Moringa oleifera based silver nanoparticles: Synthesis and insecticidal toxicity against fall armyworm
DOI:
https://doi.org/10.15835/nbha52414066Keywords:
fall armyworm, green synthesis, Moringa, pest controlAbstract
The fall armyworm (Spodoptera frugiperda) is a major pest of several crops leading to significant yield losses. Developing effective and eco-friendly pest management strategies against fall armyworm (FAW) is crucial for sustainable agriculture. This study investigates the synthesis and evaluation of the insecticidal activity of silver nanoparticles based on an aqueous extract of Moringa oleifera leaves (MOL-AgNPs) against FAW. The synthesized MOL-AgNPs were characterized and confirmed using UV-Vis spectroscopy, Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR), and Scanning Electron Microscopy (SEM) imaging. Four concentrations (200, 300, 400, and 500 ppm) of MOL-AgNPs and a deionized water as blank control were tested against larval mortality of the last three larval instars of FAW by food dipping method. Results showed different concentrations of MOL-AgNPs exhibited significantly higher larvicidal activity (p<0.05). In the 4th instar, 67.5%, 82.5%, and 95% larval mortality were observed in MOL-AgNPs at 500 ppm after 24, 48, and 72 h of the larval exposure, respectively. Similarly in the 5th instar larvae, 72.5% (24 h), 83.75% (48 h), and 90% (72 h) mortality was observed after larval exposures to maximum concentration (500 ppm) of MOL-AgNPs. The 6th instar larvae showed 52.5% (24 h), 57.5% (48 h), and 85% (72 h) percentage mortality at 500 ppm. The MOL-AgNPs demonstrated high larvicidal activity which increased with the increase in concentrations of MOL-AgNPs and duration of exposure. The concentration levels with increased duration of exposure resulted in higher larval mortalities in all three larval instars. However, a more pronounced impact of larvicidal activity was observed on the 4th and 5th instars as compared to the 6th instar. The mortality rates recorded for both the concentration of the nanoparticles and the duration of exposure highlighted the potential of MOL-AgNPs as an eco-friendly and effective pest management strategy.
References
Abbas A, Ullah F, Hafeez M, Han X, Dara MZN, Gul H, Zhao CR (2022). Biological control of fall armyworm, Spodoptera frugiperda. Agronomy 12:2704. https://doi.org/10.3390/agronomy12112704.
Abdel-Rahman LH, Al-Farhan BS, Abou El-ezz D, Abd–El Sayed M, Zikry MM, Abu-Dief AM (2022). Green biogenic synthesis of silver nanoparticles using aqueous extract of Moringa oleifera: access to a powerful antimicrobial, anticancer, pesticidal and catalytic agents. Journal of Inorganic and Organometallic Polymers and Materials 32:1422-35. https://doi.org/10.1007/s10904-021-02186-9.
Ali MP, Haque SS, Hossain MM, Bari MN, Kabir MMM, Roy TK, . . . Krupnik TJ (2023). Development and demographic parameters of fall armyworm (Spodoptera frugiperda JE Smith) when feeding on rice (Oryza sativa). CABI Agriculture and Bioscience 4:1-14. https://doi.org/10.1186/s43170-023-00162-6.
Anjorin TS, Ikokoh P, Okolo S (2010). Mineral composition of Moringa oleifera leaves, pods and seeds from two regions in Abuja, Nigeria. International Journal of Agriculture and Biology 12:431-34. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20103153660.
Aouf D, Khane Y, Fenniche F, Albukhaty S, Sulaiman GM, Khane S, . . . Mohammed HA (2024). Biogenic silver nanoparticles of Moringa oleifera leaf extract: Characterization and photocatalytic application. Nanotechnology Reviews 13:1-17. https://doi.org/10.1515/ntrev-2024-0002.
Asha G, Rajeshwari V, Stephen G, Gurusamy S, Rachel DCJ (2022). Eco-friendly synthesis and characterization of cobalt oxide nanoparticles by sativum species and its photo-catalytic activity. Materials Today: Proceedings 48:486-93. https://doi.org/10.1016/j.matpr.2021.02.338.
Babendreier D, Koku Agboyi L, Beseh P, Osae M, Nboyine J, Ofori SE, . . . Kenis M (2020). The efficacy of alternative, environmentally friendly plant protection measures for control of fall armyworm, Spodoptera frugiperda, in maize. Insects 11:240. https://doi.org/10.3390/insects11040240.
