Enhancing drought tolerance in okra through melatonin application: A comprehensive study of physiological, biochemical and metabolic responses
DOI:
https://doi.org/10.15835/nbha52414055Keywords:
drought, okra, melatonin, metabolitesAbstract
As climate change intensifies, drought stress presents a critical challenge for horticultural crops like okra (Abelmoschus esculentus). The effectiveness of melatonin in reducing drought stress is investigated in this study. The treatments include: Absolute control (fully irrigated), control (drought), drought and seed treatment with 100 µM melatonin, drought and foliar spray of 100 µM melatonin, and drought stress with combined effect of seed treatment and foliar spray of 100 µM melatonin. Physiological parameters such as photosynthetic rate, stomatal conductance, transpiration rate, Fv/Fm ratio, and chlorophyll index were evaluated, alongside biochemical parameters including malondialdehyde, proline content, membrane stability index and antioxidant enzyme activities such as catalase and ascorbate peroxidase were quantified. Melatonin supplemented as seed treatment and foliar spray enhanced both physiological and biochemical parameters including antioxidant activity compared to drought control. Metabolite profiling identified bioactive compounds (mainly carbohydrates and amino acids) contributing to drought tolerance in okra. The results highlight that application of 100 µM melatonin via seed treatment and foliar spray enhances drought tolerance in okra, suggesting its potential to enhance crop resilience under water-deficit conditions.
References
Abid M, Ali S, Qi LK, Zahoor R, Tian Z, Jiang D, Snider JL, Dai T (2018). Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Scientific Reports 8(1):4615. https://doi.org/10.1038/s41598-018-21441-7
Ahmad S, Kamran M, Ding R, Meng X, Wang H, Ahmad I, Fahad S, Han Q (2019). Exogenous melatonin confers drought stress by promoting plant growth, photosynthetic capacity and antioxidant defense system of maize seedlings. PeerJ 11:e7793. https://doi.org/10.7717/peerj.7793
Altaf MA, Shahid R, Ren MX, Naz S, Altaf MM, Khan LU, … Nawaz MA (2022). Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants 11(2):309. https://doi.org/10.3390/antiox11020309
Arnao MB, Hernández-Ruiz J (2019). Melatonin: a new plant hormone and/or a plant master regulator? Trends in Plant Science 24(1):38-48. https://doi.org/10.1016/j.tplants.2018.10.010
Atkin OK, Macherel D (2009). The crucial role of plant mitochondria in orchestrating drought tolerance. Annals of Botany 103(4):581-97. https://doi.org/10.1093/aob/mcn094
Ayub Q, Hussain I Naveed K Ali, Mehmood SA, Khan MJ, Haq NU, Shehzad Q (2021). Responses of different okra (Abelmoschus esculentus) cultivars to water deficit conditions. Journal of Horticultural Science 16(1):53-63. https://doi.org/10.24154/JHS.2021.v16i01.006
Bai Y, Xiao S, Zhang Z, Zhang Y, Sun H, Zhang K, ... Liu L (2020). Melatonin improves the germination rate of cotton seeds under drought stress by opening pores in the seed coat. PeerJ 8:e9450 https://doi.org/10.7717/peerj.9450
Bates LS, Waldren RP, Teare ID (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39:205-207. https://doi.org/10.1007/BF00018060
Bulgari R, Franzoni G, Ferrante A (2019) Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9(6):306. https://doi.org/10.3390/agronomy9060306
Cakmak I, Marschner H (1992). Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiology 98(4):1222-7. https://doi.org/10.1104/pp.98.4.1222
Campos CN, Ávila RG, de Souza KR, Azevedo LM, Alves JD (2019). Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants. Agricultural Water Management 211:37-47. https://doi.org/10.1016/j.agwat.2018.09.025
Chen Q, Qi WB, Reiter RJ, Wei W, Wang BM (2009). Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. Journal of Plant Physiology 166(3):324-328. https://doi.org/10.1016/j.jplph.2008.06.002
Chen Y, Li R, Ge J, Liu J, Wang W, Xu M, … Dai Q (2021). Exogenous melatonin confers enhanced salinity tolerance in rice by blocking the ROS burst and improving Na+/K+ homeostasis, Environment and Experimental Botany 189:104530. https://doi.org/10.1016/j.envexpbot.2021.104530
Cherono S, Ntini C, Wassie M, Mollah MD, Belal MA, Ogutu C, Han Y (2021). Exogenous application of melatonin improves drought tolerance in coffee by regulating photosynthetic efficiency and oxidative damage. Journal of the American Society for Horticultural Science 146(1):24-32. https://doi.org/10.21273/JASHS04964-20
Cui G, Zhao X, Liu S, Sun F, Zhang C, Xi Y (2017). Beneficial effects of melatonin in overcoming drought stress in wheat seedlings. Plant Physiology and Biochemistry 118:138-49. https://doi.org/10.1016/j.plaphy.2017.06.014
Dai L, Li J, Harmens H, Zheng X, Zhang C (2020). Melatonin enhances drought resistance by regulating leaf stomatal behaviour, root growth and catalase activity in two contrasting rapeseed (Brassica napus L.) genotypes. Plant Physiology and Biochemistry 149:86-95. https://doi.org/10.1016/j.plaphy.2020.01.039
Dawood MG, Sadak MS (2007). Physiological response of canola plants (Brassica napus L.) to tryptophan or benzyladenine. Lucrari Stiintifice 50(9):198-207.
