Exploring ecotypic plant adaptations and the influence of microbiota on mitigating environmental challenges
DOI:
https://doi.org/10.15835/nbha52313875Keywords:
ecotypic plant, influence, microbiota, mitigating environmentalAbstract
The idea of ecotypes, which refer to unique groups of plants that have evolved to flourish in specific habitats, is gaining attention owing to climate fluctuations and changes in the associated microbiota. The term "ecotype" described plant populations that are specially adapted to particular environments, as revealed by common garden experiments showcasing genetically distinct characteristics. This concept remains relevant in modern plant science, where garden experiments continue to uncover how natural selection promotes species diversity, underscoring the crucial role of the plant microbiota in adaptation. Recent research has highlighted the microbial interactions that aid plants in adapting to environmental stress. Plants that shape soil microbial communities exhibit differential responses along ecological gradients owing to environmental stressors that influence interactions with soil microorganisms. Understanding the differentiation within plant populations and the emergence of new species is vital for discerning natural selection patterns. Environmental stressors profoundly impact global crop production, whereas plant-microbiota symbioses significantly influence plant growth and defense through nutrient acquisition and metabolite synthesis. Plant adaptation mechanisms include enzymatic antioxidant production and osmolyte accumulation, which are regulated by phytohormones that orchestrate responses to biotic and abiotic stressors, respectively. Despite breeding and genetic engineering efforts, progress in enhancing plant tolerance to extreme conditions remains limited, necessitating the development of sustainable agricultural alternatives. This study offers a comprehensive overview of recent advances in plant ecotype research, particularly focusing on symbiotic relationships with the microbiota and traits that contribute to improved nutrient uptake and plant health.
References
Alegria Terrazas R, Balbirnie-Cumming K, Morris J, Hedley PE, Russell J, Paterson E, Baggs EM, Fridman E, Bulgarelli D (2020). A footprint of plant eco-geographic adaptation on the composition of the barley rhizosphere bacterial microbiota. Scientific Reports 10(1):12916. https://doi.org/10.1038/s41598-020-69672-x
Almario J, Mahmoudi M, Kroll S, Agler M, Placzek A, Mari A, Kemen E (2022). The leaf microbiome of Arabidopsis displays reproducible dynamics and patterns throughout the growing season. MBio 13(3):0282521. https://doi.org/10.1128/mbio.02825-21
Anass K, Reda BM, Imad K, Redouane EO, Youssef B, Amina A, Mohamed N (2021). Effect of mycorrhization on growth and enzymes involved in carbon/nitrogen interaction in sorghum plants. Research Journal of Biotechnology 16:1. https://doi.org/10.1007/s005720100097
Auge´ RM (2001). Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11(1):342. https://doi.org/10.1007/s005720100097
Badri D, Vivanco J (2009). Regulation and function of root exudates. Plant, Cell and Environment 32:666-681. https://doi.org/10.1111/j.1365-3040.2008.01926.x
Bai Y, Muller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, … Schulze-Lefert P (2015). Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528(7582):364-369. https://doi.org/10.1038/nature16192
Bais HP, Govindaswamy S, Ravishankar GA (2000). Enhancement of growth and coumarin production in hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow local) under the influence of fungal elicitors. Journal of Bioscience and Bioengineering 90(6):648-653. https://doi.org/10.1016/S1389-1723(00)90011-2
