The application of biosynthesized ZnO nanoparticles enhances the morphological and physiological indices of serrano pepper plants
DOI:
https://doi.org/10.15835/nbha53114103Keywords:
antioxidants, bioactive compounds, chili plants, plant physiologyAbstract
This research aimed to evaluate the effectiveness of the biosynthesized spherical zinc oxide nanoparticles (BZnONPs) applications on morphological and physiological indices of serrano pepper plants cv. ‘Chiser-522’. The treatments applied by foliar spray every 15 days from 20 days after transplantation consisted of 10, 20, 30, 40, and 50 ppm of BZnONPs and control (distilled water). A completely randomized design was used with six treatments and fifteen replicas per treatment. Morphological and physiological characteristics such as crop growth rate (CGR), net assimilation rate (NAR), leaf area index (LAI), photosynthetic pigments, and phytochemical compounds were evaluated. The results indicated that the plants treated with 30 and 40 ppm of BZnONPs had higher height, thicker stems, longer roots, and higher CGR, NAR, and LAI than control. Their amounts of photosynthetic pigments and antioxidant compounds were also increased compared to those of the other treatments. Therefore, we conclude that BZnONPs are promising technology that significantly influences chili pepper cultivation's physiological and morphological development at low-level exposures.
References
Abdelaziz AM, Salem SS, Khalil AMA, El-Wakil DA, Fouda HM, Hashem AH (2022). Potential of biosynthesized zinc oxide nanoparticles to control Fusarium wilt disease in eggplant (Solanum melongena) and promote plant growth. BioMetals 35(3):601-616. https://doi.org/10.1007/s10534-022-00391-8
Abdellatif YMR, Elsayed MS, Hassan MM, Ahmed IA, Ragab AH, Shams El-Din IM, … Zein El Din AFM (2022). Zinc oxide nanoparticles and fe-modified activated carbon affecting the in vitro growth of date palm plantlets cv. Medjool. Horticulturae 8(12):1179. https://doi.org/10.3390/horticulturae8121179
Agati G, Brunetti C, Fini A, Gori A, Guidi L, Landi M, Sebastiani F, Tattini M (2020). Are flavonoids effective antioxidants in plants? Twenty years of our investigation. Antioxidants 9(11):1-17. https://doi.org/10.3390/antiox9111098
Ahmed U, Rao MJ, Qi C, Xie Q, Noushahi HA, Yaseen M, Shi X, Zheng B (2021). Expression profiling of flavonoid biosynthesis genes and secondary metabolites accumulation in Populus under drought stress. Molecules 26(18):5546. https://doi.org/10.3390/molecules26185546
Akbar S, Tauseef I, Subhan F, Sultana N, Khan I, Ahmed U, Haleem KS (2020). An overview of the plant-mediated synthesis of zinc oxide nanoparticles and their antimicrobial potential. Inorganic and Nano-Metal Chemistry 50(4):257-271. https://doi.org/10.1080/24701556.2019.1711121
Al-dhalimi AM, Al-ajeel SAH (2020). Effect of plant regulators, zinc nanoparticles and irrigation intervals on leaf content of endogenous hormones and nutrients in sunflower (Helianthus annus L.). Plant Archives 20(1):2720-2725. https://plantarchives.org/SPECIAL%20ISSUE%2020-1/163__2720-2725_.pdf
Alsuwayyid AA, Alslimah AS, Perveen K, Bukhari NA, Al-Humaid LA (2022). Effect of zinc oxide nanoparticles on Triticum aestivum L. and bioaccumulation assessment using ICP-MS and SEM analysis. Journal of King Saud University - Science 34(4):101944. https://doi.org/10.1016/j.jksus.2022.101944
AL-Zuhairi OG, AL-Mahdawi MMI, Hammadi M (2020). The effect of adding zinc oxide sol-gel nano on the chemical characteristics of growing Capsicum frutescens plant in hydroponic system. Biochemical and Cellular Archives 19(2):3585-3589.