Dhankher OP, Foyer CH (2018). Climate resilient crops for improving global food security and safety. Plant Cell and Environment 41(5):877-884. https://doi.org/10.1111/pce.13207
Ding F, Wang G, Wang M, Zhang S (2018). Exogenous melatonin improves tolerance to water deficit by promoting cuticle formation in tomato plants. Molecules 23(7):1605. https://doi.org/10.3390/molecules23071605
Dubbels R, Reiter RJ, Klenke E, Goebel A, Schnakenberg E, Ehlers C, Schiwara HW, Schloot W (1995). Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography‐mass spectrometry, Journal of pineal Research 18(1):28-31. https://doi.org/10.1111/j.1600-079X.1995.tb00136.x
Fàbregas N, Fernie AR (2019). The metabolic response to drought. Journal of Experimental Botany 70(4):1077-85. https://doi.org/10.1093/jxb/ery437
Gao W, Feng Z, Bai Q, He J, Wang Y (2019). Melatonin-mediated regulation of growth and antioxidant capacity in salt-tolerant naked oat under salt stress. International journal of Molecular Sciences 20(5):1176. https://doi.org/10.3390/ijms20051176
Gao W, Zhang Y, Feng Z, Bai Q, He J, Wang Y (2018). Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules 23(7):1580. https://doi.org/10.3390/molecules23071580
Gemede HF, Ratta N Haki GD Woldegiorgis AZ Beyene F (2015). Nutritional quality and health benefits of okra (Abelmoschus esculentus): A review. Journal of Food Processing and Technology 6(458):2. https://doi.org/10.4172/2157-7110.1000458
Gogoi A, Tripathi B (2019). India's land area under drought worsening farm distress in election year. https://www.indiaspend.com/
González L, González-Vilar M (2001). Determination of relative water content. In Handbook of plant ecophysiology techniques. Dordrecht: Springer Netherlands pp 207-212.
Hodges DM, DeLong JM, Forney CF, Prange RK (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207:604-11. https://doi.org/10.1007/s004250050524
Huang B, Chen YE, Zhao YQ, Ding CB, Liao JQ, Hu C, Zhou LJ, Zhang ZW, Yuan S, Yuan M (2019). Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Frontiers in Plant Science 10:677. https://doi.org/10.3389/fpls.2019.00677
Imran M, Aaqil Khan M, Shahzad R, Bilal S, Khan M, Yun BW, Khan AL, Lee IJ (2021). Melatonin ameliorates thermotolerance in soybean seedling through balancing redox homeostasis and modulating antioxidant defense, phytohormones and polyamines biosynthesis. Molecules 26(17):5116. https://doi.org/10.3390/molecules26175116
Indiastat (2023). Area, production and productivity of okra in India (1987-1988 and 1991-1992 to 2023-2024- 2nd advance estimates). https://www.indiastat.com/table/agriculture/area-production-productivity-okra-india
Jahan MS, Guo S, Baloch AR, Sun J, Shu S, Wang Y, Ahammed GJ, Kabir K, Roy R (2020). Melatonin alleviates nickel phytotoxicity by improving photosynthesis, secondary metabolism and oxidative stress tolerance in tomato seedlings. Ecotoxicology and Environmental Safety 197:110593. https://doi.org/10.1016/j.ecoenv.2020.110593
Jorge TF, António C (2018). Plant metabolomics in a changing world: metabolite responses to abiotic stress combinations. Plant Abiotic Stress Responses and Climate Change, InTech Open Science, New York, 111-132.