Bakhtiari M, Formenti L, Caggı`a V, Glauser G, Rasmann S (2019). Variable effects on growth and defense traits for plant ecotypic differentiation and phenotypic plasticity along elevation gradients. Ecology and Evolution 9(7):3740-3755. https://doi.org/10.1002/ece3.4999
Bardi L, Malusa`, E (2012). Drought and nutritional stresses in plant: Alleviating role of rhizospheric microorganisms. Abiotic Stress: New Research 1-57. https://www.researchgate.net/publication/260902565
Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2012). 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase-containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiology and Biochemistry 58:227-235. https://doi.org/10.1016/j.plaphy.2012.07.008
Bedada G, Westerbergh A, Muller T, Galkin E, Bdolach E, Moshelion M, Fridman E, Schmid KJ (2014). Transcriptome sequencing of two wild barley (Hordeum spontaneum L.) ecotypes differentially adapted to drought stress reveals ecotype-specific transcripts. BMC Genomics 15(1):995. https://doi.org/10.1186/1471-2164-15-995
Bhagwath SG, Hjortsø MA (2000). Statistical analysis of elicitation strategies for thiarubrine A production in hairy root cultures of Ambrosia artemisiifolia. Journal of Biotechnology 80(2):159-167. https://doi.org/10.1016/S0168-1656(00)00256-X
Bloemberg GV, Lugtenberg B. JJ (2001). Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Current Opinion in Plant Biology 4(4):343-350. https://doi.org/10.1016/S1369-5266(00)00183-7
Bowsher AW, Kearns PJ, Popovic D, Lowry DB, Shade A (2020). Locally adapted Mimulus ecotypes differentially impact rhizosphere bacterial and archaeal communities in an environment-dependent manner. Phytobiomes Journal 4(1):53-63. https://doi.org/10.1094/PBIOMES-05-19-0026-R
Brejda JJ, Moser LE, Vogel KP (1998). Evaluation of switchgrass rhizosphere microflora for enhancing seedling yield and nutrient uptake. Agronomy Journal 90(6):753-758. https://doi.org/10.2134/agronj1998.00021962009000060006x
Brotman Y, Lisec J, Me´ret M, Chet I, Willmitzer L, Viterbo A (2012). Transcript and metabolite analysis of the trichoderma-induced systemic resistance response to Pseudomonas syringae in Arabidopsis thaliana. Microbiology 158(1):139-146. https://doi.org/10.1099/mic.0.052621-0
Calvo P, Zebelo S, McNear D, Kloepper J, Fadamiro H (2019). Plant growth-promoting rhizobacteria induce changes in Arabidopsis thaliana gene expression of nitrate and ammonium uptake genes. Journal of Plant Interactions 14(1):224-231. https://doi.org/10.1080/17429145.2019.1602887
Caradonia F, Francia E, Morcia C, Ghizzoni R, Moulin L, Terzi V, Ronga D (2019). Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria avoid processing tomato leaf damage during chilling stress. Agronomy 9(6). https://doi.org/10.3390/agronomy9060299
Cardone L, Castronuovo D, Perniola M, Cicco N, Molina RV, Renau-Morata B, Nebauer SG, Candido V (2021). Crocus sativus L. Ecotypes from mediterranean countries: Phenological, morpho-productive, qualitative and genetic traits. Agronomy 11(3). https://doi.org/10.3390/agronomy11030551
Cavicchioli R, Ripple WJ, Timmis KN, Azam F, Bakken LR, Baylis M, … Webster NS (2019). Scientists’ warning to humanity: Microorganisms and climate change. Nature Reviews Microbiology 17(9):569-586. https://doi.org/10.1038/s41579-019-0222-5
Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski-Dye´ F, Bertrand C, Prigent-Combaret C (2013). Plant secondary metabolite profiling evidences strain-dependent effect in the Azospirillume Oryza sativa association. Phytochemistry 87:65-77. https://doi.org/10.1016/j.phytochem.2012.11.009
Chibucos MC, Tyler BM (2009). Common themes in nutrient acquisition by plant symbiotic microbes, described by the gene ontology. BMC Microbiology 9(1):1-8.
