Exploring the effects of the assisted transfer of European beech (Fagus sylvatica L.) provenances in the Romanian Carpathians
DOI:
https://doi.org/10.15835/nbha52313968Keywords:
assisted transfer, ecodistances, forest, growth and stability performances, provenance trialsAbstract
The genetic inheritance of a tree species is fully expressed in the phenotype only when its ecological requirements are accomplished. Therefore, genetic tests provide the opportunity to simulate the change in the environment and determine the most suitable site conditions for specific populations. In light of the unpredictable climate conditions resulting from rapid environmental changes, the current study investigated possible signs of adaptation and productivity of European beech in the Romanian Carpathian region. For this purpose, the tree growth and stability performances, as well as the transfer effect, were examined in 17 international beech provenances tested in two different environments for 27 years. Growth and stability performances were evaluated using tree height (Th), breast height diameter (DBH), and survival (S). In the case of the transfer analyses, the ecodistance approach was applied. According to the results, the average of S was 13% higher in the Carbunari provenance trial, and DBH was higher in the Sacele trial by 15%, while no noticeable differences were registered for Th. The best-performing provenances were those originating from similar site conditions to the Romanian test sites, and the transfer function detected the sensitivity of beech provenances to increasing temperature. The general transfer response of provenances revealed a similar performance across sites and suggested that provenances exhibited adaptation and acclimation to the test environments from Romanian Carpathians.
References
Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis‐McLane S (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications 1(1):95-111. https://doi.org/10.1111/j.1752-4571.2007.00013.x
Anonymous (2004). Management planning of production unit IV Dumbravita, forest district Baia Sprie.
Anonymous (2024). Management planning of production unit II Tigai, forest district B.E. Sacele.
B4EST (2024). Adaptive BREEDING for productive, sustainable and resilient FORESTs under climate change. Retrieved 2024 April 10 from https://b4est.eu/
Benito-Garzon M, Ha-Duong M, Frascaria-Lacoste N, Fernandez-Manharres F (2013). Extreme climate variability should be considered in forestry-assisted migration. BioScience 63(5):317-317. https://doi.org/10.1525/bio.2013.63.5.20
Benito Garzón M, Robson TM, Hampe A (2019). ΔTrait SDMs: species distribution models that account for local adaptation and phenotypic plasticity. New Phytologist 222(4):1757-1765. https://doi.org/10.1111/nph.15716
Besliu E, Curtu AL, Apostol EN, Budeanu, M (2024). Using adapted and productive European beech (Fagus sylvatica L.) provenances as future solutions for sustainable forest management in Romania. Land 13(2):183. https://doi.org/10.3390/land13020183
Biriş IA (2014). Făgetele primare din România, o contribuţie la Patrimoniul Mondial UNESCO [The old-growth beech forests from Romania, a contribution to UNESCO World Heritage]. Bucovina Forestieră 14(1):77-85.
Bradshaw AD (1965). Evolutionary Significance of Phenotypic Plasticity in Plants. In: EW Caspari, JM (Eds). Advances in Genetics. Academic Press, pp 115-155.
Bradshaw AD (2006). Unravelling phenotypic plasticity–why should we bother? New Phytologist 170(4):644-648. https://doi.org/10.1111/j.1469-8137.2006.01761.x
Budeanu M, Petritan AM, Popescu F, Vasile D, Tudose NC (2016). The Resistance of European Beech (Fagus sylvatica) from the Eastern Natural Limit of Species to Climate Change. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 44(2):625-633. https://doi.org/10.15835/nbha44210262
Capdevielle-Vargas R, Estrella N, Menzel A (2015). Multiple-year assessment of phenological plasticity within a beech (Fagus sylvatica L.) stand in southern Germany. Agricultural and Forest Meteorology 211:13-22. https://doi.org/10.1016/j.agrformet.2015.03.019
Caudullo G, Welk E, San-Miguel-Ayanz J (2017). Chorological maps for the main European woody species. Data in Brief 12:662–666. https://doi.org/10.1016/j.dib.2017.05.007
Chmura DJ, Banach J, Kempf M, Kowalczyk J, Mohytych V, Szeligowski H, Buraczyk W, Kowalkowski W (2024). Growth and productivity of European beech populations show plastic response to climatic transfer at the north-eastern border of the species range. Forest Ecology and Management 565:122043. https://doi.org/10.1016/j.foreco.2024.122043
Chira D, Dănescu F, Roşu C, Chira F, Mihalciuc V, Surdu A, Nicolescu NV (2003). Some recent issues regarding the European beech decline in Romania. Annale ICAS 46:167-176.
