Exogenous selenium application enhances the photosynthetic pigment and antioxidant defense of mash bean (Vigna mungo) to confer tolerance to salt stress

Authors

  • Zain UL ABIDIN University of Agriculture, Department of Botany, Faisalabad, 38040 (PK)
  • Safura BIBI University of Agriculture, Department of Botany, Faisalabad, 38040 (PK)
  • Athar MAHMOOD University of Agriculture Faisalabad, Department of Agronomy, Faisalabad, 38000 (PK)
  • Sipan SOYSAL Siirt University, Faculty of Agriculture, Department of Field Crops, Siirt (TR)
  • Zeki ERDEN Siirt University, Faculty of Agriculture, Department of Field Crops, Siirt (TR)
  • Çağdaş Can TOPRAK Siirt University, Faculty of Agriculture, Department of Field Crops, Siirt (TR)
  • Kifah GHARZEDDIN Carleton University, Department of Biology, Ottawa (CA)
  • Ibrahim AL-ASHKAR King Saud University, College of Food and Agriculture Sciences, Department of Plant Production, Riyadh (SA)
  • Ayman EL SABAGH Siirt University, Faculty of Agriculture, Department of Field Crops, Siirt (TR)
  • Nehal ELNAGGAR Zagazig University, Faculty of Agriculture, Department of Crop Science, Zagazig 44519 (EG)

DOI:

https://doi.org/10.15835/nbha53114180

Keywords:

antioxidant, mash bean, photosynthesis, selenium, salinity, secondary metabolite

Abstract

Mash bean is an important crop enriched with proteins and highly praised in Pakistan due to its nutritional values. However, due to abiotic stresses like salinity, its production is decreased. This study was conducted to investigate the effect of selenium on mash bean to produce salt tolerance. Mash bean seeds were sown in plastic pots filled with sand. Three levels of NaCl (0 mM, 100 mM, 200 mM) and five levels of selenium (0 ppm, 20 ppm, 40 ppm, 80 ppm, 120 ppm) were applied with Hoagland solution. Salinity reduced plant height (28%), leaf area (33%), chlorophyll a (14%), chlorophyll b (9%), carotenoids (20%), potassium ions, calcium ions, superoxide dismutase, peroxidases, catalase, salt tolerance index and increased sodium ions (21%), H2O2 content as well as secondary metabolites. However, selenium application in low concentration enhanced plant height (31%), leaf area, chlorophyll a (17%), chlorophyll b (12%), carotenoids (40%), potassium, calcium, superoxide dismutase, peroxidases, catalase, salt tolerance index, proline, flavonoids, total phenol, while decreased sodium ions (25%) and hydrogen peroxide content under salt stress. Findings showed important function of selenium in improving physical characteristics, absorption of ions, photosynthetic pigments, and antioxidant defense in plants under salinity. Applying selenium at 40 ppm concentrations showed greatest efficacy in alleviating negative impacts of salt stress (100 mM) on plant growth and biochemical attributes. Maximum positive results of selenium application (40 ppm) were obtained at 0 mM of salinity.

References

Abdelkhalek A, Hafez E (2020). Plant viral diseases in Egypt and their control. In: El-Wakeil N, Saleh M, Abu-hashim M (Eds). Cottage Industry of Biocontrol Agents and Their Applications. Springer, Cham., pp 403-421. https://doi.org/10.1007/978-3-030-33161-0_13

Al-Zahrani HS, Alharby HF, Hakeem KR, Rehman RU (2021). Exogenous application of zinc to mitigate the salt stress in Vigna radiata (L.) Wilczek—Evaluation of physiological and biochemical processes. Plants 10(5):1005. https://doi.org/10.3390/plants10051005

Alexieva V, Sergiev I, Mapelli S, Karanov E (2001). The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat. Plant, Cell & Environment 24(12):1337-1344. https://doi.org/10.1046/j.1365-3040.2001.00778.x

