Mycorrhizal fungi in Annona muricata L. rhizosphere in two agricultural production systems in Nayarit, Mexico

Authors

  • Angela M. GONZÁLEZ-LÓPEZ Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco (MX)
  • Evangelina E. QUIÑONES-AGUILAR Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco (MX)
  • Circe A. ABURTO-GONZÁLEZ Universidad Autónoma de Nayarit, Km. 9 Carretera Tepic-Compostela. Xalisco, Nayarit (MX)
  • Gelacio ALEJO-SANTIAGO Universidad Autónoma de Nayarit, Km. 9 Carretera Tepic-Compostela. Xalisco, Nayarit (MX)
  • Laura V. HERNÁNDEZ-CUEVAS Instituto Tecnológico de Tlajomulco, Tecnológico Nacional de México, Km 10 Carretera Tlajomulco, 45640, Tlajomulco de Zúñiga, Jalisco (MX)
  • Gabriel RINCÓN-ENRÍQUEZ Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., Camino Arenero 1227, El Bajío del Arenal, 45019 Zapopan, Jalisco (MX)

DOI:

https://doi.org/10.15835/nbha52313850

Keywords:

AMF diversity, AMF propagation, Mycorrhiza, soursop

Abstract

Mycorrhizal symbiosis is the association between the roots of several plant species and soil fungi of the Glomeromycotina subphylum. This symbiosis plays a crucial role in plant growth, development, and defense; therefore, understanding the abundance and diversity of arbuscular mycorrhizal fungi (AMF) species associated with plants of economic importance is of utmost concern. The objective of this study was to compare the abundance and composition of AMF communities in two Annona muricata cultivation sites, and in propagated soil, under different agricultural practices. The first cultivation site is under technified management with periodic fertilization and irrigation (TS), while the second cultivation site is under agroecological management without fertilization, irrigation, and with the presence of livestock (non-technified site; NTS). The extracted spores from the collected samples and the trap cultures were taxonomically identified based on their morphology. 13 species associated with A. muricata belonging to seven genera were identified in soil samples. The most abundant species were Funneliformis geosporum, Acaulospora kentinensis and Rhizophagus intraradices with a relative abundance of 45.9, 19.0 and 15.8%, respectively. In the propagation substrates, only 69% of the AMF species found in the field were identified. 11 species of AMF were found in the site with non-technified agronomic management, while only five species were found in the technified site.

References

Agnihotri R, Ramesh A, Singh S, Sharma MP (2017). Impact of agricultural management practices on mycorrhizal functioning and soil microbiological parameters under soybean-based cropping systems. In: Rakshit A, Abhilash PC, Singh HB, Ghosh S (Eds). Adaptive Soil Management: From Theory to Practices. Springer Nature. Singapore Pte Ltd pp 301-322.

Amiri ME, Fallahi E (2009). Impact of animal manure on soil chemistry, mineral nutrients, yield, and fruit quality in “golden delicious” apple. Journal of Plant Nutrition 32:610-617.

Balestrini R, Bonfante P (2014). Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Frontiers in Plant Science 5:1-10. https://doi.org/10.3389/fpls.2014.00237

Bever JD, Morton JB, Antonovics J, Schultz P (1996). Host dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. Journal of Ecology 84:1-82. https://doi.org/10.2307/2261701

Bhale U, Sawant VS, Sarwade, PP (2011). Arbuscular mycorrhizas of some plants growing in Marathwada region of Maharashtra. Kavaka 39:33-36.

Brundrett M, Bougher N, Dell B, Grove T, Malajczuc N (1996). Working with mycorrhizas in forestry and agriculture. ACIAR Monograph 32, Canberra, Australia.

Cano C, Bago A (2005). Competition and substrate colonization strategies of three polyxenically grown arbuscular mycorrhizal fungi. Mycologia 97:1201-1214. https://doi.org/10.3852/mycologia.97.6.1201

Carballar-Hernández S, Palma-Cruz F, Hernández-Cuevas L, Robles C (2013). Arbuscular mycorrhizal potential and mycorrhizal fungi diversity associated with Agave potatorum Zucc. in Oaxaca, Mexico. Ecological Research 2:217-226. https://doi.org/10.1007/s11284-012-1008-7

Carballar-Hernández S, Hernández-Cuevas LV, Montaño NM, Larsen J, Ferrera-Cerrato R, Taboada-Gaytán OR, Montiel AM, Alarcón A (2017). Native communities of arbuscular mycorrhizal fungi associated with Capsicum annuum L. respond to soil properties and agronomic management under field conditions. Agriculture, Ecosystems and Environment 245:43-51. https://doi.org/10.1016/j.agee.2017.05.004

Chapman HD, Pratt PF (1979). Métodos de análisis para suelos, plantas y agua. Ed. Trillas, México, Ciudad de México.