Asmat-Campos D, López-Medina E, Montes de Oca-Vásquez G, Gil-Rivero E, Delfín-Narciso D, Juárez-Cortijo L, … Rafael-Amaya R (2022). ZnO nanoparticles obtained by green synthesis as an alternative to improve the germination characteristics of L. esculentum. Molecules 27(7):1-13. https://doi.org/10.3390/molecules27072343
Benáková M, Ahmadi H, Dučaiová Z, Tylová E, Clemens S, Tůma J (2017). Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Environmental Science and Pollution Research 24(25):20705-20716. https://doi.org/10.1007/s11356-017-9697-7
Brand-Williams W, Cuvelier ME, Berset C (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
Burdett AN (1979). A nondestructive method for measuring the volume of intact plant parts. Canadian Journal of Forest Research 9(1):120-122. https://doi.org/10.1139/x79-021
Burman U, Saini M, Kumar P (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological & Environmental Chemistry 95(4):605-612. https://doi.org/10.1080/02772248.2013.803796
Cerqueira MÂ, Pinheiro AC, Ramos OL, Silva H, Bourbon AI, Vicente AA (2017). Advances in Food Nanotechnology. In: Emerging Nanotechnologies in Food Science. Elsevier Inc. https://doi.org/10.1016/B978-0-323-42980-1.00002-9
Chapepa B, Mudada N, Mapuranga R (2020). The impact of plant density and spatial arrangement on light interception on cotton crop and seed cotton yield: an overview. Journal of Cotton Research 3(1):1-6. https://doi.org/10.1186/s42397-020-00059-z
Chen J, Dou R, Yang Z, You T, Gao X, Wang L (2018). Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiology and Biochemistry 130:604-612. https://doi.org/10.1016/j.plaphy.2018.08.019
Chen J, Liu X, Wang C, Yin SS, Li XL, Hu WJ, … Zheng HL (2015). Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. Journal of Hazardous Materials 297:173-182. https://doi.org/10.1016/j.jhazmat.2015.04.077
ElsheeryNI, Helaly MN, El-Hoseiny HM, Alam-Eldein SM (2020). Zinc oxide and silicone nanoparticles to improve the resistance mechanism and annual productivity of salt-stressed mango trees. Agronomy 10(4):558 https://doi.org/10.3390/agronomy10040558
García-López JI, Lira-Saldivar RH, Zavala-García F, Olivares-Sáenz E, Niño-Medina G, Ruiz-Torres NA, Méndez-Argüello B, Díaz-Barriga E (2018). Effects of zinc oxide nanoparticles on growth and antioxidant enzymes of Capsicum chinense. Toxicological & Environmental Chemistry 100(5-7):560-572. https://doi.org/10.1080/02772248.2018.1550781
García-López JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldivar RH, Diaz Barriga-Castro E, Vázquez-Alvarado R, Rodríguez-Salinas PA, Zavala-García F (2019). Foliar Application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8(8):254. https://doi.org/10.3390/plants8080254
Gonmei G, Deb P, Kumar P, Sinha D, Halder A (2022). Zinc nutrition in banana (cv. Grand Naine) at early growth stage. International Journal of Plant & Soil Science 34(22):1648-1654. https://doi.org/10.9734/ijpss/2022/v34i2231544
Hareem M, Danish S, Pervez M, Irshad U, Fahad S, Dawar K, … Datta R (2024). Optimizing chili production in drought stress: combining Zn-quantum dot biochar and proline for improved growth and yield. Scientific Reports 14(1):6627. https://doi.org/10.1038/s41598-024-57204-w
Hernández-Pérez T, Gómez-García MdelR, Valverde ME, Paredes-López O (2020). Capsicum annuum (hot pepper): An ancient Latin-American crop with outstanding bioactive compounds and nutraceutical potential. A review. Comprehensive Reviews in Food Science and Food Safety 19(6):2972-2993. https://doi.org/10.1111/1541-4337.12634
Hussain F, Hadi F, Rongliang Q (2021). Effects of zinc oxide nanoparticles on antioxidants, chlorophyll contents, and proline in Persicaria hydropiper L. and its potential for Pb phytoremediation. Environmental Science and Pollution Research 28(26):34697-34713. https://doi.org/10.1007/s11356-021-13132-0
Ibrahim ABM, Mahmoud GA (2021). Chemical‐ vs sonochemical‐assisted synthesis of ZnO nanoparticles from a new zinc complex for improvement of carotene biosynthesis from Rhodotorula toruloides MH023518. Applied Organometallic Chemistry 35(2):1-13. https://doi.org/10.1002/aoc.6086