Ali A, Fatima N, Jalilov S, Cuddy S, Ahmad M, Khaliq T, Bashir M, Hassan A, Naseer M (2022). Profitability analysis and extent of female labour participation in mung bean production in Punjab, Pakistan. Sustainable Development Investment Portfolio (SDIP) project. CSIRO, Australia. http://dx.doi.org/10.25919/f6h5-k692

Ali NM, Altaey DK, Altaee NH (2021). The impact of selenium, nano (SiO2) and organic fertilization on growth and yield of potato Solanum tuberosum L. under salt stress conditions. IOP Conference Series: Earth and Environmental Science 735:012042. http://doi.org/10.1088/1755-1315/735/1/012042

Ameen M, Zia MA, Najeeb Alawadi HF, Naqve M, Mahmood A, Shahzad AN, Khan BA, Alhammad BA, Aljabri M, Seleiman MF (2024). Exogenous application of selenium on sunflower (Helianthus annuus L.) to enhance drought stress tolerance by morpho-physiological and biochemical adaptations. Frontiers in Plant Science 15:1427420. http://doi.org/10.3389/fpls.2024.1427420

Arnon DI (1949). Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24(1):1.

Ashraf MA, Akbar A, Parveen A, Rasheed R, Hussain I, Iqbal M (2018). Phenological application of selenium differentially improves growth, oxidative defense and ion homeostasis in maize under salinity stress. Plant Physiology and Biochemistry 123:268-280. https://doi.org/10.1016/j.plaphy.2017.12.023

Assaf M, Korkmaz A, Karaman Ş, Kulak M (2022). Effect of plant growth regulators and salt stress on secondary metabolite composition in Lamiaceae species. South African Journal of Botany 144:480-493. https://doi.org/10.1016/j.sajb.2021.10.030

Awasthi P, Karki H, Bargali K, Bargali S (2016). Germination and seedling growth of pulse crop (Vigna spp.) as affected by soil salt stress. Current Agriculture Research Journal 4(2):159-170. http://dx.doi.org/10.12944/CARJ.4.2.05

Azeem M, Pirjan K, Qasim M, Mahmood A, Javed T, Muhammad H, Yang S, Dong R, Ali B, Rahimi M (2023a). Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Scientific Reports 13(1):2895. http://doi.org/10.1038/s41598-023-29954-6

Azeem M, Sultana R, Mahmood A, Qasim M, Siddiqui ZS, Mumtaz S, Javed T, Umar M, Adnan MY, Siddiqui MH (2023b). Ascorbic and salicylic acids vitalized growth, biochemical responses, antioxidant enzymes, photosynthetic efficiency, and ionic regulation to alleviate salinity stress in Sorghum bicolor. Journal of Plant Growth Regulation 42(8):5266-5279. http://doi.org/10.1007/s00344-023-10907-2

Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39(1):205-207. http://doi.org/10.1007/BF00018060

Chance B, Maehly A (1955). Assay of catalases and peroxidases. Methods in Enzymology 2:764-775. https://doi.org/10.1016/S0076-6879(55)02300-8

Chattha MU, Ilyas M, Khan I, Mahmood A, Chattha MB, Fatima A, Iqbal M, Akbar MT, Iqbal MM, Muhammad F (2022). Growth, physiological and biochemical response of chickpea cultivars to different levels of salinity stress. Pakistan Journal of Agricultural Research 35(2):359-365. http://dx.doi.org/10.17582/journal.pjar/2022/35.2.359.365

Chen G, Zheng D, Feng N, Zhou H, Mu D, Zhao L, Shen X, Rao G, Meng F, Huang A (2022). Physiological mechanisms of ABA-induced salinity tolerance in leaves and roots of rice. Scientific Reports 12(1):8228. http://doi.org/10.1038/s41598-022-11408-0

Davis K (1976). Social responsibility is inevitable. California Management Review 19(1):14-20. http://doi.org/10.2307/41164678

Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V (2021). The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Frontiers in Plant Science 11:552969. https://doi.org/10.3389/fpls.2020.552969

El Nahhas N, AlKahtani MDF, Abdelaal KAA, Al Husnain L, AlGwaiz HIM, Hafez YM, Attia KA, El-Esawi MA, Ibrahim MFM, Elkelish A (2021). Biochar and jasmonic acid application attenuates antioxidative systems and improves growth, physiology, nutrient uptake and productivity of faba bean (Vicia faba L.) irrigated with saline water. Plant Physiology and Biochemistry 166:807-817. https://doi.org/10.1016/j.plaphy.2021.06.033

F. Abdelgawad K, M. El-Mogy M, I. A. Mohamed M, Garchery C, G. Stevens R (2019). Increasing ascorbic acid content and salinity tolerance of cherry tomato plants by suppressed expression of the ascorbate oxidase gene. Agronomy 9(2):51. https://www.mdpi.com/2073-4395/9/2/51

Farag HAS, Ibrahim MFM, El-Yazied AA, El-Beltagi HS, El-Gawad HGA, Alqurashi M, Shalaby TA, Mansour AT, Alkhateeb AA, Farag R (2022). Applied selenium as a powerful antioxidant to mitigate the harmful effects of salinity stress in snap bean seedlings. Agronomy 12(12):3215. https://www.mdpi.com/2073-4395/12/12/3215

Ghanbari F, Bag-Nazari M, Azizi A (2023). Exogenous application of selenium and nano-selenium alleviates salt stress and improves secondary metabolites in lemon verbena under salinity stress. Scientific Reports 13(1):5352. https://doi.org/10.1038/s41598-023-32436-4

Giannopolitis CN, Ries SK (1977). Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59(2):309-314. http://doi.org/10.1104/pp.59.2.309

Hameed A, Ahmed MZ, Hussain T, Aziz I, Ahmad N, Gul B, Nielsen BL (2021). Effects of salinity stress on chloroplast structure and function. Cells 10(8):2023. http://doi.org/10.3390/cells10082023

Hanif S, Mahmood A, Javed T, Bibi S, Zia MA, Asghar S, Naeem Z, Ercisli S, Rahimi M, Ali B (2024). Exogenous application of salicylic acid ameliorates salinity stress in barley (Hordeum vulgare L.). BMC Plant Biology 24(1):270. http://doi.org/10.1186/s12870-024-04968-y

Haque MA, Rafii MY, Yusoff MM, Ali NS, Yusuff O, Datta DR, Anisuzzaman M, Ikbal MF (2021). Advanced breeding strategies and future perspectives of salinity tolerance in rice. Agronomy 11(8):1631. http://doi.org/10.3390/agronomy11081631

Harizanova A, Koleva-Valkova L (2019). Effect of silicon on photosynthetic rate and the chlorophyll fluorescence parameters at hydroponically grown cucumber plants under salinity stress. Journal of Central European Agriculture 20(3):953-960. https://doi.org/10.5513/JCEA01/20.3.2312

Hmaeid N, Wali M, Metoui-Ben Mahmoud O, Pueyo JJ, Ghnaya T, Abdelly C (2019). Efficient rhizobacteria promote growth and alleviate NaCl-induced stress in the plant species Sulla carnosa. Applied Soil Ecology 133:104-113. https://doi.org/10.1016/j.apsoil.2018.09.011

Hmood WM, Ragab ME, Youssef SM, Metwally AA (2022). Effect of selenium and silicon foliar applications on the growth and yield of common bean. Egyptian Journal of Horticulture 49(2):147-158. http://doi.org/10.21608/ejoh.2022.134209.1197

Hunt R (2012). Basic growth analysis: plant growth analysis for beginners. Springer Science & Business Media. http://doi.org/10.1007/978.94-010-9117-6