Cordero J, Boshier DH (2003). Árboles de centroamérica: un manual para extensionistas. CATIE, Costa Rica.

Córdoba AS, Mendonça MM, Stürmer SL, Rygiewicz PT (2001). Diversity of arbuscular mycorrhizal fungi along a sand dune stabilization gradient: a case study at Praia da Joaquina, Ilha de Santa Catarina. South Brazil. Mycoscience 42:379-387.

Dai M, Hamel C, Bainard LD, Arnaud MS, Grant CA, Lupwayi NZ, Malhi SS, Lemke R (2014). Negative and positive contributions of arbuscular mycorrhizal fungal taxa to wheat production and nutrient uptake efficiency in organic and conventional systems in the Canadian Prairie. Soil Biology and Biochemistry 74:156-166. https://doi.org/10.1016/j.soilbio.2014.03.016

Dietrich P, Roscher C, Clark TA, Eisenhauer N, Schmid B, Wagg C (2020). Diverse plant mixtures sustain a greater arbuscular mycorrhizal fungi spore viability than monocultures after 12 years. Journal of Plant Ecology 13:478-488. https://doi.org/10.1093/jpe/rtaa037

Dalpé Y, Monreal M (2004). Arbuscular mycorrhiza inoculum to support sustainable cropping systems. Crop Management 3:1-11. https://doi.org/10.1094/CM-2004-0301-09-RV

De la Rosa-Mera C, Ferrera-Cerrato R, Alarcón A, Sánchez-Colín MJ, Franco-Ramírez A (2012). Aislamiento de consorcios de hongos micorrícicos arbusculares de plantas medicinales y su efecto en el crecimiento de vinca (Catharanthus roseus). Revista Chilena de Historia Natural 85:187-198. http://dx.doi.org/10.4067/S0716-078X2012000200005

Elbon A, Whalen JK (2014). Phosphorus supply to vegetable crops from arbuscular mycorrhizal fungi: a review. Biological Agriculture & Horticulture: An International Journal for Sustainable Production Systems 31:73-90. http://dx.doi.org/10.1080/01448765.2014.966147

Gao X, Guo H, Zhang Q, Guo H, Zhang L, Zhang C, … Zeng F (2020). Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.). Scientific Reports 10:2084. https://doi.org/10.1038/s41598-020-59180-3

Gerdemann JW, Nicolson TH (1963). Spores of mycorrhizal endogone species extracted by wet sieving and decanting. Transactions of the British Mycological Society 46:235-244. https://doi.org/10.1016/S0007-1536(63)80079-0

Giovannetti M (2000). Spore germination and pre-symbiotic mycelial growth. In: Kapulnik Y, Douds DD (Eds). Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers Dordrecht pp 47-68.

Grzyb ZS, Paszt LS, Piotrowski W, Malusa, E (2015). The influence of mycorrhizal fungi on the growth of apple and sour cherry maidens fertilized with different bioproducts in the organic nursery. Journal of Life Sciences 9:221-228. https://doi.org/10.17265/1934-7391/2015.05.005

Hai-Ru J, Dong-Hua J, Ping-Hua Z (2011). Effect of carbon and nitrogen availability on metabolism of amino acids in germinating spores of arbuscular mycorrhizal fungi. Pedosphere 21:432-442. https://doi.org/10.1016/S1002-0160(11)60145-8

Hernández-Fuentes LM, Nolasco YG, Cruz EJ (2017). Selección y caracterización de guanábana y recomendaciones para su manejo agronómico. INIFAP-Campo experimental Santiago Ixcuintla, Nayarit.

Hijri I, Sýkorová Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006). Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Molecular Ecology 15:2277-2289. https://doi.org/10.1111/j.1365-294X.2006.02921.x

Jansa J, Wiemken A, Frossard E (2006). The effects of agricultural practices on arbuscular mycorrhizal fungi. Geological Society, London, Special Publications 266:89-115. https://doi.org/10.1144/GSL.SP.2006.266.01.08

Kennedy LJ, Tiller RL, Stutz JC (2002). Associations between arbuscular mycorrhizal fungi and Sporobolus wrightii in riparian habitats in arid southwestern North America. Journal of Arid Environments 50:459-475. https://doi.org/10.1006/jare.2001.0899

Kirk P (1950). Kjeldahl method for total nitrogen. Analytical Chemistry 22:354-358.