Benelli G (2018). Mode of action of nanoparticles against insects. Environmental Science and Pollution Research 25: 12329-41. https://10.3390/insects11040240.
Bhatti Z, Mushtaque Ahmed A, Khatri I, Rattar Q, Rajput S, Tofique M, Younas H (2021). First report of morphometric identification of Spodoptera frugiperda JE Smith (Lepidoptera: Noctuidae) an invasive pest of maize in Southern Sindh, Pakistan. Asian Journal of Agriculture and Biology 1:1-8. https://10.35495/ajab.2020.03.169.
Carvalho IF, Erdmann LL, Machado LL, Rosa A, Zotti MJ, Neitzke CG (2018). Metabolic resistance in the fall armyworm: an overview. Journal of agricultural Sciences 10:426. https://10.5539/JAS.V10N12P426.
Chown S, Marais E, Terblanche J, Klok C, Lighton J, Blackburn T (2007). Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Functional Ecology 282-90. https://10.1111/j.1365-2435.2007.01245.x.
Chumark P, Khunawat P, Sanvarinda Y, Phornchirasilp S, Morales NP, Phivthong-Ngam L, . . . Klai-upsorn SP (2008). The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves. Journal of Ethnopharmacology 116:439-46. https://doi.org/10.1016/j.jep.2007.12.010.
Das S, Parida UK, Bindhani BK (2013). Green biosynthesis of silver nanoparticles using Moringa oleifera L. leaf. International Journal of Applied Nanotechnology 3:51-62.
El-Gaby M, Ammar Y, Drar A, Gad M (2022). Insecticidal bioefficacy screening of some chalcone and acetophenone hydrazone derivatives on Spodopetra frugiperda (Lepidoptera: Noctuidae). Current Chemistry Letters 11:263-68. https://10.5267/j.ccl.2022.4.003.
El-Samad LM, Bakr NR, Abouzid M, Shedid ES, Giesy JP, Khalifa SA, . . . Al Naggar Y (2024). Nanoparticles—mediated entomotoxicology: lessons from biologica. Ecotoxicology 33:305-24.
El-Samad LM, Bakr NR, El-Ashram S, Radwan EH, Aziz KKA, Hussein HK, . . . Hassan MA (2022). Silver nanoparticles instigate physiological, genotoxicity, and ultrastructural anomalies in midgut tissues of beetles. Chemico-Biological Interactions 367:110166. https://doi.org/10.1016/j.cbi.2022.110166.
Essien ER, Atasie VN, Okeafor AO, Nwude DO (2020). Biogenic synthesis of magnesium oxide nanoparticles using Manihot esculenta (Crantz) leaf extract. International Nano Letters 10:43-48. https://doi.org/10.1007/s40089-019-00290-w.
Fareed N, Nisa S, Bibi Y, Fareed A, Ahmed W, Sabir M, . . . Hussain M (2023). Green synthesized silver nanoparticles using carrot extract exhibited strong antibacterial activity against multidrug resistant bacteria. Journal of King Saud University-Science 35:102477. https://doi.org/10.1016/j.jksus.2022.102477.
Fatima S, Hussain M, Shafqat S, Malik MF, Abbas Z, Noureen N, Noor-ul-Ane (2016). Laboratory evaluation of different insecticides against hibiscus mealybug, Maconellicoccus hirsutus (Hemiptera: Pseudococcidae). Scientifica 9312013:1-7. https://doi.org/10.1155/2016/9312013.
Fonseca-Medrano M, Specht A, Silva FAM, Otanásio PN, Malaquias JV (2020). The population dynamics of three polyphagous owlet moths (Lepidoptera: Noctuidae) and the influence of meteorological factors and ENSO on them. Revista Brasileira de Entomologia 63:308-15. https://doi.org/10.1016/j.rbe.2019.07.004.
Gilal AA, Bashir L, Faheem M, Rajput A, Soomro JA, Kunbhar S, Sahito J (2020). First record of invasive fall armyworm (Spodoptera frugiperda (Smith)(Lepidoptera: Noctuidae)) in corn fields of Sindh, Pakistan. Pakistan Journal of Agricultural Research 33:247-52. http://dx.doi.org/10.17582/journal.pjar/2020/33.2.247.252.
Hafeez M, Ullah F, Khan MM, Li X, Zhang Z, Shah S, . . . Desneux N (2021). Metabolic-based insecticide resistance mechanism and ecofriendly approaches for controlling of beet armyworm Spodoptera exigua: a review. Environmental Science and Pollution Research 29:1746-62. https://doi.org/10.1007/s11356-021-16974-w.