Iqbal M, Raja N, Yasmeen F, Hussain M, Ejaz M, Shah M. (2017). Impacts of heat stress on wheat: a critical review. Advances in Crop Sciences and Technology 5:251. http://doi.org/10.4172/2329-8863.1000251

Jawad Hassan M, Ali Raza M, Khan I, Ahmad Meraj T, Ahmed M, Abbas Shah G, Ansar M, Awan SA, Khan N, Iqbal N, Peng Y, Li Z (2020). Selenium and salt interactions in black gram (Vigna mungo L): Ion uptake, antioxidant defense system, and photochemistry efficiency. Plants 9(4):467. http://doi.org/10.3390/plants9040467

Kamali-Andani N, Fallah S, Peralta-Videa JR, Golkar P (2022). A comprehensive study of selenium and cerium oxide nanoparticles on mung bean: Individual and synergistic effect on photosynthesis pigments, antioxidants, and dry matter accumulation. Science of the Total Environment 830:154837. https://doi.org/10.1016/j.scitotenv.2022.154837

Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha MS, Saleem MH, Adil M, Heidari P, Chen J-T (2020). An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences 21(1):148. https://www.mdpi.com/1422-0067/21/1/148

Khan A, Bibi S, Javed T, Mahmood A, Mehmood S, Javaid MM, Ali B, Yasin M, Abidin ZU, Al-Sadoon MK, Babar BH, Iqbal R, Malik T (2024). Effect of salinity stress and surfactant treatment with zinc and boron on morpho-physiological and biochemical indices of fenugreek (Trigonella foenum-graecum). BMC Plant Biology 24(1):138. http://doi.org/10.1186/s12870-024-04800-7

Kumar A, Singh S, Gaurav AK, Srivastava S, Verma JP (2020). Plant growth-promoting bacteria: biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology 11:1216. http://doi.org/10.3389/fmicb.2020.01216

Lanza MGDB, Dos Reis AR (2021). Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiology and Biochemistry 164:27-43. https://doi.org/10.1016/j.plaphy.2021.04.026

Lehotai N, Kolbert Z, Pető A, Feigl G, Ördög A, Kumar D, Tari I, Erdei L (2012). Selenite-induced hormonal and signalling mechanisms during root growth of Arabidopsis thaliana L. Journal of Experimental Botany 63(15):5677-5687. http://doi.org/10.1093/jxb/ers222

Moussa HR, Hassen AM (2018). Selenium affects physiological responses of Phaseolus vulgaris in response to salt level. International Journal of Vegetable Science 24(3):236-253. http://doi.org/10.1080/19315260.2017.1413030

Mozafariyan M, Kamelmanesh MM, Hawrylak-Nowak B (2016). Ameliorative effect of selenium on tomato plants grown under salinity stress. Archives of Agronomy and Soil Science 62(10):1368-1380. http://doi.org/10.1080/03650340.2016.1149816

Naqve M, Wang X, Shahbaz M, Mahmood A, Bibi S, Fiaz S (2021). Alpha tocopherol-induced modulations in the morphophysiological attributes of okra under saline conditions. Frontiers in Plant Science 2889. http://doi.org/10.3389/fpls.2021.800251

Nasir M, Sidhu JS, Sogi DS (2022). Processing and nutritional profile of mung bean, black gram, pigeon pea, lupin, moth bean, and indian vetch. Dry Beans and Pulses: Production, Processing, and Nutrition 431-452. https://doi.org/10.1002/9781119776802.ch17

Nasrallah AK, Kheder AA, Kord MA, Fouad AS, El-Mogy MM, Atia MA (2022). Mitigation of salinity stress effects on broad bean productivity using calcium phosphate nanoparticles application. Horticulturae 8(1):75. https://doi.org/10.3390/horticulturae8010075