Ciocîrlan E, Sofletea N (2013). Genetic diversity of Romanian populations of Fagus sylvatica–A review. Bulletin of the Transilvania University of Brasov Series II: Forestry, Wood Industry, Agricultural Food Engineering 6(55):27-32. https://webbut.unitbv.ro/index.php/Series_II/article/view/1123
Cortés AJ, Restrepo-Montoya M, Bedoya-Canas LE (2020). Modern strategies to assess and breed forest tree adaptation to changing climate. Frontiers in Plant Science 11:583323. https://doi.org/10.3389/fpls.2020.583323
Crispo E. (2008). Modifying effects of phenotypic plasticity on interactions among natural selection, adaptation and gene flow. Journal of Evolutionary Biology 21(6):1460-1469. https://doi.org/10.1111/j.1420-9101.2008.01592.x
Cuervo-Alarcon L, Arend M, Müller M, Sperisen C, Finkeldey R, Krutovsky KV (2018). Genetic variation and signatures of natural selection in populations of European beech (Fagus sylvatica L.) along precipitation gradients. Tree Genetics and Genomes 14(6):1-21. https://doi.org/10.1007/s11295-018-1297-2
Czúcz B, Gálhidy L, Mátyás C (2011). Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Annals of Forest Science 68:99-108. https://doi.org/10.1007/s13595-011-0011-4
Dulamsuren C, Hauck M, Kopp G, Ruff M, Leuschner C (2017). European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (SW Germany). Trees 31:673-686. https://doi.org/10.1007/s00468-016-1499-x
Dyderski MK, Paź S, Frelich LE, Jagodziński AM (2018). How much does climate change threaten European forest tree species distributions? Global Change Biology 24(3):1150-1163. https://doi.org/10.1111/gcb.13925
Ellenberg H (1988). Vegetation ecology of central Europe. Cambridge University Press, New York.
Enescu V (1972). Ameliorarea arborilor [Trees breeding]. Ceres, Bucharest.
Frank A, Pluess AR, Howe GT, Sperisen C, Heiri C (2017). Quantitative genetic differentiation and phenotypic plasticity of European beech in a heterogeneous landscape: Indications for past climate adaptation. Perspectives in Plant Ecology, Evolution and Systematics 26:1-13. https://doi.org/https://doi.org/10.1016/j.ppees.2017.02.001
Gömöry D, Longauer R, Paule L, Krajmerová D, Schmidtová J (2010). Across-species patterns of genetic variation in forest trees of Central Europe. Biodiversity and Conservation 19:2025-2038. https://doi.org/10.1007/s10531-010-9823-z
Gray LK, Gylander T, Mbogga MS, Chen P, Hamann A (2011). Assisted migration to address climate change: recommendations for aspen reforestation in western Canada. Ecological Applications 21(5):1591-1603. https://doi.org/10.1890/10-1054.1
Hewitt N, Klenk N, Smith AL, Bazely DR, Yan N, Wood S, MacLellan JI, Lipsig-Mumme C, Henriques I (2011). Taking stock of the assisted migration debate. Biological Conservation 144(11):2560-2572. https://doi.org/10.1016/j.biocon.2011.04.031
Hofmann M, Durka W, Liesebach M, Bruelheide H (2015). Intraspecific variability in frost hardiness of Fagus sylvatica L. European Journal of Forest Research 134:433-441. https://doi.org/10.1007/s10342-015-0862-6
Horváth A, Mátyás C (2016). The decline of vitality caused by increasing drought in a beech provenance trial predicted by juvenile growth. South-East European Forestry: SEEFOR 7(1):21-28. https://doi.org/10.15177/seefor.16-06
IFN (2024). Inventarul Forestier National Ciclul II. Retrieved 2024 March 20 from: http://roifn.ro/site/rezultate-ifn-2/
