Antioxidant properties and chemical composition of white truffle Tirmania nivea and its host plant Helianthemum lippii
DOI:
https://doi.org/10.15835/nbha52414176Keywords:
antioxidant activity, host plant, phytochemical properties, truffleAbstract
This study aims to determine the phytochemical contents and the antioxidant activity of the white truffle Tirmania nivea (Desf.) Trappe, and its host plant Helianthemum lippii (L.) Dum. Cours. Standard procedures were applied for phytochemical analysis, including the determination of proximate compositions, mineral elements, and various secondary metabolites. The antioxidant activities were assessed using the 1,1-diphenyl-2-picrylhydrazyl, azinobis benzo thiazoline sulphonic, and ferric reducing antioxidant power assays. Chemical analysis revealed the presence of carbohydrate content, which has the highest value in the truffle and its host plant. The carbohydrate content is the highest in T. nivea compared with H. lippii. Crude lipids showed the lowest value in T. nivea and H. lippii. Potassium is the highest concentration of a macro-element in the truffle and the host plant. Iron is the highest concentration of micro-element in the truffle and host plant. Phenolics had the highest concentration of secondary metabolisms, but tannins had the lowest value in the truffle and its host plant. Concerning the antioxidant activity, we found that hexane extract of T. nivea and H. lippii has high inhibitory percentages equivalent to IC50 134.8 and 119.9 μg/mL, respectively for DPPH, 128.84, 111.21 μmol Fe2+/mg, respectively for FRAP, and 121.39 and 107.22 μg/mL, respectively for ABTS. The study proved that the aqueous extract of the truffle is much richer than the host plant in proximate constituents, minerals elements, and secondary metabolites; in addition, the truffle has a tremendous antioxidant capacity than the host plant, which leads us forward to introduce it for medical use.
References
Abdel-alim M, Serag M, Moussa H, Elgendy M, Mohesien M, Salim N (2023). Phytochemical screening and antioxidant potential of Lotus corniculatus and Amaranthus viridis. Egyptian Journal of Botany 63(2):665-681. https://doi.org/10.21608/ejbo.2023.158720.2118
Adam Z, Razali R, Arapoc DJ, Aziz AHA, Marsiddi NA (2021). DPPH radical scavenging and Folin-Ciocalteu assays: simple and reliable methods to quantify antioxidant activity and total phenolic content. Nuclear Technical Convention 8:1-8. https://www.researchgate.net/publication/353463146
Adebiyi OE, Olayemi FO, Ning-Hua T, Guang-Zhi Z (2017). In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia. Beni-Suef University Journal of Basic and Applied Sciences 6:10-14. https://doi.org/10.1016/j.bjbas.2016.12.003
Adia MM, Emami SN, Byamukama R, Faye I, Borg-Karlson AK (2016). Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants. Journal of Ethnopharmacology 186:14-19. https://doi.org/10.1016/j.jep.2016.03.047
Akyüz N, Altman RB, Blanchard SC, Boudker O (2013). Transport dynamics in a glutamate transporter homologue. Nature 502(7469):114-118. https://doi.org/10.1016/j.bpj.2012.11.2983
Alhussaini MS, Saadabi AM, Hashim K, Al-Ghanayem AA (2016). Efficacy of the desert truffle Terfezia claveryi to cure trachoma disease with special emphasis on its antibacterial bioactivity. Trends in Medical Research 11:28-34. https://doi.org/10.3923/tmr.2016.28.34
Al-Laith AAA (2010). Antioxidant components and antioxidant/antiradical activities of desert truffle (Tirmania nivea) from various Middle Eastern origins. Journal of Food Composition and Analysis 23(1):15-22. https://doi.org/10.1016/j.jfca.2009.07.005
Allen K, Bennett JW (2021). Tour of truffles: aromas, aphrodisiacs, adaptogens and more. Mycobiology 49(3):201-212. https://doi.org/10.1080/12298093.2021.1936766
Al-Neama MM, Ewaz JO, Nema JH (1988). Chemical constituents of Iraqi truffles. Iraqi Journal of Agricultural Sciences 6:51-56. https://doi.org/19880390311
Al-Ruqaie IM (2002). Effect of different treatment processes and preservation methods on the quality of truffles: I. Conventional methods (drying/freezing). Pakistan Journal of Biological Sciences 26(1-2):177-182. https://www.cabidigitallibrary.org/doi/full/10.5555/19880390311
Awuchi CG, Igwe VS, Echeta CK (2019). The functional properties of foods and flours. International Journal of Advanced Academic Research 5(11):139-160. https://www.academia.edu/download/61281991/ijaar-ste-v5n11-nov19-p1620191120-120155-x5po6j.pdf.
