Valorization of wild species Cardaria draba (L.) Desv.: primary metabolites, mineral content, and fatty acid profile
DOI:
https://doi.org/10.15835/nbha53114175Keywords:
Cardaria draba (L.) Desv., fatty acids, GC-FID analysis, lipid quality indices, nutritional compositionAbstract
The aim of this research was to assess the proximate (ash, organic matter, fiber, protein, sugars, starch, and carbohydrates) and minerals (K, Ca, Mg, P, Na, S, Fe, Zn, Cu, Mn, Cd, Co, Cr, Pb, and Ni) compositions of Tunisian wild Cardaria draba (L.) Desv. organs (roots, stems, leaves, flowers, and fruits) using standard methods. The profile of fatty acids was assessed through gas chromatography with flame ionization detection (GC-FID) with lipid quality evaluation. Results show that leaves have the highest ash (19.20 g/100 g dw) and protein (38.90 g/100 g dw) contents, while roots are richest in fiber (32.80 g/100 g dw) and soluble sugars (9.68 g/100 g dw). Flowers and fruits contain the most starch contents (56.96 and 51.22 g/100 g dw, respectively). Leaves also have the highest concentrations of K, Ca, Mg, Na, and P, while fruits and flowers have the highest sulfur content (478.98 and 432.50 mg/100 g dw, respectively). Fe is primarily found in leaves and stems (37.50 and 36.98 mg/100 g dw), Mn in stems (5.35 mg/100 g dw), and Zn in leaves (4.21 mg/100 g dw). Roots accumulate the most trace elements, remaining below toxicity limits. Fruits have the highest oil content (12.50%). Unsaturated fatty acids (UFA) dominate, with oleic acid (29.38%) as the main in roots, α-linolenic acid (12.98%) in aerial parts, and linoleic acid (7.94%) in fruits oils. Erucic acid is highest in fruits (7.70%) but undetectable in aerial parts. Palmitic and stearic acids, are highest in roots (22.05% and 23.18%, respectively). The oils demonstrate high nutritional quality, with favorable hypocholesterolemic properties (h/H ratio of 1.67 to 2.30) and low atherogenic (0.50-0.62) and thrombogenic (0.22-1.00) indices. These results indicate that C. draba organs are a valuable source of essential nutrients and fats, with potential applications in diet, health, cosmetics, and biodiesel.
References
Afzal M, Ali MI, Munir MA, Zeeshan MA, Sharif MN, Aslam M (2016). Genetic association among morphological traits of Lepidium draba. Bulletin of Biological and Allied Sciences Research 1(1):1-5. https://doi.org/10.54112/bbasr.v2016i1.1.
Agarwal A, Raj N, Chaturvedi N (2017). A comparative study on proximate and antioxidant activity of Brassica oleracea (Kale) and Spinacea oleracea (Spinach) leaves. International Journal of Advanced Research in Biological Sciences 4(4):22-29. http://dx.doi.org/10.22192/ijarbs.2017.04.04.004
Anwar F, Hussain AI, Iqbal S, Bhanger MI (2007). Enhancement of the oxidative stability of some vegetable oils by blending with Moringa oleifera oil. Food Chemistry 103:1181-1191. https://doi.org/10.1016/j.foodchem.2006.10.023.
AOAC (2005). Association of Officiating Analytical Chemists. Washington DC, (18th ed), Washington, USA.
AOAC (2020). Association of Officiating Analytical Chemists. Official Methods of Analysis of AOAC International, (20th ed), Rockville, MD, USA.
AOCS Ba 6a-05 (2005). The American Oil Chemists’ Society. Official Methods and Recommended Practices of the AOCS, Champaign, IL.
Asati A, Pichhode M, Nikhil K (2016). Effect of heavy metals on plants: an overview. International Journal of Application or Innovation in Engineering and Management 5(3):56-66.
Aslan V (2023). Fuel characterization, engine performance characteristics and emissions analysis of different mustard seed biodiesel: An overview. Journal of Biotechnology 370:12-30. https://doi.org/10.1016/j.jbiotec.2023.05.006.
Atabani AE, Silitonga AS, Ong HC, Mahlia TMI, Masjuki HH, Badruddin IA, Fayaz H (2013). Non-edible vegetable oils: a critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production. Renewable and Sustainable Energy Reviews 18:211-245. https://doi.org/10.1016/j.rser.2012.10.013.