Isabel N, Holliday JA, Aitken SN (2020). Forest genomics: Advancing climate adaptation, forest health, productivity, and conservation. Evolutionary Applications 13(1):3-10. https://doi.org/10.1111/eva.12902
Jump AS, Hunt JM, Pen̈uelas J (2006). Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Global Change Biology 12(11):2163-2174. https://doi.org/10.1111/j.1365-2486.2006.01250.x
Jump AS, Peñuelas J (2007). Extensive spatial genetic structure revealed by AFLP but not SSR molecular markers in the wind-pollinated tree, Fagus sylvatica. Molecular Ecology 16(5):925-936. https://doi.org/10.1111/j.1365-294X.2006.03203.x
Kasper J, Leuschner C, Walentowski H, Petritan AM, Weigel R. (2022). Winners and losers of climate warming: Declining growth in Fagus and Tilia vs. stable growth in three Quercus species in the natural beech–oak forest ecotone (western Romania). Forest Ecology and Management 506:119892. https://doi.org/10.1016/j.foreco.2021.119892
Knutzen F, Dulamsuren C, Meier IC, Leuschner C (2017). Recent Climate Warming-Related Growth Decline Impairs European Beech in the Center of Its Distribution Range. Ecosystems 20(8):1494-1511. https://doi.org/10.1007/s10021-017-0128-x
König AO (2005). Provenance research: evaluating the spatial pattern of genetic variation. In: Geburek T, Turok J (Eds). Conservation and Management of Forest Genetic Resources in Europe. Arbora Publishers, Zvolen, Slovakia, pp 275-333.
Konnert M, Ruetz W (2001). Genetic variation of beech (Fagus sylvatica L.) provenances in an international beech provenance trial. Forest Genetics 8(3):173-184. https://kf.tuzvo.sk/sites/default/files/FG08-3_173-184.pdf
Konnert M, Fady B, Gömöry D, A’hara S, Wolter F, Ducci F, Koskela J, Bozzano M, Maaten T, Kowalczyk J (2015). Use and transfer of forest reproductive material in Europe in the context of climate change. European Forest Genetic Resources Programme (EUFORGEN), Bioversity International, Rome, Italy. Xvi And, 75.
Kraj W, Sztorc A (2009). Genetic structure and variability of phenological forms in the European beech (Fagus sylvatica L.). Annals of Forest Science 66(2):203-203. https://doi.org/10.1051/forest/2008085
Král K, Janík D, Vrška T, Adam D, Hort L, Unar P, Šamonil P. (2010). Local variability of stand structural features in beech dominated natural forests of Central Europe: Implications for sampling. Forest Ecology and Management 260(12):2196-2203. https://doi.org/10.1016/j.foreco.2010.09.020
Lakatos F, Molnár M (2009). Mass Mortality of Beech (Fagus sylvatica L.) in South-West Hungary. Acta Silvatica Et Lignaria Hungarica: An International Journal in Forest, Wood and Environmental Sciences 5:75-82. https://doi.org/10.37045/aslh-2009-0006
Leech SM, Almuedo PL, O’Neill G. (2011). Assisted migration: adapting forest management to a changing climate. Journal of Ecosystems and Management 12(3):18-34. https://doi.org/10.22230/jem.2011v12n3a91
Leuschner C, Meier IC, Hertel D (2006). On the niche breadth of Fagus sylvatica: Soil nutrient status in 50 Central European beech stands on a broad range of bedrock types. Annals of Forest Science 63(4):355-368. https://doi.org/10.1051/forest:2006016
Leuschner C, Ellenberg H (2017). Ecology of Central European non-forest vegetation: coastal to alpine, natural to man-made habitats: vegetation ecology of Central Europe. Springer, Stuttgart.