Bitwell C, Indra SS, Luke C, Kakoma MK (2023). A review of modern and conventional extraction techniques and their applications for extracting phytochemicals from plants. Scientific African 19:15-85. https://doi.org/10.1016/j.sciaf.2023.e01585
Bogar LM, Tavasieff OS, Raab TK, Peay KG (2022). Does resource exchange in ectomycorrhizal symbiosis vary with competitive context and nitrogen addition?. New Phytologist 233:1331-1344. https://doi.org/10.1111/nph.17871
Bondet V, Brand-Williams W, Berset CLWT (1997). Kinetics and mechanisms of antioxidant activity using the DPPH Free radical method. LWT-Food Science and Technology 30(6):609-615. https://doi.org/10.1006/fstl.1997.0240
Bouatia M, Touré HA, Cheikh A, Eljaoudi R, Rahali Y, Idrissi OMB, Draoui M (2018). Analysis of nutrient and antinutrient content of the truffle (Tirmania pinoyi) from Morocco. International Food Research Journal 25:174-178.
Boulos L (2009). Flora of Egypt. Checklist revised annotated (Ed). Al-Hadara Publishing, Cairo, Egypt, pp 410.
Bradai L, Bissati S, Chenchouni H, Amrani K (2015). Effects of climate on the productivity of desert truffles beneath hyper-arid conditions. International Journal of Biometeorology 59:907-915. https://doi.org/10.1007/s00484-014-0891-8
Brundrett MC, Tedersoo L (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytologist 220:1108-1115. https://doi.org/10.1111/nph.14976
Chang ST, Chen PF, Wang SY, Wu HH (2001). Antimite activity of essential oils and their constituents from Taiwania cryptomerioides. Journal of Medical Entomology 38(3):455-457. https://doi.org/10.1603/0022-2585-38.3.455
Chen Y, Xie MY, Nie SP, Li C, Wang YX (2008). Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chemistry 107:231-241. https://doi.org/10.1016/j.foodchem.2007.08.021
Cheng SS, Liu JY, Hsui YR, Chang ST (2006). Chemical polymorphism and antifungal activity of essential oils from leaves of different provenances of indigenous cinnamon (Cinnamomum osmophloeum). Bioresource Technology 97(2):306-312. https://doi.org/10.1016/j.biortech.2005.02.030
Dahham SS, Al-Rawi SS, Ibrahim AH, Majid ASA, Majid AMSA (2018). Antioxidant, anticancer, apoptosis properties and chemical composition of black truffle Terfezia claveryi. Saudi Journal of Biological Sciences 25(8):1524-1534. https://doi.org/10.1016/j.sjbs.2016.01.031
Doğan HH, Aydın S (2013). Determination of antimicrobial effect, antioxidant activity and phenolic contents of desert truffle in Turkey. African Journal of Traditional, Complementary and Alternative Medicines 10:52-58. https://doi.org/10.4314/ajtcam.v10i4.9
El Enshasy H, Elsayed EA, Aziz R, Wadaan MA (2013). Mushrooms and truffles: historical biofactories for complementary medicine in Africa and in the middle east. Evidence-Based Complementary and Alternative Medicine 2013:1-10. https://doi.org/10.1155/2013/620451
El-Chaghaby GA, Mohammed FS, Rashad S, Uysal I, Koçer O, Lekesiz Ö, Sevindik M (2024). Genus Hypericum: General %%. Egyptian Journal of Botany 64(1):1-26. https://doi.org/10.21608/ejbo.2023.217116.2378
Gabr ME, El-Ghandour HA, Elabd SM (2023). Prospective of the utilization of rainfall in coastal regions in the context of climatic changes: case study of Egypt. Applied Water Science 13(1):19. https://doi.org/10.1007/s13201-022-01835-9