Niemi H, Hassan MJ, Raza MA, Khan I, Meraj TA, Ahmed M, Shah GA, Ansar M, Awan SA, Iqbal N (2020). Selenium and salt interactions in black gram (Vigna mungo L.): Ion uptake, antioxidant defense system, and photochemistry efficiency. Plants 9(4):467. https://doi.org/10.3390/plants9040467

Olson OE (1973). Simplified spectrophotometric analysis of plants for selenium. Journal of the Association of Official Analytical Chemists 56(5):1073-1077. http://doi.org/10.1093/jaoac/56.5.1073

Qayyum A, Iqbal J, Barbanti L, Sher A, Shabbir G, Rabbani G, Rafiq M, Tareen M, Tareen M, Amin B (2019). Mash bean [Vigna mungo (L.) Hepper] germplasm evaluation at different ecological conditions of Pakistan. Applied Ecology and Environmental Research 17(3):6643-6654. http://dx.doi.org/10.15666/aeer/1703_66436654

Rahate KA, Madhumita M, Prabhakar PK (2021). Nutritional composition, anti-nutritional factors, pretreatments-cum-processing impact and food formulation potential of faba bean (Vicia faba L.): A comprehensive review. LWT 138:110796. https://doi.org/10.1016/j.lwt.2020.110796

Rasheed A, Raza A, Jie H, Mahmood A, Ma Y, Zhao L, Xing H, Li L, Hassan MU, Qari SH, Jie Y (2022). Molecular tools and their applications in developing salt-tolerant soybean (Glycine max L.) cultivars. Bioengineering 9(10):495. https://www.mdpi.com/2306-5354/9/10/495

Rasool A, Hafiz Shah W, Padder SA, Tahir I, Alharby HF, Hakeem KR, ul Rehman R (2023). Exogenous selenium treatment alleviates salinity stress in proso millet (Panicum miliaceum L.) by enhancing the antioxidant defence system and regulation of ionic channels. Plant Growth Regulation 100(2):479-494. http://doi.org/10.1007/s10725-022-00826-9

Rodríguez Coca LI, García González MT, Gil Unday Z, Jiménez Hernández J, Rodríguez Jáuregui MM, Fernández Cancio Y (2023). Effects of sodium salinity on rice (Oryza sativa L.) cultivation: A review. Sustainability 15(3):1804. https://www.mdpi.com/2071-1050/15/3/1804

Sadak MS, Abd El-Hameid AR, Zaki FSA, Dawood MG, El-Awadi ME (2019). Physiological and biochemical responses of soybean (Glycine max L.) to cysteine application under sea salt stress. Bulletin of the National Research Centre, 44(1):1. http://doi.org/10.1186/s42269-019-0259-7

Safdar H, Amin A, Shafiq Y, Ali A, Yasin R, Shoukat A, Hussan MU, Sarwar MI (2019). A review: Impact of salinity on plant growth. Nature and Science 17(1):34-40. http://doi.org/10.7537/marsnsj170119.06

Samynathan R, Venkidasamy B, Ramya K, Muthuramalingam P, Shin H, Kumari PS, Thangavel S, Sivanesan I (2023). A recent update on the impact of nano-selenium on plant growth, metabolism, and stress tolerance. Plants 12(4):853. http://doi.org/10.3390/plants12040853

Sattar A, Cheema M, Abbas T, Sher A, Ijaz M, Hussain M (2017). Separate and combined effects of silicon and selenium on salt tolerance of wheat plants. Russian Journal of Plant Physiology 64:341-348. http://doi.org/10.1134/S1021443717030141

Semida WM, Abd El-Mageed TA, Abdelkhalik A, Hemida KA, Abdurrahman HA, Howladar SM, Leilah AAA, Rady MOA (2021). Selenium modulates antioxidant activity, osmoprotectants, and photosynthetic efficiency of onion under saline soil conditions. Agronomy, 11(5), 855. https://www.mdpi.com/2073-4395/11/5/855