Cruz de Carvalho MH (2008). Drought stress and reactive oxygen species. Plant Signaling and Behavior 3(3):156-165. https://doi.org/10.4161/psb.3.3.5536
Daniel R (2005) The metagenomics of soil. Nature Reviews Microbiology 3(6):470-478. https://doi.org/10.1038/nrmicro1160
Dastogeer KMG, Tumpa FH, Sultana A, Akter MA, Chakraborty A (2020). Plant microbiome: an account of the factors that shape community composition and diversity. Plant Interactions with Microbes and Environment 23: 100161. https://doi.org/10.1016/j.cpb.2020.100161
De Sordi L, Lourenc, M, Debarbieux L (2019). The battle within: Interactions of bacteriophages and bacteria in the gastrointestinal tract. Cell Host and Microbe 25(2):210-218. https://doi.org/10.1016/j.chom.2019.01.018
Díaz-Rodríguez AM, Salcedo Gastelum LA, Fe´lix Pablos CM, Parra-Cota FI, Santoyo G, Puente ML, Bhattacharya D, Mukherjee J, de los Santos Villalobos S (2021a). The current and future role of microbial culture collections in food security worldwide. Frontiers in Sustainable Food Systems 4: 614739. https://doi.org/10.3389/fsufs.2020.614739
Ding Y, Shi Y, Yang S (2019). Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytologist 222(4):1690-1704. https://doi.org/10.1111/nph.15696
Dutta S, Na CS, Lee YH (2021). Features of bacterial microbiota in the wild habitat of Pulsatilla tongkangensis, the endangered “long-sepal Donggang pasque-flower plant,” endemic to karst topography of Korea. Frontiers in Microbiology 12:1873. https://doi.org/10.3389/fmicb.2021.656105
Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_Allah EF, Hashem A (2017). Phytohormones and beneficial microbes: Essential components for plants to balance stress and fitness. Frontiers in Microbiology 8:2104. https://doi.org/10.3389/fmicb.2017.02104
Erlacher A, Cardinale M, Grosch R, Grube M, Berg G (2014). The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Frontiers in Microbiology 5:175. https://doi.org/10.3389/fmicb.2014.00175
Etemadi M, Zuther E, Mu¨ller H, Hincha DK, Berg G (2018). Ecotype-dependent response of bacterial communities associated with Arabidopsis to cold acclimation. Phytobiomes Journal 2(1):3-13. https://doi.org/10.1094/PBIOMES-04-17-0015-R
Fitzpatrick CR, Copeland J, Wang PW, Guttman DS, Kotanen PM, Johnson MTJ (2018). Assembly and ecological function of the root microbiome across angiosperm plant species. Proceedings of the National Academy of Sciences 115(6):E1157-E1165. https://doi.org/10.1073/pnas.1717617115
Fortunato S, Lasorella C, Dipierro N, Vita F, de Pinto MC (2023). Redox signaling in plant heat stress response. Antioxidants 12:605. https://doi.org/10.1146/annurev.py.26.090188.000451
Ge Y, Tan L, Wu B, Wang T, Zhang T, Chen H, Zou M, Ma F, Xu Z, Zhan R (2019). Transcriptome sequencing of different Avocado ecotypes: De novo transcriptome assembly, annotation, identification and validation of EST-SSR markers. Forests 10(5). https://doi.org/10.3390/f10050411
Gilbert JA, Quinn RA, Debelius J, Xu ZZ, Morton J, Garg N, Jansson JK, Dorrestein PC, Knight R (2016). Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 535(7610):94-103. https://doi.org/10.1038/nature18850
Gotz M, Nirenberg H, Krause S, Wolters H, Draeger S, Buchner A, Lottmann J, Berg G, Smalla K (2006). Fungal endophytes in potato roots studied by traditional isolation and cultivation-independent DNA-based methods. FEMS Microbiology Ecology 58(3):404-413. https://doi.org/10.1111/j.1574-6941.2006.00169.x
Gouda S, Kerry RG, Das G, Paramithiotis S, Shin HS, Patra JK (2018). Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiological Research 206:131-140. https://doi.org/10.1016/j.micres.2017.08.016