Jaithon T, Atichakaro T, Phonphoem W, T-Thienprasert J, Sreewongchai T, T-Thienprasert NP (2024). Potential usage of biosynthesized zinc oxide nanoparticles from mangosteen peel ethanol extract to inhibit Xanthomonas oryzae and promote rice growth. Heliyon 10(1):e24076. https://doi.org/10.1016/j.heliyon.2024.e24076
Javed R, Yucesan B, Zia M, Gurel E (2017). Elicitation of secondary metabolites in callus cultures of Stevia rebaudiana Bertoni grown under ZnO and CuO nanoparticles stress. Sugar Tech 20:194-201. https://doi.org/10.1007/s12355-017-0539-1
Kaur H, Garg N (2021). Zinc toxicity in plants: a review. Planta 253(6):129. https://link.springer.com/article/10.1007/s00425-021-03642-z
Khanema P, Srisuwan A, Manasathien J (2024). Effects of different plant parts and solvents on bioactive compounds and antioxidation in large fruit Bird’s eye chili (Capsicum annuum L. cv. Superhot). Food Research 8(2):209-218. https://doi.org/10.26656/fr.2017.8(2).621
Kloubert V, Rink L (2015). Zinc as a micronutrient and its preventive role of oxidative damage in cells. Food and Function 6(10):3195-3204. https://doi.org/10.1039/c5fo00630a
Lahbib K, Bnejdi F, Pandino G, Lombardo S, El-Gazzah M, El-Bok S, Dabbou S (2023). Changes in yield-related traits, phytochemical composition, and antioxidant activity of pepper (Capsicum annuum) depending on its variety, fruit position, and ripening stage. Foods 12(21):3948. https://doi.org/10.3390/foods12213948
Landi M, Zivcak M, Sytar O, Brestic M, Allakhverdiev SI (2020). Plasticity of photosynthetic processes and the accumulation of secondary metabolites in plants in response to monochromatic light environments: A review. Biochimica et Biophysica Acta - Bioenergetics 1861(2):148131. https://doi.org/10.1016/j.bbabio.2019.148131
Li Z, Guo D, Yin X, Ding S, Shen M, Zhang R, Wang Y, Xu R (2020). Zinc oxide nanoparticles induce human multiple myeloma cell death via reactive oxygen species and Cyt-C/Apaf-1/Caspase-9/Caspase-3 signaling pathway in vitro. Biomedicine and Pharmacotherapy 122:109712. https://doi.org/10.1016/j.biopha.2019.109712
Lichtenthaler HK (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology 148:350-382. https://doi.org/10.1016/0076-6879(87)48036-1
Magdaleno García G, Juárez Maldonado A, Betancourt Galindo R, González Morales S, Cabrera De La Fuente M, Sánchez Vega M, Mendez A (2023). Zinc oxide nanoparticle morphology modify germination and early growth of bell pepper seedlings. Biotecnia 25(3):5-15. https://doi.org/10.18633/biotecnia.v25i3.1908
Matinise N, Fuku X G, Kaviyarasu K, Mayedwa N, Maaza M (2017). ZnO nanoparticles via Moringa oleifera green synthesis: Physical properties & mechanism of formation. Applied Surface Science 406:339-347. https://doi.org/10.1016/j.apsusc.2017.01.219
Ministry of Agriculture and Rural Development (2023) (Secretaría de Agricultura y Desarrollo Rural) Mexican Ministry of Agriculture and Rular Development Press relise on 28 January 2024. Retrived 2024 December 11 from: https://www.gob.mx/agricultura/prensa/mexico-entre-los-principales-productores-de-chile-verde-en-el-mundo-agricultura?idiom=es
Nandal V, Solanki M (2021). The Zn as a vital micronutrient in plants. Journal of Microbiology, Biotechnology and Food Sciences 11(3):e4026. https://doi.org/10.15414/JMBFS.4026
Nile SH, Thiruvengadam M, Wang Y, Samynathan R, Shariati MA, Rebezov M, … Kai G (2022). Nano-priming as emerging seed priming technology for sustainable agriculture—recent developments and future perspectives. Journal of Nanobiotechnology 20:254. https://link.springer.com/article/10.1186/s12951-022-01423-8
Ogunyemi SO, Abdallah Y, Zhang M, Fouad H, Hong X, Ibrahim E, … Li B (2019). Green synthesis of zinc oxide nanoparticles using different plant extracts and their antibacterial activity against Xanthomonas oryzae pv. oryzae. Artificial Cells, Nanomedicine, and Biotechnology 47(1):341-352. https://doi.org/10.1080/21691401.2018.1557671
Orozco-Vidal JA, Ramírez-Torres R, Segura-Castruita MÁ, Yescas-Coronado P, Trejo-Valencia R, José Y, Vidal-Alamilla A (2016). Fuentes de nitrógeno en el crecimiento y producción de biomasa en maíz. [Nitrogen sources on growth and biomass production in maize]. Revista Mexicana de Ciencias Agrícolas 7:185-194.