Shin YK, Bhandari SR, Cho MC, Lee JG (2020). Evaluation of chlorophyll fluorescence parameters and proline content in tomato seedlings grown under different salt stress conditions. Horticulture, Environment, and Biotechnology 61(3):433-443. http://doi.org/10.1007/s13580-020-00231-z

Silva VM, Tavanti RFR, Gratão PL, Alcock TD, Dos Reis AR (2020). Selenate and selenite affect photosynthetic pigments and ROS scavenging through distinct mechanisms in cowpea (Vigna unguiculata (L.) walp) plants. Ecotoxicology and Environmental Safety 201:110777. https://doi.org/10.1016/j.ecoenv.2020.110777

Singleton VL, Rossi JA (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture 16(3):144-158. http://doi.org/10.5344/ajev.1965.16.3.144

Skrypnik L, Novikova A, Tokupova E (2019). Improvement of phenolic compounds, essential oil content and antioxidant properties of sweet basil (Ocimum basilicum L.) depending on type and concentration of selenium application. Plants 8(11):458. http://doi.org/10.3390/plants8110458

Steel R, Torrie J, Dickey D. (1997). McGraw-Hill book company: Principles and procedure of statistics (ed) A Biometrical Approach. In: New York, Toronto, London.

Taha RS, Seleiman MF, Shami A, Alhammad BA, Mahdi AHA (2021). Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system and yield of wheat grown in salt-stressed soil. Plants 10(6):1040. https://www.mdpi.com/2223-7747/10/6/1040

Tanveer K, Gilani S, Hussain Z, Ishaq R, Adeel M, Ilyas N (2020). Effect of salt stress on tomato plant and the role of calcium. Journal of Plant Nutrition 43(1):28-35. http://doi.org/10.1080/01904167.2019.1659324

Toshtemirovna NU, Ergashovich KA (2019). Regulation of the water balance of the cotton varieties under salting conditions. Academicia: An International Multidisciplinary Research Journal 9(8):5-9. http://dx.doi.org/10.5958/2249-7137.2019.00086.7

Ul Haq T, Ullah R, Khan MN, Nazish M, Almutairi SM, Rasheed RA (2023). Seed priming with glutamic-acid-functionalized iron nanoparticles modulating response of Vigna radiata (L.) R. Wilczek (Mung Bean) to induce osmotic stress. Micromachines 14(4):736. https://www.mdpi.com/2072-666X/14/4/736

Ullah A, Shah TM, Farooq M (2020). Pulses production in Pakistan: Status, constraints and opportunities. International Journal of Plant Production 14(4):549-569. http://doi.org/10.1007/s42106-020-00108-2

Wolf B (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis 13(12):1035-1059. http://doi.org/10.1080/00103628209367332

Xie Y, Xiao K, Sun Y, Gao Y, Yang H, Xu H (2018). Effects of amendments on heavy metal immobilization and uptake by Rhizoma chuanxiong on copper and cadmium contaminated soil. Royal Society Open Science 5(8):181138. https://doi.org/10.1098/rsos.181138

Zahra N, Raza ZA, Mahmood S (2020). Effect of salinity stress on various growth and physiological attributes of two contrasting maize genotypes. Brazilian Archives of Biology and Technology 63. https://doi.org/10.1590/1678-4324-2020200072

Downloads

Published

2025-03-28

How to Cite

UL ABIDIN, Z., BIBI, S., MAHMOOD, A., SOYSAL, S., ERDEN, Z., TOPRAK, Çağdaş C., GHARZEDDIN, K., AL-ASHKAR, I., EL SABAGH, A., & ELNAGGAR, N. (2025). Exogenous selenium application enhances the photosynthetic pigment and antioxidant defense of mash bean (Vigna mungo) to confer tolerance to salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 53(1), 14180. https://doi.org/10.15835/nbha53114180

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha53114180

Most read articles by the same author(s)

1 2 > >>