Knerr AJ, Schlatter D, Sharma-Poudyal D, du Toit LJ, Paulitz T (2019) Arbuscular mycorrhizal fungal communities in organic and conventional onion crops in the Columbia Basin of the Pacific Northwest United States. Phytobiomes Journal 2:194-207. https://doi.org/10.1094/PBIOMES-05-18-0022-R

Lauriano-Barajas J, Vega-Frutis R (2018). Infectivity and effectivity of commercial and native arbuscular mycorrhizal biofertilizers in seedlings of maize (Zea mays). Botanical Sciences 96:395-404. https://doi.org/10.17129/botsci.1855

Leal PL, Stürmer SL, Siqueira JO (2009). Occurrence and diversity of arbuscular mycorrhizal fungi in trap cultures from soils under different land use systems in the Amazon. Brazilian Journal of Microbiology 40:111-121. https://doi.org/10.1590/S1517-83822009000100019

Leica Microsystems (2016). Leica Application Suite V 3.3.0. Leica Microsystemas Ltd., Suiza.

Leskovar D, Othman Y (2018). Organic and conventional farming differentially influenced soil respiration, physiology, growth and head quality of artichoke cultivars. Journal of Soil Science and Plant Nutrition 3:865-880. http://dx.doi.org/10.4067/S0718-95162018005002502.

Mäder P, Flieβbach A, Dubois D, Gunst L, Fried P, Niggli U (2002). Soil fertility and biodiversity in organic farming. Science 296:1694-1697. http://dx.doi.org/10.1126/science.1071148

Manoharan PT, Pandi M, Shanmugaiah V, Gomathinayagam S, Balasubramanian N (2008). Effect of vesicular arbuscular mycorrhizal fungus on the physiological and biochemical changes of five different tree seedlings grown under nursery conditions. African Journal of Biotechnology 19:3431-3436.

McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990). A new method wich gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytologist 115:495-501. https://doi.org/10.1111/j.1469-8137.1990.tb00476.x

NOM-021-RECNAT-2000 (Norma Oficial Mexicana). Que establece las especificaciones de fertilidad, salinidad y clasificación de suelos. estudios, muestreo y análisis. SEMARNAT. México, D. F. 2002. Retrieved 2012 July from: http://diariooficial.gob.mx/nota_detalle.php?codigo=717582&fecha=31/12/2002

Oehl F, Sieverding E, Ineichen K, Mäder P, Boller TW (2003). An impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of central Europe. Applied and Environmental Microbiology 5:2816-2824. https://doi.org/10.1128/AEM.69.5.2816-2824.2003

Oehl F, Laczko E, Oberholzer HR, Jansa J, Egli S (2017). Diversity and biogeography of arbuscular mycorrhizal fungi in agricultural soils. Biology and Fertility of Soils 53:777-797. https://doi.org/10.1007/s00374-017-1217-x

Ortas I, Akpinar C, Demirbas A (2016). Sour orange (Citrus aurantium L.) growth is strongly mycorrhizal dependent in terms of phosphorous (P) nutrition rather than zinc (Zn). Communications in Soil Science and Plant Analysis 47:2514-2527. https://doi.org/10.1080/00103624.2016.1254792

Pearson JN, Abbott LK, Jasper DA (1994). Phosphorus soluble carbohydrates and the competition between two arbuscular mycorrhizal fungi colonizing subterranean clover. New Phytologist 127:101-106.

Qiang-Sheng W, Jia-Dong H, Anoop S, Fei, Z, Ying-Ning Z (2019). Development of propagation technique of indigenous AMF and their inoculation response in citrus. Indian Journal of Agricultural Sciences 89:1190-1194. https://doi.org/10.56093/ijas.v89i7.91696

Quiñones-Aguilar EE, Rincón-Enríquez G, López-Pérez L (2020). Native mycorrhizal fungi as growth promoters in guava plants (Psidium guajava L.). Terra Latinoamericana 38:541-554. https://doi.org/10.28940/terra.v38i3.646

Ragupathy S, Mahadevan A (1993). Distribution of vesicular-arbuscular mycorrhizae in the plants and rhizosphere soils of the tropical plains, Tamii Nadu, India. Mycorrhiza 3:123-136. https://doi.org/10.1007/BF00208920

Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013). An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515-531. https://doi.org/10.1007/s00572-013-0486-y

Reyes-Montero JA, Aceves-Navarro E, Caamal-Velázquez JH, Alamilla-Magaña JC (2018). Producción de guanábana (Annona muricata L.) en alta densidad de plantación, como alternativa para productores con superficies reducidas. Agroproductividad 11:37-42. https://doi.org/10.32854/agrop.v11i9.1212

Reyes-Tena A, Quiñones-Aguilar EE, Rincón-Enríquez G, López-Pérez L (2016). Mycorrhizae in Capsicum annuum L. to promote growth and biosecurity against Phytophthora capsici L. Revista Mexicana de Ciencias Agrícolas 78:857-870.

Rodríguez YY, De La Noval B, Fernández F, Rodríguez P (2004). Estudio comparativo del comportamiento de seis cepas de hongos micorrízicos arbusculares en su interacción con el tomate (Lycopersicon esculentum M. var “Amalia”). Ecología Aplicada 3:162-171.

