to sequence the complete chloroplast genome of leaves, and sequence assembly, annotation and feature analysis were performed by bioinformatics analysis methods. The results showed that the chloroplast genome of P. suffruticosa cv. ‘Yu Luo Chun’ exhibited a typical tetrad structure with a total length of 152,596 bp, including a large single-copy (LSC) region, a small single-copy (SSC) region, and two inverted repeats (IRs) whose lengths were 84,272 bp, 17,044 bp and 25,640 bp, respectively. A total of 126 genes were annotated, including 85 protein-coding genes, 37 tRNA genes and 4 rRNA genes. Bioinformatics analysis showed that a total of 71 simple sequence repeats (SSRs) were searched in the chloroplast genome, of which the numbers of mononucleotide, dinucleotide, trinucleotide and tetranucleotide repeat motifs were 47, 12, 7 and 5, respectively, and no pentanucleotide or hexanucleotide repeat motifs were found. The chloroplast genome prefers to end in A/T, among which leucine (Leu) is the most frequently used, while cysteine ​​(Cys) is the least frequently used. Highly differentiated regions, such as rpoC1, petB, rsp16, rps19, clpP, ccsA, ycf1, ndhF-trnL, ndhD-psaC and trnV-rps12, were identified as DNA barcodes and potential genetic markers for interspecies relationships. We compared the gene selection pressure and identified 5 genes, ndhF, petB, petD, rpoA and ycf2 that were positively selected, and these genes have important contributions to the adaptive evolution. The chloroplast genome sequences of 18 species, including P. suffruticosa cv. ‘Yu Luo Chun’, were clustered by the nearest neighbour combination method and the maximum likelihood method. Both methods gave the same result and indicated that this cultivar has a relatively close kinship with P. qiui and P. rockii. The results provide important references for species identification, genetic diversity analysis and systematic taxonomic research between P. suffruticosa cv. ‘Yu Luo Chun’ and other Paeonia species.

References

Ali A, Jaakk, H, Peter P (2018). IRscope: An online program to visualize the junction sites of chloroplast genomes. Bioinformatics 34:3030-3031. http://doi.org/10.1093/bioinformatics/bty220

Bolger AM, Lohse M, Usade B (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 30(15):2114-2120. http://doi.org/10.1093/bioinformatics/btu170

Beier S, Thiel T, Münch T, Scholz U, Mascher M (2017). MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583-2585. http://doi.org/10.1093/bioinformatics/btx198

Chakraborty S, Yengkhom S, Uddin A (2020). Analysis of codon usage bias of chloroplast genes in Oryza species. Planta 252:67. http://doi.org/10.1007/s00425-020-03470-7

Daniell H, Lin CS, Yu M, Chang WJ (2016). Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biology 17(1):134. http://doi.org/10.1186/s13059-016-1004-2

Darling A, Mau B, Blattner FR, Perna NT (2004). Mauve: multiple alignment of conserved genomic sequence With rearrangements. Genome Research 14(7):1394-1403. http://doi.org/10.1101/gr.2289704

Dierckxsens N, Mardulyn P, Smits G (2016). NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research 45:e18. http://doi.org/10.1093/nar/gkw955

Dobrogojski J, Adamiec M, Luciński R (2020). The chloroplast genome: a review. Acta Physiologiae Plantarum 42:98. http://doi.org/10.1007/s11738-020-03089-x

Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004). VISTA: computational tools for comparative genomics. Nucleic Acids Research 32:W273-W279. http://doi.org/10.1093/nar/gkh458

Gichira AW, Li Z, Saina JK, Long Z, Hu G, Gituru RW, … Chen J (2017). The complete chloroplast genome sequence of an endemic monotypic genus Hagenia (Rosaceae): structural comparative analysis, gene content and microsatellite detection. Peer J 5:e2846. http://doi.org/10.7717/peerj.2846

Greiner S, Lehwark P, Bock R (2019). OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research 47(W1):W59-W64. http://doi.org/10.1093/nar/gkz238

Guo L, Guo S, Xu J, He L, Carlson JE, Hou X (2020). Phylogenetic analysis based on chloroplast genome uncover evolutionary relationship of all the nine species and six cultivars of tree peony. Industrial Crops and Products 153:112567. http://doi.org/10.1016/j.indcrop.2020.112567

Guo S, Guo L, Zhao W, Xu J, Li Y, Zhang X, … Hou X (2018). Complete chloroplast genome sequence and phylogenetic analysis of Paeonia ostii. Molecules 23(2):246. http://doi.org/10.3390/molecules23020246

Guo YY, Yang JX, Bai MZ, Zhang GQ, Liu ZJ (2021). The chloroplast genome evolution of Venus slipper (Paphiopedilum): IR expansion, SSC contraction, and highly rearranged SSC regions. BMC Plant Biology 21:248. http://doi.org/10.1186/s12870-021-03053-y

He Y, Xiao H, Deng C, Xiong L, Yang J, Peng C (2016). The complete chloroplast genome sequences of the medicinal plant Pogostemon cablin. International Journal of Molecular Sciences 17(6):820. http://doi.org/10.3390/ijms17060820

Hong DY (2021). Peonies of the world. Part III: Phylogeny and evolution. Royal Botanic Gardens Kew Press, London, Richmond.