Gioacchini G, Cardinali M, Maradonna F, Funkenstein B, Mosconi G, Carnevali O (2005). Hormonal control of the IGF system in the sea bream ovary. Annals of the New York Academy of Sciences 1040(1):320-322. https://doi.org/10.1196/annals.1327.051
Gökşena N, Demircib B, Baldemirc A, Koşara M (2017). Essential oil composition of Helianthemum canum (L.) Baumg. (Cistaceae) growing in Turkey. Asian Society of Pharmacognosy 1(1):5-10. http://www.pharmacognosyasia.com/Files/Other/AJPV1I1p0510.pdf
Guo Q, Huang X, Kang J, Ding H, Liu Y, Wang N, Cui SW (2022). Immunomodulatory and antivirus activities of bioactive polysaccharides and structure-function relationship. Bioactive Carbohydrates and Dietary Fibre 27:100301. https://doi.org/10.1016/j.bcdf.2021.100301
Halvorsen BL, Holte K, Myhrstad MC, Barikmo I, Hvattum E, Remberg SF, Blomhoff R (2002). A systematic screening of total antioxidants in dietary plants. The Journal of Nutrition 132(3):461-471. https://doi.org/10.1093/jn/132.3.461
Hawkins HJ, Cargill RI, Van Nuland ME, Hagen SC, Field KJ, Sheldrake M, Kiers ET (2023). Mycorrhizal mycelium as a global carbon pool. Current Biology 33(11):R560-R573. https://doi.org/10.1016/j.cub.2023.02.027
Hsu JY, Chen MH, Lai YS, Chen SD (2021). Antioxidant profile and biosafety of white truffle mycelial products obtained by solid-state fermentation. Molecules 27(1):109. https://doi.org/10.3390/molecules27010109
Hussain G, Al-Ruqaie IM (1999). Occurrence, chemical composition, and nutritional value of truffles: an overview. Pakistan Journal of Biological Sciences 2(2):510-514. https://doi.org/10.3923/pjbs.1999.510.514
Ji B, Bever JD (2016). Plant preferential allocation and fungal reward decline with soil phosphorus: Implications for mycorrhizal mutualism. Ecosphere 7:e01256. https://doi.org/10.1002/ecs2.1256
Kakouridis A, Hagen JA, Kan MP, Mambelli S, Feldman LJ, Herman DJ, Firestone MK (2022). Routes to roots: direct evidence of water transport by arbuscular mycorrhizal fungi to host plants. New Phytologist 236(1):210-221. https://doi.org/10.1111/nph.18281
Kaurinovic B, Vastag D (2019). Flavonoids and phenolic acids as potential natural antioxidants. IntechOpen, London, pp 1-20. https://doi.org/10.5772/intechopen.83731
Khoddami A, Wilkes MA, Roberts TH (2013). Techniques For Analysis Of Plant Phenolic Compounds. Molecules 18(2):2328-2375. https://doi.org/10.3390/molecules18022328
Kıvrak I (2014). Analytical methods applied to assess chemical composition, nutritional value and in vitro bioactivities of Terfezia olbiensis and Terfezia claveryi from Turkey. Food Analytical Methods 1-15. https://doi.org/10.1007/s12161-014-0009-2
Latimer GW (2023). Official Methods of Analysis of AOAC INTERNATIONAL (22). Oxford University Press.
Le Tacon F, Marçais B, Courvoisier M, Murat C, Montpied P, Becker M (2014). Climatic variations explain annual fluctuations in French Périgord black truffle wholesale markets but do not explain the decrease in black truffle production over the last 48 years. Mycorrhiza 24:115-125. https://doi.org/10.1007/s00572-014-0568-5
Lee H, Nam K, Zahra Z, Farooqi MQU (2020). Potentials of truffles in nutritional and medicinal applications: a review. Fungal Biology and Biotechnology 7:1-17. https://doi.org/10.1186/s40694-020-00097-x
Mabberley DJ (1997). The plant-book: a portable dictionary of the vascular plants (second edition). Cambridge university press, pp 107-177.