Graff A, Conrad R (2005). Impact of flooding on soil bacterial communities associated with poplar (Populus sp.) trees. FEMS Microbiology Ecology 53(3):401e415. https://doi.org/10.1016/j.femsec.2005.01.009
Gupta S, Didwania N, Singh D (2020). Biological control of mustard blight caused by Alternaria brassicae using plant growth promoting bacteria. Plant Interactions with Microbes and Environment 23:100166. https://doi.org/10.1016/j.cpb.2020.100166
Hamonts K, Clough TJ, Stewart A, Clinton PW, Richardson AE, Wakelin SA, O’Callaghan M, Condron LM (2013). Effect of nitrogen and waterlogging on denitrifier gene abundance, community structure and activity in the rhizosphere of wheat. FEMS Microbiology Ecology 83(3):568-584. https://doi.org/10.1111/1574-6941.12015
Harris RF (1981). Effect of water potential on microbial growth and activity. In: Water potential relations in soil microbiology. Soil Science Society of America, Madison, pp 23-95. https://doi.org/10.2136/sssaspecpub9.c2
Hartman K, Tringe SG (2019). Interactions between plants and soil shaping the root microbiome under abiotic stress. Biochemical Journal 476(19):2705-2724. https://doi.org/10.1042/BCJ20180615
Hestrin R, Lee MR, Whitaker BK, Pett-Ridge J (2021a). The switchgrass microbiome: A review of structure, function, and taxonomic distribution. Phytobiomes Journal 5(1):14-28. https://doi.org/10.1094/PBIOMES-04-20-0029-FI
Huang S, Zhang J, Tao Z, Lei L, Yu Y, Huang L (2014). Enzymatic conversion from pyridoxal to pyridoxine caused by microorganisms within tobacco phyllosphere. Plant Physiology and Biochemistry 85:9-13. https://doi.org/10.1016/j.plaphy.2014.10.006Hestr
Jacobs MJ, Bugbee WM, Gabrielson DA. (1985). Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Canadian Journal of Botany 63(7):1262-1265. https://doi.org/10.1139/b85-174
Jacoby R, Peukert M, Succurro A, Koprivova A, Kopriva S (2017). The role of soil microorganisms in plant mineral nutrition current knowledge and future directions. Frontiers of Plant Science 8:1617. https://doi.org/10.3389/fpls.2017.01617
Kang J, Peng Y, Xu W (2022). Crop root responses to drought stress: Molecular mechanisms, nutrient regulations, and interactions with microorganisms in the rhizosphere. International Journal of Molecular Sciences 23(16). https://doi.org/10.3390/ijms23169310
Kessler A, Kalske A (2018). Plant secondary metabolite diversity and species interactions. Annual Review of Ecology Evolution and Systematics 49(1):115-138. https://doi.org/10.1146/annurev-ecolsys-110617-062406
Koza NA, Adedayo AA, Babalola OO, Kappo AP (2022). Microorganisms in plant growth and development: Roles in abiotic stress tolerance and secondary metabolites secretion. Microorganisms 10(8). https://doi.org/10.3390/microorganisms10081528
Li J, McConkey BJ, Cheng Z, Guo S, Glick BR (2013). Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach. Journal of Proteomics 84:119-131. https://doi.org/10.1016/j.jprot.2013.03.011
Liu TY, Ye N, Wang X, Das D, Tan Y, You X, Long M, Hu T, Dai L, Zhang J, Chen MX (2021). Drought stress and plant ecotype drive microbiome recruitment in switchgrass rhizos heath. Journal of Integrative Plant Biology 63(10):1753-1774. https://doi.org/10.1111/jipb.13154
Li J, Zhao GZ, Varma A, Qin S, Xiong Z, Huang HY, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ (2012). An endophytic pseudonocardia species induces the production of artemisinin in Artemisia annua. PLoS One 7(12):e51410. https://doi.org/10.1371/journal.pone.0051410
Liu Y, Wang H, Peng Z, Li D, Chen W, Jiao S, Wei G (2021). Regulation of root secondary metabolites by partial root-associated microbiotas under the shaping of licorice ecotypic differentiation in northwest China. Journal of Integrative Plant Biology 63(12):2093-2109.