Karaca P, Cekic FÖ (2019). Exogenous melatonin-stimulated defense responses in tomato plants treated with polyethylene glycol. International Journal of Vegetable Science 25(6):601-9. https://doi.org/10.1080/19315260.2019.1575317
Khan Z, Jan R, Asif S, Farooq M, Jang YH, Kim EG, Kim N, Kim KM (2024). Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system. Scientific Reports 14(1):1214. https://doi.org/10.1038/s41598-024-51369-0
Kuppusamy A, Alagarswamy S, Karuppusami KM, Maduraimuthu D, Natesan S, Ramalingam K, Muniyappan U, Subramanian M, and Kanagarajan S (2023) Melatonin enhances the photosynthesis and antioxidant enzyme activities of mung bean under drought and high-temperature stress conditions. Plants 12(13):2535. https://doi.org/10.3390/plants12132535
Lee H, Calvin K, Dasgupta D, Krinner G, Mukherji A, Thorne P, Trisos C, Romero J, Aldunce P, Barret K, Blanco G, Park Y (2023). IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.
Li H, Chang J, Chen H, Wang Z, Gu X, Wei C, Zhang Y, Ma J, Yang J, Zhang X, (2017). Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in Plant Science 8: 295. https://doi.org/10.3389/fpls.2017.00295
Li J, Zeng L, Cheng Y, Lu G, Fu G, Ma H, Liu Q, Zhang X, Zou X, Li C (2018). Exogenous melatonin alleviates damage from drought stress in Brassica napus L.(rapeseed) seedlings. Acta Physiologiae Plantarum 40:1-1. https://doi.org/10.1007/s11738-017-2601-8
Li Z, Su X, Chen Y, Fan X, He L, Guo J, Wang Y, Yang Q (2021). Melatonin improves drought resistance in maize seedlings by enhancing the antioxidant system and regulating abscisic acid metabolism to maintain stomatal opening under PEG-induced drought. Journal of Plant Biology 64:299-312. https://doi.org/10.1007/s12374-021-09297-3
Liang B, Ma C, Zhang Z, Wei Z, Gao T, Zhao Q, Ma F, Li C (2018). Long-term exogenous application of melatonin improves nutrient uptake fluxes in apple plants under moderate drought stress. Environmental and Experimental Botany 155:650-61. https://doi.org/10.1016/j.envexpbot.2018.08.016
Liang G, Liu J, Zhang J, Guo J (2020). Effects of drought stress on photosynthetic and physiological parameters of tomato. Journal of the American Society for Horticultural Science 145(1):12-7. https://doi.org/10.21273/JASHS04725-19
Liu D, Wu L, Naeem MS, Liu H, Deng X, Xu L, Zhang F, Zhou W (2013). 5-Aminolevulinic acid enhances photosynthetic gas exchange, chlorophyll fluorescence and antioxidant system in oilseed rape under drought stress. Acta Physiologiae Plantarum 35:2747-59. https://doi.org/10.1007/s11738-013-1307-9
Marthandan V, Geetha R, Kumutha K, Renganathan VG, Karthikeyan A, Ramalingam J (2020). Seed priming: a feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences 21(21):8258. https://doi.org/10.3390/ijms21218258
Mathur S, Tomar RS, Jajoo A (2019). Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynthesis Research 139:227-38. https://doi.org/10.1007/s11120-018-0538-4
Mbagwu JSC, Adesipe FA. (1987). Response of three okra (Abelmoschus esculentus L. Moench) cultivars to irrigation at specific growth stages. Scientia Horticulturae 31(1-2):35-43. https://doi.org/10.1016/0304-4238(87)90104-X
Meloni DA, Oliva MA, Martinez CA, Cambraia J (2003). Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany 49(1):69-76. https://doi.org/10.1016/S0098-8472(02)00058-8
Meng JF, Xu TF, Wang ZZ, Fang YL, Xi ZM, Zhang ZW (2014). The ameliorative effects of exogenous melatonin on grape cuttings under water‐deficient stress: antioxidant metabolites, leaf anatomy, and chloroplast morphology. Journal of Pineal Research 57(2):200-212. https://doi.org/10.1111/jpi.12159
Mkhabela SS, Shimelis H A.S. Gerrano AS Mashilo J (2023). Drought tolerance assessment of okra (Abelmoschus esculentus [l.] moench) accessions based on leaf gas exchange and chlorophyll fluorescence. Life 13(3):682. https://doi.org/10.3390/life13030682
Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22(5):867-880.