Haq IU, Zhang K, Ali S, Majid M, Ashraf HJ, Khurshid A, . . . Al-Ghamdi AA (2022). Effectiveness of silicon on immature stages of the fall armyworm [Spodoptera frugiperda (J. E. Smith)]. Journal of King Saud University-Science 34:102152. https://doi.org/10.1016/j.jksus.2022.102152.
Higo Y, Sasaki M, Amano T (2022). Morphological characteristics to identify fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) from common polyphagous noctuid pests for all instar larvae in Japan. Applied Entomology and Zoology 57:263-74. https://doi.org/10.1007/s13355-022-00781-x.
Iqbal H, Jahan N, Ali S, Shahzad A, Iqbal R (2024). Formulation of Moringa oleifera nanobiopesticides and their evaluation against Tribolium castaneum and Rhyzopertha dominica. Journal of Plant Diseases and Protection 131:133-42. https://10.1007/s41348-023-00802-z.
Jaswal T, Gupta J (2023). A review on the toxicity of silver nanoparticles on human health. Materials Today: Proceedings 81:859-63. https://10.1016/j.matpr.2021.04.266.
Kannan M, Bojan N, Swaminathan J, Zicarelli G, Hemalatha D, Zhang Y, . . . Faggio C (2023). Nanopesticides in agricultural pest management and their environmental risks: a review. International Journal of Environmental Science and Technology 20:10507-32. https://doi.org/10.1007/s13762-023-04795-y.
Khan SA, Hussain M, Noureen N, Fatima S, Ane NU, Abbas Z (2015). Yield performance of turmeric varieties intercropped with mulberry plantations. American Eurasian Journal of Agricultural Environmental Science 15:2076-79. https://10.5829/idosi.aejaes.2015.15.10.10185.
Lalramnghaki HC, Lalramliana, Lalremsanga HT, Vanlalhlimpuia, Lalramchuani M, Vanramliana (2021). Susceptibility of the fall armyworm, Spodoptera frugiperda (JE Smith, 1797) (Lepidoptera: Noctuidae), to four species of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) from Mizoram, North-Eastern India. Egyptian Journal of Biological Pest Control 31:1-11. https://doi.org/10.1186/s41938-021-00453-y.
Lee H-J, Lee G, Jang NR, Yun JH, Song JY, Kim BS (2011). Biological synthesis of copper nanoparticles using plant extract. Nanotechnology 1:371-74. https://10.1002/jctb.4052.
Mehta B, Chhajlani M, Shrivastava B (2017). Green synthesis of silver nanoparticles and their characterization by XRD. In Journal of physics: conference series, 012050. IOP Publishing. https://10.1088/1742-6596/836/1/012050.
Mohammed GM, Hawar SN (2022). Green Biosynthesis of Silver Nanoparticles from Moringa oleifera leaves and its antimicrobial and cytotoxicity activities. International Journal of Biomaterials 2022. https://doi.org/10.1155/2022/4136641.
Montezano DG, Sosa-Gómez D, Specht A, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes Sd, . . . Hunt T (2018). Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. African Entomology 26:286-300. https://doi.org/10.4001/003.026.0286.
Murray I, Fogarty A (2019). Ecotoxicology of Nanoparticles. In: Suresh P and Lang Y (Eds). Toxicity of Nanomaterials. CRC Press: Boca Raton. https://doi.org/10.1201/9780429265471.
Muthukrishnan S, Bhakya S, Kumar TS, Rao M (2015). Biosynthesis, characterization and antibacterial effect of plant-mediated silver nanoparticles using Ceropegia thwaitesii–An endemic species. Industrial Crops and Products 63:119-24. https://doi.org/10.1016/j.indcrop.2014.10.022.
Nayak S, Bhat MP, Udayashankar A, Lakshmeesha T, Geetha N, and Jogaiah S (2020). Biosynthesis and characterization of Dillenia indica‐mediated silver nanoparticles and their biological activity. Applied Organometallic Chemistry 34:e5567. https://doi.org/10.1002/aoc.5567.
Neethu S, Midhun SJ, Sunil M, Soumya S, Radhakrishnan E, Jyothis M (2018). Efficient visible light induced synthesis of silver nanoparticles by Penicillium polonicum ARA 10 isolated from Chetomorpha antennina and its antibacterial efficacy against Salmonella enterica serovar Typhimurium. Journal of Photochemistry and Photobiology B: Biology 180:175-85. https://doi.org/10.1016/j.jphotobiol.2018.02.005.