Ayaz FA, Glew RH, Millson M, Huang HS, Chuang LT, Sanz C, Hayırlıoglu-Ayaz S (2006). Nutrient contents of kale (Brassica oleraceae L. var. acephala DC.). Food Chemistry 572-579. https://doi.org/10.1016/j.foodchem.2005.03.011.
Batool W, Hussain W, Hassan R, Tasleem T, Ullah S, Ali A (2023). A study of wild vegetables: proximate and mineral analysis of selected wild edible vegetables of parachinar, district kurramkp, Pakistan. Pakistan Journal of Botany 55(1):291-298. http://doi.org/10.30848/PJB2023-1(21)
Baydoun SA, Kanj D, Raafat K, Aboul Ela M, Chalak L, Arnold-Apostolides N (2017). Ethnobotanical and economic importance of wild plant species of Jabal Moussa Bioreserve, Lebanon. Journal of Ecosystem and Ecography 7(3):1-10. http://doi.org/10.4172/2157-7625.1000245
Bensaid SO, Bicha S, Benmekhebi L, Rebbas K, Bensouici C, Demirtas I, …, Benayache F (2018). HPLC analysis and antioxidant properties of Algerian Lepidium draba ethyl acetate extract. Journal of Biologically Active Products from Nature 8(4):265-271. http://doi.org/10.1080/22311866.2018.1511381.
Cecchi G, Biasini S, Castano J (1985). Note de laboratoire [Laboratory note]. Revue Française des Corps Gras 4:163-164.
Cecchi T, Passamonti P, Alfei B, Cecchi P (2011). Monovarietal extra virgin olive oils from the Marche region, Italy: analytical and sensory characterization. International Journal of Food Properties 14(3):483-495. https://doi.org/10.1080/10942910903254811.
Chen XL, Xue XZ, Guo WZ, Wang LC, Qiao XJ (2016). Growth and nutritional properties of lettuce affected by mixed irradiation of white and supplemental light provided by light-emitting diode. Scientia Horticulturae 200:111-118. https://doi.org/10.1016/j.scienta.2016.01.007.
Chiofalo B, Presti VL, Chiofalo V, Gresta F (2012). The productive traits, fatty acid profile and nutritional indices of three lupin (Lupinus spp.) species cultivated in a Mediterranean environment for the livestock. Animal Feed Science and Technology 171(2-4):230-239. https://doi.org/10.1016/j.anifeedsci.2011.11.005.
Collado-González J, Piñero MC, Otálora G, López-Marín J, del Amor FM (2021). Exogenous spermidine modifies nutritional and bioactive constituents of cauliflower (Brassica oleracea var. botrytis L.) florets under heat stress. Scientia Horticulturae 277:e109818. https://doi.org/10.1016/j.scienta.2020.109818.
D’Angelo S, Motti ML, Meccariello R (2020). ω-3 and ω-6 polyunsaturated fatty acids, obesity and cancer. Nutrients 12(9):2751. https://doi.org/10.3390/nu12092751.
Doniec J, Florkiewicz A, Duliński R, Filipiak-Florkiewicz A (2022). Impact of hydrothermal treatments on nutritional value and mineral bioaccessibility of Brussels sprouts (Brassica oleracea var. gemmifera). Molecules 27(6):1861. https://doi.org/10.3390/molecules27061861.
Drewnowski A, Maillot M, Rehm C (2012). Reducing the sodium-potassium ratio in the US diet: a challenge for public health. The American journal of clinical nutrition 96(2):439-444. https://doi.org/10.3945/ajcn.111.025353.
Dufoo-Hurtado MD, Vazquez-Barrios ME, Ramirez-Gonzalez E, Vazquez Celestino D, Rivera-Pastrana DM, Mercado-Silva E (2020). Nutritional, nutraceutical and functional properties of flours obtained from broccoli waste material dried at different temperatures. Acta Horticulturae 1292:137-144. https://doi.org/10.17660/ActaHortic.2020.1292.18
Duguma HF (2020). Wild edible plant nutritional contribution and consumer perception in Ethiopia. International Journal of Food Science (1):2958623. https://doi.org/10.1155/2020/2958623
European Food Safety Authority (EFSA) (2015). Scientific Opinion on the tolerable upper intake level of cobalt. EFSA Journal 13(1):e3978.
Farràs M, Almanza-Aguilera E, Hernáez Á, Agustí N, Julve J, Fitó M, Castañer O (2021). Beneficial effects of olive oil and Mediterranean diet on cancer physio-pathology and incidence. Seminars in Cancer Biology 73:178-195. https://doi.org/10.1016/j.semcancer.2020.11.011.