Hu Y H, Han JG (2018). Jiangnan Peony-Resources. Cultivation and Application. Science Press, Beijing.

Huang X, Tan W, Li F, Liao R, Guo Z, Shi T, Gao Z (2021). The chloroplast genome of Prunus zhengheensis: genome comparative and phylogenetic relationships analysis. Gene 793:145751. http://doi.org/10.1016/j.gene.2021

Iriarte A, Lamolle G, Musto H (2021). Codon usage bias: an endless tale. Journal of Molecular Evolution 89:589-593. http://doi.org/10.1007/s00239-021-10027-z

Katoh K, Standley DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30:772-780. http://doi.org/10.1093/molbev/mst010

Kurtz S, Choudhuri JV, Ohlebusch E, Schleiermacher C, Stoye J, Giegerich R (2001). REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Research 29:4633-4642. http://doi.org/10.1093/nar/29.22.4633

Li JJ (2005). Chinese tree peony Xibei, Xinan, Jiangnan Volume. China Forestry Publishing House, Beijing.

Li JJ, Zhang XF, Zhao XQ (2011). The peony of China.Encyclopedia of China Publishing House, Beijing.

Librado P, Rozas J (2009). DnaSP v5 A software for comprehensive analysis of DNA polymorphic data. Bioinformatics 25:1451-1452. http://doi.org/10.1093/bioinformatics/btp187

Luo Y, He J, Lyu R, Xiao J, Li W, Yao M, … Xie L (2021). Comparative Analysis of complete chloroplast genomes of 13 Species in Epilobium, Circaea, and Chamaenerion and insights into phylogenetic relationships of Onagraceae. Frontiers in Genetics 12:730495. http://doi.org/10.3389/fgene.2021.730495

Mehmetoglu E, Kaymaz Y, Ates D, Kahraman A, Tanyolac MB (2022). The complete chloroplast genome sequence of Cicer echinospermum, genome organization and comparison with related species" Scientia Horticulturae. 296:110912. http://doi.org/10.1016/j.scienta.2022.110912

Mehmood F, Shahzadi I, Waseem S, Mirza B, Ahmed I, Waheed MT (2020). Chloroplast genome of Hibiscus rosa-sinensis (Malvaceae): comparative analyses and identification of mutational hotspots. Genomics 112(1):581-591. http://doi.org/10.1016/j.ygeno.2019.04.010

Park I, Yang SY, Kim WJ, Noh P, Lee HO, Moon BC (2018). The complete chloroplast genomes of six Ipomoea species and indel marker development for the discrimination of authentic pharbitidis semen (Seeds of I. nil or I. Purpurea). Frontiers in Plant Science 9:965-978. http://doi.org/10.3389/fpls.2018.00965

Porebski S, Bailey LG, Baum BR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Molecular Biology Reporter 15:8-15. http://doi.org/10.1007/bf02772108

Ronquist F, Teslenko M, Van der, Mark P, Ayres DL, Darling A, … Huelsenbeck JP (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61(3):539-542. http://doi.org/10.1093/sysbio/sys029

Sharp PM, Li WH (1987). The codon Adaptation Index-a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Research 15:1281-1295. http://doi.org/10.1002/ajpa.21279

Shen X, Wu M, Liao B, Liu Z, Bai R, Xiao S, Li X, Zhang B, Xu J, Chen S (2017). Complete chloroplast genome sequence and phylogenetic analysis of the medicinal plant Artemisia annua. Molecules 22(8):1330. http://doi.org/10.3390/molecules22081330

Stamatakis A (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. http://doi.org/10.1093/bioinformatics/btu033

Stern FC (1946). A study of the genus Paeonia. The Royal Horticultural Society, London.

Stern FC (1973). The best peony species and their hybrids. In: Paeonia. Retrieved 2024 February 12 from: https://www.peonysociety.org/f-c-stern-on-the-best-paeonia-species/#identifier_0_17108

Sun J, Chen M, Jiang Y, Zhao D, Tao J (2018). Characterization of the complete chloroplast genomes of sequences of two fiploid species: Paeonia lactiflora ‘Da Fugui’ and Paeonia ostii ‘Fengdan’ in the Paeoniaceae Family. Horticulture Journal 5:247. http://doi.org/10.4172/2376-0354.1000247

Tian S, Lu P, Zhang Z, Wu JQ, Zhang H, Shen H (2021). Chloroplast genome sequence of Chongming lima bean (Phaseolus lunatus L.) and comparative analyses with other legume chloroplast genomes. BMC Genomics 22(1):194. http://doi.org/10.1186/s12864-021-07467-8

Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S (2017). GeSeq-versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45:W6-W11. http://doi.org/10.1093/nar/gkx391

Wang J (2009). Genetic diversity of Paeonia ostii and germplasm resources of tree peony cultivars from Chinese Jiangnan area. Chinese Academy of Forestry, Beijing.