Paramo LA, Feregrino-Pérez AA, Guevara R, Mendoza S, Esquivel K (2020). Nanoparticles in agroindustry: Applications, toxicity, challenges, and trends. Nanomaterials 10(9):1-33. https://doi.org/10.3390/nano10091654
Pejam F, Ardebili ZO, Ladan-Moghadam A, Danaee E (2021). Zinc oxide nanoparticles mediated substantial physiological and molecular changes in tomato. PLoS One 16(3 March):1-16. https://doi.org/10.1371/journal.pone.0248778
Puccinelli M, Rosellini I, Malorgio F, Pardossi A, Pezzarossa B (2023). Hydroponic production of selenium-enriched baby leaves of Swiss chard (Beta vulgaris var. cicla) and its wild ancestor sea beet (Beta vulgaris ssp. maritima). Horticulturae 9(8):909. https://doi.org/10.3390/horticulturae9080909
Rad SS, Sani AM, Mohseni S. (2019). Biosynthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from leaf extract of Mentha pulegium (L.). Microbial Pathogenesis 131(April):239-245. https://doi.org/10.1016/j.micpath.2019.04.022
Radford PJ (1967). Growth analysis formulae ‐ their use and abuse. Crop Science 7(3):171-175. https://doi.org/10.2135/cropsci1967.0011183X000700030001x
Rajput VD, Minkina T, Fedorenko A, Chernikova N, Hassan T, Mandzhieva S, … Burachevskaya M (2021). Effects of zinc oxide nanoparticles on physiological and anatomical indices in spring barley tissues. Nanomaterials 11(7):1722. https://doi.org/10.3390/nano11071722
Ramirez-Meraz M, Arcos-Cavazos G, Mendez-Aguilar R, Meneses-Marquez I (2019). Variedades e híbridos de chile para el trópico de México. [Varieties and hybrids of chili peppers for the tropics of Mexico.] In: Meza-Villalvazo VM, Chay-Canul AJ (Eds). Producción Agropecuaria: un enfoque integrado. Universidad del Papaloapan, and Loma Bonita Oaxaca, México, pp 29-38.
Ramírez-Seañez AR, Alfonso-García JM, Hernández-Hernández H, Palacios-Torres RE, Ramírez-Meraz M, Borroel-García VJ (2023). Fertilización potásica en líneas mejoradas y material criollo de chile soledad (Capsicum annuum L.) [Potassium fertilization in the improved lines and landrace material of chile soledad (Capsicum annuum L.).] Ecosistemas y Recursos Agropecuarios 10:e3884.
Roosta HR, Estaji A, Niknam F (2018). Effect of iron, zinc and manganese shortage-induced change on photosynthetic pigments, some osmoregulators and chlorophyll fluorescence parameters in lettuce. Photosynthetica 56(2):606-615. https://doi.org/10.1007/s11099-017-0696-1
Salama DM, Osman SA, Abd El-Aziz ME, Abd Elwahed MSA, Shaaban EA (2019). Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatalysis and Agricultural Biotechnology 18(March):101083. https://doi.org/10.1016/j.bcab.2019.101083
Salih AM, Al-Qurainy F, Khan S, Tarroum M, Nadeem M, Shaikhaldein HO, Gaafar ARZ, Alfarraj NS (2021). Biosynthesis of zinc oxide nanoparticles using Phoenix dactylifera and their effect on biomass and phytochemical compounds in Juniperus procera. Scientific Reports 11(1):1-12. https://doi.org/10.1038/s41598-021-98607-3
Sánchez-Pérez DM, Flores-Loyola E, Márquez-Guerrero SY, Galindo-Guzman M, Marszalek JE (2023a). Green synthesis and characterization of zinc oxide nanoparticles using Larrea tridentata extract and their impact on the in-vitro germination and seedling growth of Capsicum annuum. Sustainability 15(4):3080. https://doi.org/10.3390/su15043080
Sánchez-Pérez DM, Márquez-Guerrero SY, Ramírez-Moreno A, Rodríguez-Sifuentes L, Galindo-Guzmán M, Flores-Loyola E, Marszalek JE (2023b). Impact of biologically and chemically synthesized zinc oxide nanoparticles on seed germination and seedlings’ growth. Horticulturae 9(11):1-18. https://doi.org/10.3390/horticulturae9111201
Sathiyabama M (2019). Biopolymeric nanoparticles as a nanocide for crop protection. In: Pudake RN, Chauhan N, Kole C (Eds). Nanoscience for Sustainable Agriculture. Springer Nature Switzerland, 1st ed., pp 139-152. https://doi.org/10.1007/978-3-319-97852-9_6