Nalina M, Saroja S, Chakravarthi M, Rajkumar R, Radhakrishnan B, Chandrashekara KN (2021). Water deficit-induced oxidative stress and differential response in antioxidant enzymes of tolerant and susceptible tea cultivars under field condition. Acta Physiologiae Plantarum 43:1-7. https://doi.org/10.1007/s11738-020-03174-1
Oliveira-Spolaor B, Chiari-Bertoli S, Silva-Sukert D, Sala HR, Picoli de Oliveira BF, de Freitas ÍR, Lima-Moro A (2022). Exogenous melatonin induces tolerance to drought stress damage in seedlings and soybean plants. Chilean Journal of Agricultural Research 82(4):515-26. https://doi.org/10.4067/S0718-58392022000400515
Premachandra GS, Saneoka H, Kanaya M, Ogata S (1991). Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize. Journal of Experimental Botany 42(2):167-71. https://doi.org/10.1093/jxb/42.2.167
Rai VK (2002). Role of amino acids in plant responses to stresses. Biologia Plantarum 45(4):481-487. https://doi.org/10.1023/A:1022308229759
Raza A, Mubarik MS, Sharif R, Habib M, Jabeen W, Zhang C, … Varshney RK (2023). Developing drought‐smart, ready‐to‐grow future crops. The Plant Genome 16(1):e20279. https://doi.org/10.1002/tpg2.20279
Razi K, Muneer S (2021). Drought stress-induced physiological mechanisms, signaling pathways and molecular response of chloroplasts in common vegetable crops, Critical Reviews in Biotechnology 41(5):669-691. https://doi.org/10.1080/07388551.2021.1874280.
Reyes F, Gosme M, Wolz, KJ, Lecomte I, Dupraz C (2021). Alley cropping mitigates the impacts of climate change on a wheat crop in a Mediterranean environment: a biophysical model-based assessment. Agriculture 11(4):356. https://doi.org/10.3390/agriculture11040356
Sairam RK (1994). Effect of moisture-stress on physiological activities of two contrasting wheat genotypes. Indian Journal of Experimental Biology 32(7):594-597.
Sharma A, Shahzad B, Rehman A, Bhardwaj R, Landi M, Zheng B (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24(13):2452. https://doi.org/10.3390/molecules24132452
Sharma A, Wang J, Xu D, Tao S, Chong S, Yan D, Li Z, Yuan H, Zheng B (2020). Melatonin regulates the functional components of photosynthesis, antioxidant system, gene expression, and metabolic pathways to induce drought resistance in grafted Carya cathayensis plants. Science of the Total Environment 713:136675. https://doi.org/10.1016/j.scitotenv.2020.136675
Sheshadri SA, Nishanth MJ, Yamine V, Simon B (2018). Effect of Melatonin on the stability and expression of reference genes in Catharanthus roseus. Scientific Reports 8(1):2222. https://doi.org/10.1038/s41598-018-20474-2.
Silva S, Santos C, Serodio J, Silva AM, Dias MC (2018). Physiological performance of drought-stressed olive plants when exposed to a combined heat–UV-B shock and after stress relief. Functional Plant Biology 45(12):1233-40. https://doi.org/10.1071/FP18026
Sun YD, Guo DL, Yang SD, Zhang HC, Wang LL, Yu YH, (2020). Melatonin treatment improves the shelf-life and postharvest quality of table grape (Vitis labrusca L. cv. ‘Fengzao’). Journal of Berry Research 10(4):665-676. https://doi.org/10.3233/JBR-200569
Talaat IM, Bekheta MA, Mahgoub MH (2005). Physiological response of periwinkle plants (Catharanthus roseus L.) to tryptophan and putrescine. International Journal of Agriculture Biology 7(2):210-213.
Talaat NB (2015). Effective microorganisms improve growth performance and modulate the ROS-scavenging system in common bean (Phaseolus vulgaris L.) plants exposed to salinity stress. Journal of Plant Growth Regulation 34:35-46. https://doi.org/10.1007/s00344-014-9440-2
Talaat NB (2023). Role of phytohormones in regulating abiotic stresses in wheat. In Abiotic Stresses in Wheat. Academic Press 111-130.
Turk H, Erdal S, Genisel M, Atici O, Demir Y, Yanmis D (2014). The regulatory effect of melatonin on physiological, biochemical and molecular parameters in cold-stressed wheat seedlings. Plant Growth Regulation 74:139-52. https://doi.org/10.1007/s10725-014-9905-0
Velavan M (2023). Response and defense mechanism of vegetables. Advances in horticulture and allied sciences. Advances in Horticulture and Allied Sciences 9(1):45-52.