Wang LY (1997). Chinese tree peony. China Forestry Publishing House, Beijing.

Wang WC (1979). Flora of China: 27 volumes. Science Press, Beijing.

Wang Z, Cai Q, Wang Y, Li M, Wang C, Wang Z, Jiao C, Xu C, Wang H, Zhang Z (2022). Comparative analysis of codon Bias in the chloroplast genomes of Theaceae species. Frontiers in Genetics 13:824610. http://doi.org/10.3389/fgene.2022.824610

Wu CS, Wang YN, Hsu CY, Lin CP, Chaw SM (2011). Loss of different inverted repeat copies from the chloroplast genomes of Pinaceae and cupressophytes and influence of heterotachy on the evaluation of gymnosperm phylogeny. Genome Biology and Evolution 3:1284-1295. http://doi.org/10.1093/gbe/evr095

Wu L, Nie L, Wang Q, Xu Z, Wang Y, He C, … Yao H (2021). Comparative and phylogenetic analyses of the chloroplast genomes of species of Paeoniaceae. Scientific Reports 11(1):14643. http://doi.org/10.1038/s41598-021-94137-0

Wu L, Nie L, Xu Z, Li P, Wang Y, He C, … Yao H (2020). Comparative and phylogenetic analysis of the complete chloroplast genomes of three Paeonia Section Moutan Species (Paeoniaceae). Frontiers in Genetics 11:980. http://doi.org/10.3389/fgene.2020.00980

Xiong Y, Xiong Y, Jia S, Ma X (2020). The complete chloroplast genome sequencing and comparative analysis of reed canary grass (Phalaris arundinacea) and hardinggrass (P. aquatica). Plants. 9(6):748. http://doi.org/10.3390/plants9060748

Xue S, Shi T, Luo W, Ni X, Iqbal S, Ni Z, … Gao Z (2019). Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. Horticulture Research 6:89 http://doi.org/10.1038/s41438-019-0171-1

Yang Y, Sun M, Li S, Chen Q, Teixeira da Silva JA, Wang A, … Wang L (2020). Germplasm resources and genetic breeding of Paeonia: a systematic review. Horticulture Research 7:107. http://doi.org/10.1038/s41438-020-0332-2

Yi X, Gao L, Wang B, Su YJ, Wang T (2013). The complete chloroplast genome sequence of Cephalotaxus oliveri (Cephalotaxaceae): evolutionary comparison of Cephalotaxus chloroplast DNAs and insights into the loss of inverted repeat copies in gymnosperms. Genome Biology and Evolution 5:688-698. http://doi.org/10.1093/gbe/evt042

Zeb U, Wang X, AzizUllah A, Fiaz S, Khan H, Ullah S, … Shahzad K (2022). Comparative genome sequence and phylogenetic analysis of chloroplast for evolutionary relationship among Pinus species. Saudi Journal of Biological Sciences 29(3):1618-1627. http://doi.org/10.1016/j.sjbs.2021.10.070

Zhang YL, Niu LX, Zhang QY, Zhang X (2020). China Peony Germplasm Resources. China Forestry Publishing House, Beijing.

Zhao DD, Jiang LL, Li HY, Yan PF, Zhang YL (2016). Chemical components and pharmacological activities of terpene natural products from the genus Paeonia. Molecules 21:1362 http://doi.org/10.3390/molecules21101362

Zheng X, Ren C, Huang S, Li J, Zhao Y (2019). Structure and features of the complete chloroplast genome of Melastoma dodecandrum. Physiology and Molecular Biology of Plants 25(4):1043-1054. http://doi.org/10.1007/s12298-019-00651-x

Zhou S L, Xu C, Liu J, Ping YY, Wu P, Cheng T, Hong DY (2021). Out of the pan-himalaya: evolutionary history of the Paeoniaceae revealed by phylogenomics. Journal of Systematics and Evolution 59(6):1170-1182. http://doi.org/10.1111/jse.12688

Zhu X, Wen J, Hong E, Cheng Y, Lin X, Shi H, … Jin SH (2018). Effects of waterlogging on growth, biomass and antioxidant enzymes on upper ground and roots of two peony cultivars. African Journal of Plant Science 12(12):341-349. http://doi.org/10.5897/AJPS2018.1722

Downloads

Published

2024-12-18

How to Cite

ZHANG, J., ZHU, K., LIU, H., WAN, X., & XU, W. (2024). Complete chloroplast genome sequence and characteristic analysis of Paeonia suffruticosa from the lower reaches of the Yangtze River basin. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(4), 14202. https://doi.org/10.15835/nbha52414202

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52414202