Liesebach M (2017). International beech provenance trial 1993/95 - site Schädtbek (Bu19-1). In: German Russian Conference on Forest Genetics. Ahrensburg, Germany pp 131-137.
Magri D (2008). Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). Journal of Biogeography 35(3):450-463. https://doi.org/10.1111/j.1365-2699.2007.01803.x
Marchi M, Bucci G, Iovieno P, Ray D (2024). ClimateDT: A global scale-free dynamic downscaling portal for historic and future climate data. Environments 11(4):82. https://doi.org/10.3390/environments11040082
Mátyás C, Yeatman CW (1992). Effect of geographical transfer on growth and survival of jack pine (Pinus banksiana Lamb.) populations. Silvae Genetica 41(6):370-376. https://www.cabidigitallibrary.org/doi/full/10.5555/19931637507
Matyas C (1996). Climatic adaptation of trees: rediscovering provenance tests. Euphytica 92:45-54. https://doi.org/10.1007/BF00022827
Mátyás C, Bozic G, Gömöry D, Ivankovic M, Rasztovits E. (2009a). Juvenile growth response of European beech (Fagus sylvatica L.) to sudden change of climatic environment in SE European trials. IForest-Biogeosciences and Forestry 2(6):213. https://doi.org/10.3832/ifor0519-002
Mátyás C, Bozic G, Gömöry D, Ivankovic M, Rasztovits E (2009b). Transfer analysis reveals macroclimatic adaptation of European beech (Fagus sylvatica L.). Acta Silvatica et Lignaria Hungarica 5:47-62. http://publicatio.uni-sopron.hu/116/1/04_matyas_et_al_p.pdf
Mátyás C (2021). Adaptive pattern of phenotypic plasticity and inherent growth reveal the potential for assisted transfer in sessile oak (Quercus petraea L.). Forest Ecology and Management 482:118832. https://doi.org/https://doi.org/10.1016/j.foreco.2020.118832
Meier IC, Leuschner C (2008). Genotypic variation and phenotypic plasticity in the drought response of fine roots of European beech. Tree Physiology 28(2):297-309. https://doi.org/10.1093/treephys/28.2.297
Meyer P, Spînu AP, Mölder A, Bauhus J (2022). Management alters drought‐induced mortality patterns in European beech (Fagus sylvatica L.) forests. Plant Biology 24(7):1157–1170. https://doi.org/10.1111/plb.13396
Mihai G, Șofletea N, Curtu AL, Pârnuță G, Ioniță L, Stuparu E, Popescu F, Teodosiu M (2008). Assessments of genetic variation of the main forest species in Romania for the establishment of tested seed sources. Revista Pădurilor 123(4):3-11. https://www.cabidigitallibrary.org/doi/full/10.5555/20103232083
Mihai G (2009). Surse de seminţe testate pentru principalele specii de arbori forestieri din România [Tested seed sources for the main forest tree species from Romania]. Editura Silvică, Bucureşti.
Milescu I, Alexe P, Nicovescu H, Suciu P (1967). Fagul. Agro-Silvică, Bucureşti.