Luo J, Gu S, Guo X, Liu Y, Tao Q, Zhao HP, Liang Y, Banerjee S, Li T (2022). Core microbiota in the rhizosphere of heavy metal accumulators and its contribution to plant performance. Environmental Science and Technology 56(18):12975-12987. https://doi.org/10.1021/acs.est.1c08832
Maya MA, Matsubara Y (2013). Influence of arbuscular mycorrhiza on the growth and antioxidative activity in cyclamen under heat stress. Mycorrhiza 23(5):381-390. https://doi.org/10.1007/s00572-013-0477-z
Mendes, Rodrigo, Pizzirani-Kleiner, Aline A, Araujo Welington L, Raaijmakers, Jos M (2007). Diversity of cultivated endophytic bacteria from sugarcane: Genetic and biochemical characterization of Burkholderia cepacia complex isolates. Applied and Environmental Microbiology 73(22):7259-7267. https://doi.org/10.1128/AEM.01222-07
Munir N, Hanif M, Abideen Z, Sohail M, El-Keblawy A, Radicetti E, Mancinelli R, Haider G (2022). Mechanisms and strategies of plant microbiome interactions to mitigate abiotic stresses. Agronomy 12(9). https://doi.org/10.3390/agronomy12092069
Naylor D, Coleman-Derr D (2018). Drought stress and root-associated bacterial communities. Frontiers of Plant Science 8:2223.
Onwuka B, Mang B (2018). Effects of soil temperature on some soil properties and plant growth. Advances in plants & agriculture research 8(1):34-37. https://doi.org/10.15406/APAR.2018.08.00288
Pais AKL, Silva JR, da Santos LVS, dos Albuquerque GMR, Farias ARG, de Silva Junior WJ, Balbino V, de Q, Silva AMF, Gama MAS, da Souza EB de, (2021). Genomic sequencing of different sequevars of Ralstonia solanacearum belonging to the Moko ecotype. Genetics and Molecular Biology 44. https://doi.org/10.1590/1678-4685-GMB-2020-0172
Pal G, Saxena S, Kumar K, Verma A, Sahu PK, Pandey S, White JF, Verma SK (2022). Endophytic Burkholderia: Multifunctional roles in plant growth promotion and stress tolerance. Microbiological Research 265:127201. https://doi.org/10.1016/j.micres.2022.127201
Pan C, Zhang H, Ma Q, Fan F, Fu R, Ahammed GJ, Yu J, Shi K (2019). Role of ethylenebiosynthesis and signaling in elevated CO2-induced heat stress response in tomato. Planta 250(2):563-572. https://doi.org/10.1007/s00425-019-03192-5
Pandey SS, Singh S, Babu CSV, Shanker K, Srivastava NK, Shukla AK, Kalra A (2016). Fungal endophytes of Catharanthus roseus enhance vindoline content by modulating structural and regulatory genes related to terpenoid indole alkaloid biosynthesis. Scientific Reports 6(1):26583. https://doi.org/10.1038/srep26583
Pang Z, Zhao Y, Xu P, Yu D (2020). Microbial diversity of upland rice roots and their influence on rice growth and drought tolerance. Microorganisms 31(9):1329. https://doi.org/10.3390/microorgan-isms8091329
Patriquin DG, Do¨bereiner J (1978). Light microscopy observations of tetrazolium reducing bacteria in the endorhizosphere of maize and other grasses in Brazil. Canadian Journal of Microbiology 24(6):734-742. https://doi.org/10.1139/m78-122
Rajesh M, Samsudeen K, Rejusha P, Manjula C, Rahman S, Karun A (2014). Characterization of annur and bedakam ecotypes of coconut from Kerala state, India, using micro-satellite markers. International Journal of Biodiversity 2014(4). https://doi.org/10.1155/2014/260895
Ramirez-Estrada K, Osuna L, Moyano E, Bonfill M, Tapia N, Cusido RM, Palazon J (2015). Changes in gene transcription and taxane production in elicited cell cultures of Taxus media and Taxus globosa. Phytochemistry 117:174-184. https://doi.org/10.1016/j.phytochem.2015.06.013
Sacristán S, García-arenal F (2008). The evolution of virulence and pathogenicity in plant pathogen populations. Molecular Plant Pathology 9(3):369-384. https://doi.org/10.1111/j.1364-3703.2007.00460.x
Santos-Medellín C, Edwards J, Liechty Z, Nguyen B, Sundaresan V (2017). Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes. MBio 8(4):e007644817. https://doi.org/10.1128/mBio.00764-17
Santoyo G, Gamalero E, Glick BR (2021). Mycorrhizal-bacterial amelioration of plant abiotic and biotic stress. Frontiers in Sustainable Food Systems 5:672881.