Velikova V, Tsonev T, Tattini M, Arena C, Krumova S, Koleva D, Peeva V, Stojchev S, Todinova S, Izzo LG, Brunetti C (2018). Physiological and structural adjustments of two ecotypes of Platanus orientalis L. from different habitats in response to drought and re-watering. Conservation Physiology 6(1):coy073. https://doi.org/10.1093/conphys/coy073
Wang F, Wan C, Wu W, Yang S, Chen X (2024). Exogenous melatonin (MT) enhances salt tolerance of okra (Abelmoschus esculentus L.) plants by regulating proline, photosynthesis, ion homeostasis and ROS pathways. Vegetos 37(1):224-38. https://doi.org/10.1007/s42535-023-00568-7
Wang K, Xing Q, Ahammed GJ, Zhou J (2022). Functions and prospects of melatonin in plant growth, yield, and quality. Journal of Experimental Botany 73(17):5928-5946. https://doi.org/10.1093/jxb/erac233
Wang Y, Wang J, Guo H, Wu X, Hao M, Zhang R (2023). Integrative transcriptome and metabolome analysis reveals the mechanism of exogenous melatonin alleviating drought stress in maize roots. Plant Physiology and Biochemistry 199:107723.
Yamada Y, Kakibuchi K, Kozuki A, Ishida Y, Izumori K, Tajima S, Akimitsu K, Ohkouchi T, Kasai F (2014). Effects of the rare sugars D-psicose and D-tagatose on the sugar content and incidence of blossom end rot in tomato grown hydroponically with salinity treatment. Environmental Control in Biology 52(3):155-60. https://doi.org/10.2525/ecb.52.155
Yang SJ, Huang B, Zhao YQ, Hu D, Chen T, Ding CB, Chen YE, Yuan S, Yuan M (2021). Melatonin enhanced the tolerance of Arabidopsis thaliana to high light through improving anti-oxidative system and photosynthesis. Frontiers in Plant Science 12:752584. https://doi.org/10.3389/fpls.2021.752584
Ye J, Wang S, Deng X, Yin L, Xiong B, Wang X (2016). Melatonin increased maize (Zea mays L.) seedling drought tolerance by alleviating drought-induced photosynthetic inhibition and oxidative damage. Acta Physiologiae Plantarum 38(2):48. https://doi.org/10.1007/s11738-015-2045-y
Zhang N, Zhang HJ, Sun QQ, Cao YY, Li X, Zhao B, Wu P, Guo YD (2017). Proteomic analysis reveals a role of melatonin in promoting cucumber seed germination under high salinity by regulating energy production, Scientific Reports 7(1): 503. https://doi.org/10.1038/s41598-017-00566-1
Zhang Q, Gao F, Zhang S, Sun W, Li Z (2019). Prophylactic use of exogenous melatonin and melatonin receptor agonists to improve sleep and delirium in the intensive care units: a systematic review and meta-analysis of randomized controlled trials. Sleep and Breathing 23:1059-70. https://doi.org/10.1007/s11325-019-01831-5
Zhao C, Guo H, Wang J, Wang Y, Zhang R (2021). Melatonin enhances drought tolerance by regulating leaf stomatal behavior, carbon and nitrogen metabolism, and related gene expression in maize plants. Frontiers in Plant Science 12:779382. https://doi.org/10.3389/fpls.2021.779382
Zhong C, Cao X, Bai Z, Zhang J, Zhu L, Huang J, Jin Q (2018). Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.). Plant Physiology and Biochemistry 125:52-62. https://doi.org/10.1016/j.plaphy.2018.01.024
Zhou R, Kan X, Chen J, Hua H, Li Y, Ren J, Feng K, Liu H, Deng D, Yin Z (2019). Drought-induced changes in photosynthetic electron transport in maize probed by prompt fluorescence, delayed fluorescence, P700 and cyclic electron flow signals. Environmental and Experimental Botany 158:51-62. https://doi.org/10.1016/j.envexpbot.2018.11.005

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Aswathi GOPAL, Ravichandran VEERASAMY, Vijayalakshmi DHASHNAMURTHI, Senthil ALAGARSAMY, Arul LOGANATHAN, Radhamani SENGODAN, Jagadeeswaran RAMASAMY, Pitchaimuthu MOTTAIYAN

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.