Schüßler A, Schwarzott D, Walker C (2001). A new fungal phylum, The Glomeromycota: phylogeny and evolution. Mycological Research 105:1413-1421. https://doi.org/10.1017/S0953756201005196

Schüβler A, Walker C (2010). The Glomeromycota: a species list with new families and new genera. The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University.

Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. Academic Press, London.

Songachan LS, Kayang H (2014). Diversity of arbuscular mycorrhizal fungi in field and trap culture from rhizosphere soils of Flemingia vestita Benth. ex Baker. In: Kharwar RN, Upadhyay RS, Dubey NK, Raghuwanshi R (Eds). Microbial diversity and biotechnology in food security. Springer India pp 103-110.

StatPoint (2005) Inc. StatGraphics centurion XV version 15.02.06. Warrenton, Virginia, USA.

Tapia-Goné J, Ferrera-Cerrato R, Varela-Fregoso L, Rodríguez JC, Lara M, Soria JC, Torres HC, Tiscareño MA, Cisneros R (2008). Caracterización e identificación morfológica de hongos formadores de micorriza arbuscular, en cinco suelos salinos del estado de San Luis Potosí, México. Revista Mexicana de Micología 26:1-7.

Tedersoo L, Sánchez-Ramírez S, Kõljalg U, Bahram M, Döring M, Schigel DS, May T, Ryberg M, Abarenkov K (2018). High-level classification of the fungi and a tool for evolutionary ecological analyses. Fungal Diversity 90:135-159. https://doi.org/10.1007/s13225-018-0401-0

Toprak B (2017). Mycorrhizal fungi status in organic farms of south Florida. Mycosphere 8:951-958. https://doi.org/10.5943/mycosphere/8/7/10

Trejo D, Ferrera-Cerrato R, García R, Varela L, Lara L, Alarcón A (2011). Efectividad de siete consorcios nativos de hongos micorrícicos arbusculares en plantas de café en condiciones de invernadero y campo. Revista Chilena de Historia Natural 84:23-31. http://dx.doi.org/10.4067/S0716-078X2011000100002

Trejo-Aguilar D, Lara-Capistrán L, Madonado-Mendoza IE, Zulueta-Rodríguez R, Sangabriel-Conde W, Mancera-López ME, Negrete-Yankelevich S, Barois I (2013). Loss of arbuscular mycorrhizal fungal diversity in trap cultures during long-term subculturing. IMA Fungus 4:161-167. http://dx.doi.org/10.5598/imafungus.2013.04.02.01

Trinidad-Cruz JR, Quiñones-Aguilar EE, Rincón-Enríquez G, López-Pérez L, Hernández-Cuevas LV (2017a) Micorrización de Agave cupreata: biocontrol de Fusarium oxysporum y promoción del crecimiento vegetal. Revista Mexicana de Fitopatología 35:151-169. https://doi.org/10.18781/r.mex.fit.1607-5

Trinidad-Cruz JR, Quiñones-Aguilar EE, Rincón-Enríquez G, López-Pérez L, Hernández-Cuevas LV (2017b). Hongos micorrízicos arbusculares asociados a la rizosfera de Agave cupreata en regiones mezcaleras del estado de Michoacán, México. Revista Mexicana de Micología 45:13-25.

Uzoma KC, Inoue M, Andry H, Fujimaki H, Zahoor A, Nushihara E (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management 27:205-212. https://doi.org/10.1111/j.1475-2743.2011.00340.x

Yao Q, Gao JL, Zhu HH, Long LK, Xin Qx, Chen JZ (2010). Evaluation of the potential of trap plants to detect arbuscular mycorrhizal fungi using polymerase chain reaction-denaturing gradient gel electrophoresis analysis. Journal of Soil Science and Plant Nutrition 56:205-211. https://doi.org/10.1111/j.1747-0765.2010.00444.x

Ying YC, Cheng YH, Jia XX (2017). Effects of arbuscular mycorrhizal fungi on the growth and zinc uptake of trifoliate orange (Poncirus trifoliata) seedlings grown in low-zinc soil. Journal of Plant Nutrition 40:324-331. https://doi.org/10.1080/01904167.2016.1240192

Wang B, Qiu YL (2006). Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16:299-363. https://doi.org/10.1007/s00572-005-0033-6

Downloads

Published

2024-09-09

How to Cite

GONZÁLEZ-LÓPEZ, A. M., QUIÑONES-AGUILAR, E. E., ABURTO-GONZÁLEZ, C. A., ALEJO-SANTIAGO, G., HERNÁNDEZ-CUEVAS, L. V., & RINCÓN-ENRÍQUEZ, G. (2024). Mycorrhizal fungi in Annona muricata L. rhizosphere in two agricultural production systems in Nayarit, Mexico. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(3), 13850. https://doi.org/10.15835/nbha52313850

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52313850

Most read articles by the same author(s)