Sarkar S, Kamke A, Ward K, Rudick AK, Baer SG, Ran Q, … Lee STM (2022). Bacterial but not fungal rhizosphere community composition differ among perennial grass ecotypes under abiotic environmental stress. Microbiology Spectrum 10(3):e02391-2421. https://doi.org/10.1128/spectrum.02391-21
Schimel J, Balser TC, Wallenstein M (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology 88(6):1386-1394. https://doi.org/10.1146/annurev-ecolsys-110617-062614
Schimel JP (2018). Life in dry soils: Effects of drought on soil microbial communities and processes. Annual Review of Ecology Evolution and Systematics 49(1):409-432. https://doi.org/10.1890/06-0219
Schlaeppi K, Bulgarelli D (2015). The plant microbiome at work. Molecular Plant-Microbe Interactions 28(3):212-217. https://doi.org/10.1094/MPMI-10-14-0334-FI
Shah DA, Sen S, S A, Ghosh D, Grover M, Mohapatra S (2017). An auxin secreting Pseudomonas putida rhizobacterial strain that negatively impacts water-stress tolerance in Arabidopsis thaliana. Rhizosphere 3:16-19. https://doi.org/10.1016/j.rhisph.2016.11.002
Sheibani-Tezerji, Raheleh, Rattei, Thomas, Sessitsch, Angela, Trognitz, Friederike, Mitter, Birgit (2015). Transcriptome profiling of the endophyte Burkholderia phytofirmans PsJN indicates sensing of the plant environment and drought stress. MBio 6(5):006211715. https://doi.org/10.1128/mBio.00621-15
Shekhawat K, Saad MM, Sheikh A, Mariappan K, Al-Mahmoudi H, Abdulhakim F, Eida AA, Jalal R, Masmoudi K, Hirt H (2021). Root endophyte induced plant thermotolerance by constitutive chromatin modification at heat stress memory gene loci. EMBO Reports 22(3):51049. https://doi.org/10.15252/embr.202051049
Sher A, Molles M (2015). Ecology: Concepts and Applications. McGraw-Hill Education. ISBN10:1260722201 / ISBN13: 9781260722208.
Singer E, Bonnette J, Kenaley SC, Woyke T, Juenger, TE (2019). Plant compartment and genetic variation drive microbiome composition in switchgrass roots. Environmental Microbiology Reports 11(2):185-195. https://doi.org/10.1111/1758-2229.12727
Singh R, Hou W, Marslin G, Dias A, Franklin G (2014). Lignin and flavonoid content increases in Hypericum perforatum cell wall after Agrobacterium tumefaciens co-cultivation. Planta Medica 80(16):P1M22. https://doi.org/10.1055/s-0034-1394589
Subrahmanyam G, Kumar A, Sandilya SP, Chutia M, Yadav AN (2020). Diversity, plant growth promoting attributes, and agricultural applications of rhizospheric microbes. In: Yadav AN, Singh J, Rastegari AA, Yadav N (Eds). Plant Microbiomes for Sustainable Agriculture. Springer International Publishing, pp 1-52. https://doi.org/10.1007/978-3-030-38453-1_1
Suman A, Verma P, Yadav AN, Srinivasamurthy R, Singh A, Prasanna R (2016). Development of hydrogel-based bio-inoculant formulations and their impact on plant biometric parameters of wheat (Triticum aestivum L.). International Journal of Current Microbiology and Applied Sciences 5(3):890-901. https://doi.org/10.3389/fsoil.2022.821589
Suman J, Rakshit A, Ogireddy SD, Singh S, Gupta C, Chandrakala J (2022). Microbiome as a key player in sustainable agriculture and human health. Frontiers in Soil Science 12. https://doi.org/10.20546/ijcmas.2016.503.103
Tiwari R, Awasthi A, Mall M, Shukla AK, Srinivas KVNS, Syamasundar KV, Kalra A (2013). Bacterial endophyte-mediated enhancement of in planta content of key terpenoid indole alkaloids and growth parameters of Catharanthus roseus. Industrial Crops and Products 43:306-310. https://doi.org/10.1016/j.indcrop.2012.07.045
Trenberth KE (2011). Changes in precipitation with climate change. Climate Research 47(1e2):123-138.