Fatemi SH, Hammond EG (1980). Analysis of oleate, linoleate and linolenate hydroperoxides in oxidized ester mixtures. Lipids 15(5):379-385.
Fathi H, Ebrahimzadeh MA, Ahanjan M, Shokri F, Jafari H, Eslami S, …, Rostamnezhad M (2023). Antioxidant capacity, chromatographic analysis of phenolic compounds and anti-microbial effects of Cardaria draba growing in Iran.
International Journal of Pharmaceutical Sciences and Research 14(1):373-380. https://doi.org/10.13040/IJPSR.0975-8232.14(1).373-80
Food and Agriculture Organization (FAO) (1998). Carbohydrates in human nutrition. Food and Nutrition Paper.
Francis A, Warwick SI. (2008). The biology of Canadian weeds. Lepidium draba L., L. chalepense L., L. appelianum Al Shehbaz (updated). Canadian Journal of Plant Science 88(2):379-401. https://doi.org/10.4141/CJPS07100.
Fusari CM, Nazareno MA, Locatelli DA, Fontana A, Beretta V, Camargo AB (2020). Phytochemical profile and functionality of Brassicaceae species. Food Bioscience 36:e100606. https://doi.org/10.1016/j.fbio.2020.100606.
Galindo FG, Herppich W, Gekas V, Sjöholm I (2004). Factors affecting quality and postharvest properties of vegetables: Integration of water relations and metabolism. Critical Reviews in Food Science and Nutrition 44(3):139-154. https://doi.org/10.1080/10408690490424649.
García-Herrera P, Sánchez-Mata MC, Cámara M, Fernández-Ruiz V, Díez-Marqués C, Molina M, Tardío J (2014). Nutrient composition of six wild edible Mediterranean Asteraceae plants of dietary interest. Journal of Food Composition and Analysis 34(2):163-170. https://doi.org/10.1016/j.jfca.2014.02.009.
Georgieva S, Atanassova J, Dinev N (2015). Metal hyperaccumulation in Cardaria draba (L.) Desv. (Brassicaceae) and heavy metal effects on the nematodes and a weevil associated with the plant roots in sites near a non-ferrous metal smelter in Bulgaria. Soil Science Agrochemistry Ecology 49:55-64.
Ghaderian SM, Hemmat GR, Reeves RD, Baker AJM (2007). Accumulation of lead and zinc by plants colonizing a metal mining area in Central Iran. Journal of Applied Botany and Food Quality 81(2):145-150.
Gheorghe A, Habeanu M, Ciurescu G, Lefter NA, Ropota M, Custura I, Tudorache M (2022). Effects of dietary mixture enriched in polyunsaturated fatty acids and probiotic on performance, biochemical response, breast meat fatty acids, and lipid indices in broiler chickens. Agriculture 12(8):e1120. https://doi.org/10.3390/agriculture12081120.
Guil-Guerrero JL, Giménez-Martínez JJ, Torija-Isasa ME (1999). Nutritional composition of wild edible crucifer species. Journal of Food Biochemistry 23(3):283-294. https://doi.org/10.1111/j.1745-4514.1999.tb00020.x.
Hassan LG, Hassan SW, Hashim T, Umar KJ, Sani NA (2011). Determination of nutritive values of garden cress (Lepidium sativum L.) Leaves. Bayero Journal of Pure and Applied Sciences 4(2):18-23. https://doi.org/10.4314/bajopas.v4i2.4
Hoseini Nejad Z, Yoosefollahi M, Fazayeli H (2012). Nutritive value of five halophytes determined in Sistan Area. Iranian Journal of Animal Science 43(1):1-10. https://doi.org/10.22059/ijas.2012.24904
Hosseini NS, Sobhanardakani S, Cheraghi M, Lorestani B, Merrikhpour H (2020). Heavy metal concentrations in roadside plants (Achillea wilhelmsii and Cardaria draba) and soils along some highways in Hamedan, west of Iran. Environmental Science and Pollution Research 27:13301-13314. https://doi.org/10.1007/s11356-020-07874-6
Hosseini NS, Sobhanardakani S, Cheraghi M, Lorestani B, Merrikhpour H (2022). Expansive herbaceous species as bio tools for elements detection in the vicinity of major roads of Hamedan, Iran. International Journal of Environmental Science and Technology 19(3):1611-1624. https://doi.org/10.1007/s13762-021-03183-8
Husen A (2021). The harsh environment and resilient plants: an overview. In: Husen A (Eds). Harsh Environment and Plant Resilience, Springer, Cham, pp 2-14. https://doi.org/10.1007/978-3-030-65912-7_1.