Noruzi M (2015). Biosynthesis of gold nanoparticles using plant extracts. Bioprocess and Biosystems Engineering 38:1-14. https://10.3390/molecules26216389.
Pathipati UR, Kanuparthi PL (2021). Silver nanoparticles for insect control: Bioassays and mechanisms. In: Silver Nanomaterials for Agri-Food Applications. (Elsevier).
Pehlivan S, Atakan E (2022). First record of the fall armyworm, Spodoptera frugiperda (JE Smith, 1797)(Lepidoptera: Noctuidae) in Türkiye. Çukurova Tarım ve Gıda Bilimleri Dergisi 139-45. https://10.36846/CJAFS.2022.82.
Pimentel D (2009). Pest control in world agriculture. Agricultural Sciences 2:272-93. https://10.1088/1742-6596/836/1/012050.
Pittarate S, Rajula J, Rahman A, Vivekanandhan P, Thungrabeab M, Mekchay S, Krutmuang P (2021). Insecticidal effect of zinc oxide nanoparticles against Spodoptera frugiperda under laboratory conditions. Insects 12:1-11. https://10.3390/insects12111017.
Pop OL, Kerezsi AD, and Ciont C (2022). A comprehensive review of Moringa oleifera bioactive compounds—cytotoxicity evaluation and their encapsulation. Foods 11:3787. https://10.3390/foods11233787.
Premasudha P, Venkataramana M, Abirami M, Vanathi P, Krishna K, Rajendran R (2015). Biological synthesis and characterization of silver nanoparticles using Eclipta alba leaf extract and evaluation of its cytotoxic and antimicrobial potential. Bulletin of Materials Science 38:965-73. https://doi.org/10.1007/s12034-015-0945-5.
Qiu C, Zeng J, Tang Y, Gao Q, Xiao W, Lou Y (2023). The fall armyworm, Spodoptera frugiperda (lepidoptera: Noctuidae), influences Nilaparvata lugens population growth directly, by preying on its eggs, and indirectly, by inducing defenses in rice. International Journal of Molecular Sciences 24:8754. https://10.3390/ijms24108754.
Rajkumar V, Alaguchamy N (2022). Larvicidal activity of aqueous leaf extract and synthesized silver nanoparticles of Andrographis paniculata against Spodoptera frugiperda (Je Smith). International Journal of Zoology and Applied Biosciences 7:37-40. https://doi.org/10.55126/ijzab.2022.v07.i05.sp006.
Ramzan M, Abbas D, Bukhari FK, Mehmood S, Javed A, Abbas M, . . . Zaheer M (2021). Biology of fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) a new alien invasive Pest in Pakistan. International Journal of Pure and Applied Bioscience 9:186-91. https://10.18782/2582-2845.8654.
Ranganathan M, Narayanan M, Kumarasamy S (2022). Importance of metabolic enzymes and their role in insecticide resistance (Springer). https://doi.org/10.1007/978-981-16-3989-0_10.
Riaz S, Ishtiaq M, Khan FZA, Ali G, Mehmood MA, Zaman MSQ (2024). Occurrence of natural enemies in maize and the predatory potential of selected arthropods against fall armyworm in Multan, Pakistan. International Journal of Tropical Insect Science 1-11. https://10.1007/s42690-024-01227-3
Samanta S, Barman M, Thakur H, Chakraborty S, Upadhyaya G, Roy D, . . . Tarafdar J (2023). Evidence of population expansion and insecticide resistance mechanism in invasive fall armyworm (Spodoptera frugiperda). BMC Biotechnology 23:17. https://doi.org/10.1186/s12896-023-00786-6.
Sankar MV, Abideen S (2015). Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. International Journal of Nanomaterials and Biostructtures 5:32-39. https://doi.org/10.1016/j.jafr.2023.100687.
Santhoshkumar J, Kumar SV, Rajeshkumar S (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource-Efficient Technologies 3:459-65. https://doi.org/10.1016/j.reffit.2017.05.001.
Sathyavathi R, Krishna M, and Rao DN (2011). Biosynthesis of silver nanoparticles using Moringa oleifera leaf extract and its application to optical limiting. Journal of Nanoscience and Nanotechnology 11:2031-35. https://10.1166/jnn.2011.3581.
Schabes-Retchkiman P, Canizal G, Herrera-Becerra R, Zorrilla C, Liu H, Ascencio J (2006). Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Optical Materials 29:95-99. https://doi.org/10.1016/j.optmat.2006.03.014.