Van Wallendael A, Lowry DB, Hamilton JA (2022). One hundred years into the study of ecotypes, new advances are being made through large scale field experiments in perennial plant systems. Current Opinion in Plant Biology 66:102-152. https://doi.org/10.1016/j.pbi.2021.102152
Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM (2006). How plants cope with complete submergence. New Phytologist 170(2):213-226. https://doi.org/10.1111/j.1469-8137.2006.01692.x
Wagg C, Bender SF, Widmer F, Van Der Heijden MG (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences 111(14):5266-5270. https://doi.org/10.1073/pnas.1320054111
Walker V, Bertrand C, Bellvert F, Moe¨nne-Loccoz Y, Bally R, Comte G (2011). Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytologist 189(2):494-506. https://doi.org/10.1111/j.1469-8137.2010.03484.x
Whipps JM, Hand P, Pink D, Bending GD (2008). Phyllosphere microbiology with special reference to diversity and plant genotype. Journal of Applied Microbiology 105(6):1744-1755. https://doi.org/10.1111/j.1365-2672.2008.03906.x
Whitman WB, Rainey F, Kampfer P, Trujillo M, Chun J, DeVos P (2015). Bergey’s manual of systematics of Archaea and Bacteria. Vol. 410. Wiley Online Library. https://doi.org/10.1007/978-0-387-68572-4
Winston ME, Hampton-Marcell J, Zarraonaindia I, Owens SM, Moreau CS, Gilbert JA, Hartsel J, Kennedy SJ, Gibbons SM (2014). Understanding cultivar-specificity and soil determinants of the cannabis microbiome. PLoS One 9(6):99641. https://doi.org/10.1371/journal.pone.0099641
Wipf HML, Bu`i TN, Coleman-Derr D (2021). Distinguishing between the impacts of heat and drought stress on the root microbiome of Sorghum bicolor. Phytobiomes Journal 5(2):166-176. https://doi.org/10.1094/PBIOMES-07-20-0052-R
Wippel K, Tao K, Niu Y, Zgadzaj R, Kiel N, Guan R, Dahms E, Zhang P, Jensen DB, Logemann E, Radutoiu S, Schulze-Lefert P, Garrido-Oter R (2021). Host preference and invasiveness of commensal bacteria in the lotus and Arabidopsis root microbiota. Nature Microbiology 6(9):1150-1162. https://doi.org/10.1038/s41564-021-00941-9
Wu N, Li Z, Meng S, Wu F (2021) Effects of arbuscular mycorrhizal inoculation on the growth, photosynthesis and antioxidant enzymatic activity of Euonymus maackii Rupr. under gradient water deficit levels. PLoS One 16(11):0259959. https://doi.org/10.1371/journal.pone.0259959
Xiong Q, Hu J, Wei H, Zhang H, Zhu J (2021a). Relationship between plant roots, rhizosphere microorganisms, and nitrogen and its special focus on rice. Agriculture 11(3). https://doi.org/10.3390/agriculture11030234
Yadav AN, Kumar V, Dhaliwal HS, Prasad R, Saxena AK (2018). Microbiome in crops: Diversity, distribution, and potential role in crop improvement. In: Prasad R, Gill SS, Tuteja N (Eds). Crop Improvement Through Microbial Biotechnology. Elsevier, pp 305-332. https://doi.org/10.1016/B978-0-444-63987-5.00015-3
Yasuda M, Isawa T, Shinozaki S, Minamisawa K, Nakashita H (2009). Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice. Bioscience, Biotechnology, and Biochemistry 73(12):2595-2599. https://doi.org/10.1080/09168451.2017.1329621
Young E, Carey M, Meharg AA, Meharg C (2018). Microbiome and ecotypic adaption of Holcus lanatus (L.) to extremes of its soil pH range, investigated through transcriptome sequencing. Microbiome 6(1):48. https://doi.org/10.1186/s40168-018-0434-3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jameel M. AL-KHAYRI, Tahir KHAN
This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.