Hussein HM (2016). Determination of phytochemical composition and ten elements content (Cd, Ca, Cr, Co, Fe, Pb, Mg, Mn, Ni, and Zn) of Cardaria draba by GC-MS, FT-IR and as techniques. International Journal of Pharma and Bio Sciences 7(3):1009-1017.
ISO 5984:2022 (2022). Animal feeding stuffs-determination of crude ash. International Organization for Standardization, Geneva, Switzerland.
Jabeen N (2020). Agricultural, economic and societal importance of Brassicaceae plants. In: Hasanuzzaman M (Ed). The Plant Family Brassicaceae. Springer, Singapore, pp 45-128. https://doi.org/10.1007/978-981-15-6345-4_2.
Jadhav PD, Girase CD, Kulkarni RD, Patwardhan AV, Unnithan UR (2024). Synthesis and properties of a bio-based plasticizer derived from fatty acid methyl ester of erucic acid. Journal of Polymers and the Environment 32:4371-4384. https://doi.org/10.1007/s10924-024-03231-7
Karthika KS, Philip PS, Neenu S (2020). Brassicaceae plants response and tolerance to nutrient deficiencies. In: Hasanuzzaman M (Ed). The plant family Brassicaceae biology and physiological responses to environmental stresses. Springer, Singapore, pp 337-362. https://doi.org/10.1007/978-981-15-6345-4_11
Kılıç DD, Sürmen B, Kutbay HG, Tuna EE (2019). Naturally distributed species Lepidium draba L. investigation of usability in phytoremediation method. European Journal of Science and Technology 17:491-499. https://doi.org/10.31590/ejosat.624424.
Kittani MM, Alousy YMA (2003). The effect of site and samples date collection on the nutritional content for pastoral plants in Ninevah and Namrood forests. Mesopotamia Journal of Agriculture 4(3):68-76.
Knutsen HK, Alexander J, Barregård L, Bignami M, Brüschweiler B, Ceccatelli S, …, Vleminckx C (2016). Erucic acid in feed and food. EFSA Journal 14(11):4593. https://doi.org/10.2903/j.efsa.2016.4593.
Kumar JS, Sharma B (2022). A review on neuropharmacological role of erucic acid: An omega-9 fatty acid from edible oils. Nutritional Neuroscience 25(5):1041-1055. https://doi.org/10.1080/1028415X.2020.1831262.
Kumar R, Sharma V, Kumar S (2024). Biotechnological tools for conservation and sustainable utilization of medicinal plants. In: Role of Science and Technology for Sustainable Future, Vol.1, Sustainable Development: A Primary Goal Singapore, Springer Nature Singapore, pp 303-319. https://doi.org/10.1007/978-981-97-0710-2_18
Malhotra U, Sontakke M (2023). Potential effect of pre-treatments on antinutritional and mineral composition of garden cress seed (Lepidium sativum). Preprint. Research Square. https://doi:10.21203/rs.3.rs-2650799/v1.
Mao X, Chen W, Huyan Z, Hussain Sherazi ST, Yu X (2020). Impact of linolenic acid on oxidative stability of rapeseed oils. Journal of Food Science and Technology 57(9):3184-3192.
Martinez S, Losada P, Franco I, Carballo J (2010). Protein, amino acid, ash and mineral contents in Brassica spp. grown in Northwest Spain. International Journal of Food Science and Technology 46:146-153. https://doi.org/10.1111/j.1365-2621.2010.02463.x.
Mohsenzadeh F, Rad AC (2012). Bioremediation of heavy metal pollution by nano-particles of Noaea mucronata. International Journal of Bioscience, Biochemistry and Bioinformatics 2(2):85.
Montaner C, Mallor C, Laguna S, Zufiaurre R (2023). Bioactive compounds, antioxidant activity, and mineral content of bróquil: A traditional crop of Brassica oleracea var. italica. Frontiers in Nutrition 9:e1006012. https://doi.org/10.3389/fnut.2022.1006012
Mulligan GA, Findlay JN (1974). The biology of Canadian weeds Cardaria draba, C. chalepensis, and C. pubescens. Canadian Journal of Plant Science 54(1):149-160. https://doi.org/10.4141/cjps74-024.