Shahen M, El-Wahsh H, Ramadan C, Hegazi M, Al-Sharkawi I, Seif A (2020). A comparison of the toxicity of calcium and sodium hypochlorite against Culex pipiens (Diptera: Culicidae) larvae. Journal of Environmental Science Current Research 3:1-21.
Shahzad K, Manzoor F (2021). Nanoformulations and their mode of action in insects: a review of biological interactions. Drug and Chemical Toxicology 44:1-11. https://10.1080/01480545.2018.1525393.
Shakour ZTA, Radwa H, Elshamy AI, El Gendy AE-NG, Wessjohann LA, Farag MA (2023). Dissection of Moringa oleifera leaf metabolome in context of its different extracts, origin and in relationship to its biological effects as analysed using molecular networking and chemometrics. Food Chemistry 399:133948. https://10.1016/j.foodchem.2022.133948.
Skendžić S, Zovko M, Živković IP, Lešić V, Lemić D (2021). The impact of climate change on agricultural insect pests. Insects 12:440. Https://10.3390/insects12050440.
Tahir AH, Tariq M, Shehzad M (2022). Management of fall armyworm of maize, Spodoptera frugiperda with green synthesis silver nanoparticles. Plant Protection 6:187-92. https://10.33804/pp.006.03.4294.
Toepfer S, Fallet P, Kajuga J, Bazagwira D, Mukundwa IP, Szalai M, Turlings TC (2021). Streamlining leaf damage rating scales for the fall armyworm on maize. Journal of Pest Science 94:1075-89. https://doi.org/10.1007/s10340-021-01359-2.
Tuncsoy B, Tuncsoy M (2023). Toxicological Effects of Nanomaterials in Terrestrial and Aquatic Insects. In: Handbook of Green and Sustainable Nanotechnology: Fundamentals, Developments and Applications. (Springer). https://doi.org/10.1007/978-3-030-69023-6_31-1.
van den Berg J, Britz C, du Plessis H (2021). Maize yield response to chemical control of Spodoptera frugiperda at different plant growth stages in South Africa. Agriculture 11:826. https://doi.org/10.3390/agriculture11090826.
Wāng Y, Han Y, Xu D-X (2024). Developmental impacts and toxicological hallmarks of silver nanoparticles across diverse biological models. Environmental Science and Ecotechnology 19:1-20. https://doi.org/10.1016/j.ese.2023.100325.
Widhayasa B, Darma E, Gendroyono H, Prasetyani E (2022). Detection of the fall armyworm Spodoptera frugiperda and its damage symptoms to maize in East Kalimantan, Indonesia. In: IOP Conference Series: Earth and Environmental Science, 012094. IOP Publishing. https://10.1088/1755-1315/1083/1/012094.
Xu L, Wang Y-Y, Huang J, Chen C-Y, Wang Z-X, Xie H (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics 10: 8996. https://10.7150/thno.45413.
Yousaf S, Rehman A, Masood M, Ali K, Suleman N (2022). Occurrence and molecular identification of an invasive rice strain of fall armyworm Spodoptera frugiperda (Lepidoptera: Noctuidae) from Sindh, Pakistan, using mitochondrial cytochrome c oxidase I gene sequences. Journal of Plant Diseases and Protection 129:71-78. https://doi.org/10.1007/s41348-021-00548-6.
Zheng W, Luo B, Hu X (2020). The determinants of farmers’ fertilizers and pesticides use behavior in China: An explanation based on label effect. Journal of Cleaner Production 272:123054. https://doi.org/10.1016/j.jclepro.2020.123054.
Zhu J-Y, Li L, Xiao K-R, He S-Q, Gui F-R (2021). Genomic and transcriptomic analysis reveals cuticular protein genes responding to different insecticides in fall armyworm Spodoptera frugiperda. Insects 12:997. https://10.3390/insects12110997.
Zia M, Gul S, Akhtar J, Haq Iu, Abbasi BH, Hussain A, . . . Chaudhary MF (2017). Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities. IET Nanobiotechnology 11:193-99. https://10.1049/iet-nbt.2015.0099.
Zuhrotun A, Oktaviani DJ, Hasanah AN (2023). Biosynthesis of gold and silver nanoparticles using phytochemical compounds. Molecules 28:3240. https://10.3390/molecules28073240.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Aqsa NOREEN, Mubashar HUSSAIN, Muhammad F. MALIK, Aniza IFTIKHAR, Uswa ZEB, Abid FARID, Abdullah A. ALARFAJ, Mohammad J. ANSARI

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.