Müller M, Finkeldey R (2016). Genetic and adaptive trait variation in seedlings of European beech provenances from Northern Germany. Silvae Genetica 65(2):65-73. https://doi.org/10.1515/sg-2016-0018
Müller M, Kempen T, Finkeldey R, Gailing O. (2020). Low population differentiation but high phenotypic plasticity of European beech in Germany. Forests 11(12):1-14. https://doi.org/10.3390/f11121354
Muller JJ, Nagel LM, Palik BJ (2019). Forest adaptation strategies aimed at climate change: Assessing the performance of future climate-adapted tree species in a northern Minnesota pine ecosystem. Forest Ecology and Management 451:117539. https://doi.org/https://doi.org/10.1016/j.foreco.2019.117539
NW-FVA (2019). Komplexe Schäden an Rotbuche (Fagus sylvatica) und Auswirkungen des Trockenen und Heißen Sommers 2018 auf Ältere Bestände; Waldschutzinfo Nr. 06/2019. Retrieved 2020 February 10 from https://www.nw-fva.de/fileadmin/nwfva/common/veroeffentlichen/waldschutzinfos/2019/NW-FVA_Waldschutzinfo_2019-06.pdf
Obladen N, Dechering P, Skiadaresis G, Tegel, W, Keßler J, Höllerl S, Kaps S, Hertel M, Dulamsuren C, Seifert T (2021). Tree mortality of European beech and Norway spruce induced by 2018-2019 hot droughts in central Germany. Agricultural and Forest Meteorology 307:108482. https://doi.org/10.1016/j.agrformet.2021.108482
Pedlar JH, McKenney DW, Aubin I, Beardmore T, Beaulieu J, Iverson L, O’Neill GA, Winder RS, Ste-Marie C (2012). Placing Forestry in the Assisted Migration Debate. BioScience 62(9):835-842. https://doi.org/10.1525/bio.2012.62.9.10
Peters R (1997). Growth and Form: Beech versus Other Dominant Tree Species. In: Peters R (Ed). Beech Forests. Springer, Netherlands pp 58-88.
Peters R (2013). Beech forests. Springer Science & Business Media.
Petkova K, Molle E, Konnert M, Knutzen F (2019). Comparing German and Bulgarian provenances of European beech (Fagus sylvatica L.) regarding survival, growth and ecodistance. Silva Balcanica 20(2):27-48. https://doi.org/10.6084/m9.figshare.9929087
Petrík P, Petek A, Konôpková A, Bosela M, Fleischer P, Frýdl J, Kurjak D (2020). Stomatal and leaf morphology response of European beech (Fagus sylvatica L.) provenances transferred to contrasting climatic conditions. Forests 11(12):1-22. https://doi.org/10.3390/f11121359
Petrík P, Grote R, Gömöry D, Kurjak D, Petek-Petrik A, Lamarque LJ, … Fleischer JrP (2022). The role of provenance for the projected growth of juvenile European beech under climate change. Forests 14(1):26. https://doi.org/10.3390/f14010026
Piovesan G, Biondi F, Filippo ADi, Alessandrini A, Maugeri M (2008). Drought‐driven growth reduction in old beech (Fagus sylvatica L.) forests of the central Apennines, Italy. Global Change Biology 14(6):1265-1281. https://doi.org/10.1111/j.1365-2486.2008.01570.x
Pretzsch H, Hilmers T, Uhl E, Bielak K, Bosela M, del Rio M, … Tognetti R (2021). European beech stem diameter grows better in mixed than in mono-specific stands at the edge of its distribution in mountain forests. European Journal of Forest Research 140(1):127-145. https://doi.org/10.1007/s10342-020-01319-y
R Core Team. (2023). R: A Language and Environment for Statistical Computing (R version 4.3.2 (2023-10-31 ucrt)). R Foundation for Statistical Computing. Retrieved 2023 December 12 from: https://www.R-project.org/
Robson TM, Garzón MB (2018). Phenotypic trait variation measured on European genetic trials of Fagus sylvatica L. Scientific Data 5(1):1-7. https://doi.org/10.1038/sdata.2018.149
Roibu CC, Popa I, Kirchhefer AJ, Palaghianu C (2017). Growth responses to climate in a tree-ring network of European beech (Fagus sylvatica L.) from the eastern limit of its natural distribution area. Dendrochronologia 42:104-116. https://doi.org/10.1016/j.dendro.2017.02.003
Roibu CC, Palaghianu C, Nagavciuc V, Ionita M, Sfecla V, Mursa A, … Popa I (2022). The Response of Beech (Fagus sylvatica L.) Populations to Climate in the Easternmost Sites of Its European Distribution. Plants 11(23):3310. https://doi.org/10.3390/plants11233310
Royer-Tardif S, Boisvert-Marsh L, Godbout J, Isabel N, Aubin I (2021). Finding common ground: Toward comparable indicators of adaptive capacity of tree species to a changing climate. Ecology and Evolution 11(19):13081-13100. https://doi.org/10.1002/ece3.8024
Schuldt B, Buras A, Arend M, Vitasse Y, Beierkuhnlein C, Damm A, … Kahmen A (2020). A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic and Applied Ecology 45:86-103. https://doi.org/https://doi.org/10.1016/j.baae.2020.04.003
Șofletea N, Curtu L (2008). Dendrologie [Dendrology]. Pentru viață, Brasov.