Muthai UK, Indieka AS, Muchugi A, Karori SM, Mng'omba S, Ky-Dembele C, Jamnadass R (2019). Quantitative variation of fatty acid composition in seed oil from baobab (Adansonia digitata L.) wild populations in sub-Sahara Africa. South African Journal of Botany 123:1-8. https://doi.org/10.1016/j.sajb.2019.01.026.
Ogbede SC, Saidu AN, Kabiru AY, Busari MB (2015). Nutrient and anti-nutrient compositions of Brassica oleracae var. capitata L. IOSR Journal of Pharmacy 5(3):19-25.
Özcan T (2014). Fatty acid composition of seed oils in some sand dune vegetation species from Turkey. Chemistry of Natural Compounds 50(5):699-703.
Pantola RC, Alam A (2014). Potential of Brassicaceae Burnett (Mustard family; Angiosperms) in phytoremediation of heavy metals. International Journal of Scientific Research in Environmental Sciences 2:120-138. http://dx.doi.org/10.12983/ijsres-2014-p0120-0138
Perez V, Chang ET (2014). Sodium-to-potassium ratio and blood pressure, hypertension, and related factors. Advances in Nutrition 5(6):712-741. https://doi.org/10.3945/an.114.006783
Pravst I (2014). Oleic acid and its potential health effects. In: Oleic acid: production, uses and potential health effects. Nova Science Publishers, Lynette Whelan Inc, pp 35-54.
Rabasco Álvarez AM, González Rodríguez ML (2000). Lipids in pharmaceutical and cosmetic preparations. Grasas y Aceites 51(1-2):74-96. https://doi.org/10.3989/gya.2000.v51.i1-2.409.
Raza A, Hafeez MB, Zahra N, Shaukat K, Umbreen S, Tabassum J, …, Hasanuzzaman M (2020). The Plant Family Brassicaceae: Introduction, Biology, and Importance. In: Hasanuzzaman M (Ed). Springer, Singapore pp 1-43. https://doi.org/10.1007/978-981-15-6345-4_1
Roshanak S, Alizadeh Behbahani B, Shahidi F, Tabatabaei Yazdi F, Vasiee AR, Norouzi N (2021). Evaluation of antioxidant potential and antimicrobial activity of Mocheh (Lepidium draba) extract in vitro. Iranian Food Science and Technology 17-24. https://doi.org/10.22067/ifstrj.v17i3.86954.
Saadellaoui W, Kahlaoui S, Hcini K, Haddada A, Sleimi N, Ascrizzi R, …, Stambouli-Essassi S (2024). Profiles of the headspace volatile organic and essential oil compounds from the Tunisian Cardaria draba (L.) Desv. and its leaf and stem epidermal micromorphology. Phyton-International Journal of Experimental Botany 93(4):725-744. https://doi.org/10.32604/phyton.2024.048110.
Sala-Vila A, Fleming J, Kris-Etherton P, Ros E (2022). Impact of α-linolenic acid, the vegetable ω-3 fatty acid, on cardio vascular disease and cognition. Advances in Nutrition 13(5):1584-1602. https://doi.org/10.1093/advances/nmac016.
Šamec D, Urlić B, Salopek-Sondi B (2019). Kale (Brassica oleracea var. acephala) as a superfood: Review of the scientific evidence behind the statement. Critical Reviews in Food Science and Nutrition 59(15):2411-2422. https://doi.org/10.1080/10408398.2018.1454400.
Santos-Silva J, Bessa RJB, Santos-Silva F (2002). Effect of genotype, feeding system and slaughter weight on the quality of light lambs: II. Fatty acid composition of meat. Livestock Production Science 77:187-194. https://doi.org/10.1016/S0301-6226(02)00059-3.
Sarikurkcu C, Targan S, Ozer MS, Tepe B (2017). Fatty acid composition, enzyme inhibitory, and antioxidant activities of the ethanol extracts of selected wild edible plants consumed as vegetables in the Aegean region of Turkey. International Journal of Food Properties 20(3):560-572. https://doi.org/10.1080/10942912.2016.1168837.
Sasoli MA, Abro R, Marghazani IB, Mughal GA, Reki MY, Khaskheli AK, …, Qadir A (2022). Identification and nutrients composition of different rangeland species (grasses, herbs, shrubs, and trees) grazed by small and large ruminants in Balochistan: Kharan region. Pure and Applied Biology 11(3):823-834. http://dx.doi.org/10.19045/bspab.2022.110083
Sat IG, Yildirim E, Turan M, Demirbas M (2013). Antioxidant and nutritional characteristics of garden cress (Lepidium sativum). Acta Scientiarum Polonorum Hortorum Cultus 12(4):173-179.