Magalhaes LM, Segundo MA, Reis S, Lima JL (2008). Methodological aspects about in vitro evaluation of antioxidant properties. Analytica Chimica Acta 613:1-19. https://doi.org/10.1016/j.aca.2008.02.047
Morita T, Jinno K, Kawagishi H, Arimoto Y, Suganuma H, Inakuma T, Sugiyama K (2003). Hepatoprotective effect of myristicin from nutmeg (Myristica fragrans) on lipopolysaccharide/d-galactosamine-induced liver injury. Journal of Agricultural and Food Chemistry 51(6):1560-1565. https://doi.org/10.1021/jf020946n
Mouffouk S, Mouffouk C, Mouffouk S, Haba H (2023). Medicinal, pharmacological and biochemical progress on the study of genus Helianthemum: A review. Current Chemical Biology 17(3):147-159. https://doi.org/10.2174/2212796817666230227112835
Munteanu IG, Apetrei C (2021). Analytical methods used in determining antioxidant activity: A review. International Journal of Molecular Sciences 22(7):3380. https://doi.org/10.3390/ijms22073380
Mustafa AM, Angeloni S, Nzekoue FK, Abouelenein D, Sagratini G, Caprioli G, Torregiani E (2020). An overview on truffle aroma and main volatile compounds. Molecules 25(24):5948. https://doi.org/10.3390/molecules25245948
Neggaz S, Fortas Z (2013). Tests of antibiotic properties of algerian desert truffle against bacteria and fungi. Life Sciences 7:259-266.
Obadoni BO, Ochuko PO (2002). Phytochemical studies and comparative efficacy of the crude extracts of some haemostatic plants in Edo and Delta States of Nigeria. Global Journal of Pure and Applied Sciences 8(2):203-208. https://doi.org/10.4314/gjpas.v8i2.16033
Okaiyeto K, Oguntibeju OO (2021). African herbal medicines: Adverse effects and cytotoxic potentials with different therapeutic applications. International Journal of Environmental Research and Public Health 18(11):5988. https://doi.org/10.3390/ijerph18115988
Owaid MN (2018). Bioecology and uses of desert truffles (Pezizales) in Middle Eastern. Walailak Journal of Science and Technology 15(3):179-188. http://orcid.org/0000-0001-9005-4368
Parang K, Wiebe LI, Knaus EE, Huang JS, Tyrrell DL, Csizmadia F (1997). In vitro antiviral activities of myristic acid analogs against human immunodeficiency and hepatitis B viruses. Antiviral Research 34(3):75-90. https://doi.org/10.1016/S0166-3542(96)01022-4
Pokorny J, Yanishlieva N, Gordon M (2001). Antioxidants in Food: Practical Applications. Woodhead Publishing 7-21.
Rahman NN, Nama MM, Al-Rawi SS, Ibrahim AH, Kadir MOA (2011). Comparison of nutritional composition between palm kernel fibre and the effect of the supercritical fluid extraction on its quality. Procedia Food Science 1:1940-1945. https://doi.org/10.1016/j.profoo.2011.09.285
Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B (2000). Effect of Feronia limonia on mosquito larvae. Fitoterapia 71(5):553-555. https://doi.org/10.1016/S0367-326X(00)00164-7
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9-10):1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Rubio-Moraga A, Argandona J, Mota B, Perez J, Verde A, Fajardo J, Gomez-Navarro J, Castillo-Lopez R, Ahrazem O, Gomez-Gomez L (2013). Screening for polyphenols, antioxidant and antimicrobial activities of extracts from eleven Helianthemum taxa (Cistaceae) used in folk medicine in South-Eastern Spain. Journal of Ethnopharmacology 148:287-296. https://doi.org/10.1016/j.jep.2013.04.028
Sadasivam S, Manickam A (2008). Biochemical Methods. Third Edition, New Age International Publishers, pp 203-204.