Sayed EG, Desoukey SF, Desouky AF, Farag MF, EL-kholy RI, Azoz SN (2024). Synergistic influence of arbuscular mycorrhizal fungi inoculation with nanoparticle foliar application enhances chili (Capsicum annuum L.) antioxidant enzymes, anatomical characteristics, and productivity under cold-stress conditions. Plants 13(4):517 https://doi.org/10.3390/plants13040517
Sedano-Castro G, González-Hernández VA, Engleman EM, Villanueva-Verduzco C (2005). Dinámica del crecimiento y eficiencia fisiológica de la planta de calabacita. [Growth dynamics and physiological efficiency of the zucchini plant.] Revista Chapingo Serie Horticultura 11(2):291-297. https://doi.org/10.5154/r.rchsh.2002.08.047
Selim YA, Azb MA, Ragab I, Abd El-Azim MHM (2020). Green Synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Scientific Reports 10(1):1-9. https://doi.org/10.1038/s41598-020-60541-1
Sharma D, Afzal S, Singh NK (2021). Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. Journal of Biotechnology 336:64-75. https://doi.org/10.1016/j.jbiotec.2021.06.014
Sharma S, Rana VS, Pawar R, Lakra J, Racchapannavar VK (2021). Nanofertilizers for sustainable fruit production: a review. Environmental Chemistry Letters 19(2):1693-1714. https://doi.org/10.1007/s10311-020-01125-3
Singleton VL, Orthofer R, Lamuela-Raventós RM (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods in Enzymology 299:152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
Song U, Lee S (2016). Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites australis: leaf-type-dependent responses. Environmental Science and Pollution Research 23(9):8539-8545. https://doi.org/10.1007/s11356-015-5982-5
Sourati R, Sharifi P, Poorghasemi M, Alves Vieira E, Seidavi A, Anjum NA, Sehar Z, Sofo A (2022). Effects of naphthaleneacetic acid, indole-3-butyric acid and zinc sulfate on the rooting and growth of mulberry cuttings. International Journal of Plant Biology 13(3):245-256. https://doi.org/10.3390/ijpb13030021
Steiner AA (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant and Soil 15(2):134-154. https://doi.org/10.1007/BF01347224
Suganya A, Saravanan A, Manivannan N (2020). Role of zinc nutrition for increasing zinc availability, uptake, yield, and quality of maize (Zea mays L.) grains: an overview. Communications in Soil Science and Plant Analysis 51(15):2001-2021. https://www.tandfonline.com/doi/full/10.1080/00103624.2020.1820030
Sun L, Wang Y, Wang R, Wang R, Zhang P, Ju Q, Xu J (2020). Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environmental Science: Nano 7(11):3587-3604. https://doi.org/10.1039/D0EN00723D
Tariverdizadeh N, Mohebodini M, Chamani E, Ebadi A (2021). Iron and zinc oxide nanoparticles: An efficient elicitor to enhance trigonelline alkaloid production in hairy roots of fenugreek. Industrial Crops and Products 162(September 2020):113240. https://doi.org/10.1016/j.indcrop.2021.113240
Xiao Z, Lei H, Jin C, Pan H, Lian Y (2023). Relationship between the dynamic characteristics of tomato plant height and leaf area index with yield, under aerated drip irrigation and nitrogen application in greenhouses. Agronomy 13(1):116. https://doi.org/10.3390/agronomy13010116
Zhishen J, Mengcheng T, Jianming W (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry 64(4):555-559. https://doi.org/10.1016/S0308-8146(98)00102-2
Zoufan P, Baroonian M, Zargar B (2020). ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture. Environmental Science and Pollution Research 27(10):11066-11078. https://doi.org/10.1007/s11356-020-07735-2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Daniela M. SANCHEZ-PEREZ, Erika FLORES-LOYOLA, Jorge A. OROZCO-VIDAL, Pablo YESCAS-CORONADO, Rene I. RODRIGUEZ-BELTRAN, Cristo O. PUENTE-VALENZUELA, Jolanta E. MARSZALEK, Selenne Y. MARQUEZ-GUERRERO

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.