Schwingshackl L, Hoffmann G (2012). Monounsaturated fatty acids and risk of cardiovascular disease: synopsis of the evidence available from systematic reviews and meta-analyses. Nutrients 4:1989-2007. https://doi.org/10.3390/nu4121989.
Sobhan Ardakani S, Hosseini NS (2024). Evaluating the ability of Cardaria draba (L.) Desv. and Achillea wilhelmsii C. Koch as biomonitors and bioremediators of potentially toxic elements in the roadside environment. Journal of Natural Environment 77:61-76. https://doi.org/10.22059/jne.2023.353266.2511
Stambouli-Essassi S, Mejri F, Dhoueibi M, Mrabet Y, Harzallah-Skhiri F, Hosni K (2020). Anatomical features, fatty acid profile and tocopherol content of the Tunisian Cakile maritima subsp. maritima Scop. fruit. Journal of Animal and Plant Sciences 43(1):7366-7379. https://doi.org/10.35759/JAnmPlSci.v43-1.3
Sun X, wang W, paerhati M, song Z, Li J, Zhu J (2022). Phytochemical composition and nutritional characterization of qamgur (Brassica rapa L.) in different forms. Journal of Food Science and Technology, 42:e35722. https://doi.org/10.1590/fst.35722.
Targan Ş, Yelboğa EG, Cittan M (2018). Macro and trace element contents of some wild plants consumed as vegetable in Manisa district, Turkey. Journal of the Turkish Chemical Society Section A: Chemistry 5(2):751-762. http://doi.org/10.18596/jotcsa.363151
Tilami SK, Kouřimská L (2022). Assessment of the nutritional quality of plant lipids using atherogenicity and thrombogenicity indices. Nutrients 14(18):3795. https://doi.org/10.3390/nu14183795.
Tonguç M, Erbaş S (2012). Evaluation of fatty acid compositions and some seed characters of common wild plant species of Turkey. Turkish Journal of Agriculture and Forestry 36(6):673-679. http://doi.org/10.3906/tar-1201-22
Ulbrich TL, Southgate DA (1991). Coronary heart disease: seven dietary factors. Lancet 338 (8773):985-992. https://doi.org/10.1016/0140-6736(91)91846-M.
Vetter W, Darwisch V, Lehnert K (2020). Erucic acid in Brassicaceae and salmon-An evaluation of the new proposed limits of erucic acid in food. Nutrition and Food Science 19:9-15. https://doi.org/10.1016/j.nfs.2020.03.002.
Viladomiu M, Hontecillas R, Bassaganya-Riera J (2016). Modulation of inflammation and immunity by dietary conjugated linoleic acid. European Journal of Pharmacology 785:87-95. https://doi.org/10.1016/j.ejphar.2015.03.095
Wang P, Xiong X, Zhang X, Wu G, Liu F (2022). A review of erucic acid production in Brassicaceae oil seeds: Progress and prospects for the genetic engineering of high and low-erucic acid rape seeds (Brassica napus). Frontiers in Plant Science 13:e899076. https://doi.org/10.3389/fpls.2022.899076.
Windsor JB, Symonds VV, Mendenhall J, Lloyd AL (2000). Arabidopsis seed coat development: Morphological differentiation of the outer integument. Plant Journal 22:483-493. https://doi.org/10.1046/j.1365-313x.2000.00756.x.
World Health Organization (2007). WHO guidelines for assessing quality of herbal medicines with reference to contaminants and residues. Retrieved 2007 June 5th from: https://www.who.int/publications/i/item/9789241594448
Zaynab M, Al-Yahyai R, Ameen A, Sharif Y, Ali L, Fatima M, …, Li S (2022). Health and environmental effects of heavy metals. Journal of King Saud University-Science 34(1):101653. https://doi.org/10.1016/j.jksus.2021.101653.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Wissal SAADELLAOUI, Yassine MRABET, Mohamed Ali BENABDERRAHIM, Abir HADDADA, Nourhen HAMMAMI, Khaled NASRI, Abdelaziz SEBEI, Fethia HARZALLAH-SKHIRI, Karim HOSNI, Sondes STAMBOULI-ESSASSI

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.