Saddiq AA, Danial EN (2012). Assessment of phenolic content, free radical-scavenging capacity and antimicrobial activities of Truffle claveryi. Wulfenia Journal 19:403-422. file:///C:/Users/WIN7/Downloads/25Dramna%20(1).pdf
Sallam F, El-Mokadem M, AI Mekawey A, Saker E (2022). Egyptian truffles as a source of antimicrobial and antioxidant agents. Journal of Scientific Research in Science 39(2):49-61. https://doi.org/10.21608/jsrs.2022.275787
Shah P, Modi HA (2015). Comparative study of DPPH, ABTS and FRAP assays for determination of antioxidant activity. International Journal for Research in Applied Science and Engineering Technology 3(6):636-641. https://www.researchgate.net/publication/307464470
Sofowora A (1993). Recent trends in research into African medicinal plants. Journal of Ethnopharmacology 38(2-3):197-208. https://doi.org/10.1016/0378-8741(93)90017-Y
Sreeramulu D, Raghunath M (2010). Antioxidant activity and phenolic contents of roots, tubers and vegetables commonly consumed in India. Food Research International 43:1017-1020. https://doi.org/10.1016/j.foodres.2010.01.009
Täckholm V (1974). Students’ Flora of Egypt. Cairo University. Cooperative Printing Company, Beirut, Lebanon, 888.
Temerk H, Salem W, Sayed W, Hassan FS (2017). Antibacterial effect of phytochemial extracts from Ziziphus-spina christi against some pathogenic bacteria. Egyptian Journal of Botany 57(3):595-604. https://doi.org/10.21608/EJBO.2017.665.1035
Trease GE, Evans WC (1989). Pharmacognosy. 13th Edition, Bailere Traiadal London, pp 69.
Tung YT, Chua MT, Wang SY, Chang ST (2008). Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresource Technology 99(9):3908-3913. https://doi.org/10.1016/j.biortech.2007.07.050
Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A (2018). Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects: An overview. Medicines 5(3):93. https://doi.org/10.3390/medicines5030093
Üstün N, Bulam S, Peksen A (2018). Biochemical properties, biological activities and usage of truffles. International Congress on Engineering and Life Science, Kastamonu, Turkey 26-29. https://www.researchgate.net/publication/328738891
Villares A, García-Lafuente A, Guillamon E, Ramos Á (2012). Identification and quantification of ergosterol and phenolic compounds occurring in Tuber spp. truffles. Journal of food composition and analysis 26(1-2):177-182. https://doi.org/10.1016/j.jfca.2011.12.003
Wang S, Marcone MF (2011). The biochemistry and biological properties of the world’s most expensive underground edible mushroom: truffles. Food Research International 44:2567-2581. https://doi.org/10.1016/j.foodres.2011.06.008
Wu Z, Meenu M, Xu B (2021). Nutritional value and antioxidant activity of Chinese black truffle (Tuber indicum) grown in different geographical regions in China. Lwt- Food Science and Technology 135:110226. https://doi.org/10.1016/j.lwt.2020.110226
Yadav RNS, Agarwala M (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology 3(12). file:///C:/Users/WIN7/Downloads/1.Phytochemicalanalysisofsomemedicinalplants1.pdf
Yan X, Wang Y, Sang X, Fan Li (2017). Nutritional value, chemical composition and antioxidant activity of three Tuber species from China. AMB Express 7:136-138. https://doi.org/10.1186/s13568-017-0431-0
Ziaei A, Ramezani M, Wright L, Paetz C, Schneider B, Amirghofran Z (2011). Identification of spathulenol in Salvia mirzayanii and the immunomodulatory effects. Phytotherapy Research 25(4):557-562. https://doi.org/10.1002/ptr.3289
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Asmaa A. ZAGHLUL, Hedayat M. HAMAD, Afaf RASHAD, Amr ABD El_GAWAD, Dalal ALARDAN, Abeer ALSHAMMARI, Nadi AL-HARBI, Khaled ABDELAAL, Marwa A. YASSIN

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.