Stojnić S, Orlović S, Miljković D, Galić Z, Kebert M, von Wuehlisch G. (2015a). Provenance plasticity of European beech leaf traits under differing environmental conditions at two Serbian common garden sites. European Journal of Forest Research 134:1109-1125. https://doi.org/10.1007/s10342-015-0914-y
Stojnić S, Orlović S, Ballian D, Ivanković M, Šijačić-Nikolić M, Pilipović A, Bogdan S, Kvesić S, Mataruga M, Daničić V (2015b). Provenance by site interaction and stability analysis of European beech (Fagus sylvatica L.) provenances grown in common garden experiments. Silvae Genetica 64(4):133. https://doi.org/10.1515/sg-2015-0013
Stojnić S, Orlović S, Trudić B, Kesić L, Stanković M, Šijačić-Nikolić M (2016). Height and root-collar diameter growth variability of european beech provenances from Southeast Europe. Topola 5(14):197-198. https://scindeks.ceon.rs/article.aspx?artid=0563-90341698005S
Thiel D, Kreyling J, Backhaus S, Beierkuhnlein C, Buhk C, Egen K, Huber G, Konnert M, Nagy L, Jentsch A (2014). Different reactions of central and marginal provenances of Fagus sylvatica to experimental drought. European Journal of Forest Research 133(2):247-260. https://doi.org/10.1007/s10342-013-0750-x
Vettori C, Vendramin GG, Anzidei M, Pastorelli R, Paffetti D, Giannini R (2004). Geographic distribution of chloroplast variation in Italian populations of beech (Fagus sylvatica L.). Theoretical and Applied Genetics 109(1):1–9. https://doi.org/10.1007/s00122-004-1609-9
von Wuehlisch G (2004). Series of international provenance trials of European beech. In: Proceedings from the 7th International Beech Symposium IUFRO Research Group 2004. Tehran, Iran pp 135-144.
von Wühlisch, G. (2008). European beech. EUFORGEN Technical Guidelines for Genetic Conservation and Use. https://cgspace.cgiar.org/items/e6dee628-1c90-4a45-95ce-cb07d57f9449
Walthert L, Ganthaler A, Mayr S, Saurer M, Waldner P, Walser M, Zweifel R, von Arx G (2021). From the comfort zone to crown dieback: sequence of physiological stress thresholds in mature European beech trees across progressive drought. Science of the Total Environment 753:141792. https://doi.org/10.1016/j.scitotenv.2020.141792
White TL, Adams WT, Neale DB (2007). Forest genetics. CABI Publishing, Massachusetts.
Zimmermann J, Hauck M, Dulamsuren C, Leuschner C (2015). Climate warming-related growth decline affects Fagus sylvatica, but not other broad-leaved tree species in Central European mixed forests. Ecosystems 18:560-572. https://doi.org/10.1007/s10021-015-9849-x
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Emanuel BESLIU, Alexandru L. CURTU, Marius BUDEANU, Ecaterina N. APOSTOL, Mihnea I.C. CIOCÎRLAN
This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.