Genetic improvement of drought stress tolerance in maize, recent advancements and future research direction

Authors

  • Zhan-Wu GAO Baicheng Normal University, Tourism and Geographical Science Institute, Baicheng 137000 (CN)
  • Yan-Hui CUI Baicheng Normal University, Tourism and Geographical Science Institute, Baicheng 137000 (CN)
  • Xin-Ning LI Baicheng Normal University, Tourism and Geographical Science Institute, Baicheng 137000 (CN)
  • Meng-Yuan BAI Baicheng Normal University, Tourism and Geographical Science Institute, Baicheng 137000 (CN)
  • Tahani A.Y. ASSERI King Khalid University, College of Science, Department of Biology, Abha 61413 (SA)
  • Mohamed HASHEM Assiut University, Faculty of Science, Department of Botany and Microbiology, Assiut, 71516 (EG)
  • Zhao-Jie WANG Guilin Tourism University, Guilin 541000 (CN)

DOI:

https://doi.org/10.15835/nbha52313840

Keywords:

CRISPR/Cas9, drought, maize, QTL, transcriptome

Abstract

Maize is an imperative crop around the globe, and it provides several essential nutrients to humans and animals. Environmental changes seriously affect growth and productivity. Drought stress is one of the most important abiotic stresses, reducing maize growth and yield and threatening global food security. For decades, breeders have been trying to improve maize's ability to counter the toxic effects of drought stress. Drought tolerance is controlled by many genes and it complicates molecular breeding. The use of conventional breeding methods limited the development of drought tolerance in maize because of the complex nature of this trait. Hence, maize breeders have shifted their focus towards improvement of drought tolerance in maize at molecular level. Different molecular tools like quantitative trait loci (QTL) mapping, genome-wide-association-studies (GWAS), transcriptome analysis, transcription factor (TFs) analysis, and CRISPR/Cas9 have played a vital role in gene’s identification and their use in molecular breeding. These genomic regions have been proven very effective, and more studies are being conducted to increase their efficiency; however, the improvement level is limited because of the complex genetic mechanism of drought tolerance. Different review articles have been published on this aspect; however, a comprehensive and updated overview of drought tolerance needs to be included. The current review highlights the role of diverse molecular techniques to improve drought tolerance in maize. This review article will enhance the interest of researchers working on the genetic improvement of maize.

References

Abdallah NA, Elsharawy H, Abulela HA, Thilmony R, Abdelhadi AA, Elarabi NI (2022). Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. GM Crops & Food 1-17. https://doi.org/10.1080/21645698.2022.2120313

Adebayo MA, Menkir A (2015). Combining ability of adapted and exotic drought-tolerant maize inbred lines under full irrigation and rainfed conditions in Nigeria. Journal of Crop Improvement 29:117-130. https://doi.org/10.1080/15427528.2014.980484

Aliniaeifard S, Rezayian M, Mousavi SH (2023). Drought stress: involvement of plant hormones in perception, signaling, and response. In: Plant Hormones and Climate Change. Springer, pp 227-250. https://doi.org/10.1007/978-981-19-4941-8_10

Almeida GD, Makumbi D, Magorokosho C, Nair S, Borém A, Ribaut J-M, Bänziger M, Prasanna BM, Crossa J, Babu R (2013). QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theoretical and Applied Genetics 126:583-600. https://doi.org/10.1007/s00122-012-2003-7

Arshad A, Abbas A, Rehman A (2022). Mechanism of drought stress tolerance in maize. Biological and Agricultural Sciences Research Journal 2022:3-3. https://doi.org/10.54112/basrj.v2022i1.3

Bahadur A, Singh PM, Rai N, Singh AK, Singh AK, Karkute SG, Behera TK (2024). Grafting in vegetables to improve abiotic stress tolerance, yield and quality. The Journal of Horticultural Science and Biotechnology 1-19. https://doi.org/10.1080/14620316.2023.2299009

Bank W (2005). Agriculture Investment Sourcebook. Agriculture and Rural Development. World Bank, Washington DC.

Blancon J, Buet C, Dubreuil P, Tixier M-H, Baret F, Praud S (2024). Maize green leaf area index dynamics: genetic basis of a new secondary trait for grain yield in optimal and drought conditions. Theoretical and Applied Genetics 137:68. https://doi.org/10.1007/s00122-024-04572-6

Campos H, Cooper M, Habben J, Edmeades G, Schussler J (2004). Improving drought tolerance in maize: a view from industry. Field Crops Research 90:19-34. https://doi.org/10.1016/j.fcr.2004.07.003

Cao L, Feiyu Y, Ma C, Pang Y, Zhang X, Zhang Q, Lu X (2024). Transcription factor ZmDof22 enhances drought tolerance by regulating stomatal movement and antioxidant enzyme activities in maize (Zea mays L.). Theoretical and Applied Genetics 137:132. https://doi.org/10.1007/s00122-024-04625-w

Chen S, Dang D, Liu Y, Ji S, Zheng H, Zhao C, Dong X, Li C, Guan Y, Zhang A (2023). Genome-wide association study presents insights into the genetic architecture of drought tolerance in maize seedlings under field water-deficit conditions. Frontiers in Plant Science 14:1165582. https://doi.org/10.3389/fpls.2023.1165582

Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013). Multiplex genome engineering using CRISPR/Cas systems. Science 339:819-823. https://doi.org/10.1126/science.123114

Dinka SJ, Campbell MA, Demers T, Raizada MN (2007). Predicting the size of the progeny mapping population required to positionally clone a gene. Genetics 176:2035-2054. https://doi.org/10.1534/genetics.107.074377

Du J, Chen X, Li W, Gao Q (2004). Osmoregulation mechanism of drought stress and genetic engineering strategies for improving drought resistance in plants. Forestry Studies in China 6:56-62. https://doi.org/10.1007/s11632-004-0021-5

FAOSTAT (2010). Statistical Database of the Food and Agriculture Organization of the United Nations. FAO, Rome.

Fofana B, Soto-Cerda B, Zaidi M (2024). Genome-wide genetic architecture for plant maturity and drought tolerance in diploid potatoes. Frontiers in Genetics 14:1306519. https://doi.org/10.3389/fgene.2023.1306519

Gao W, Zhang Y, Feng Z, Bai Q, He J, Wang Y (2018). Effects of melatonin on antioxidant capacity in naked oat seedlings under drought stress. Molecules 23:1580. https://doi.org/10.3390/molecules23071580

Gillani SFA, Zhuang Z, Rasheed A, Haq IU, Abbasi A, Ahmed S, Wang Y, Khan MT, Sardar R, Peng Y (2022). Brassinosteroids induced drought resistance of contrasting drought-responsive genotypes of maize at physiological and transcriptomic levels. Frontiers in Plant Science 13:961680. https://doi.org/10.3389/fpls.2022.961680

Gong F, Wu X, Zhang H, Chen Y, Wang W (2015). Making better maize plants for sustainable grain production in a changing climate. Frontiers in Plant Science 6:835. https://doi.org/10.3389/fpls.2015.00835

Guo J, Li C, Zhang X, Li Y, Zhang D, Shi Y, Song Y, Li Y, Yang D, Wang T (2020). Transcriptome and GWAS analyses reveal candidate gene for seminal root length of maize seedlings under drought stress. Plant Science 292:110380. https://doi.org/10.1016/j.plantsci.2019.110380

Gupta A, Rico-Medina A, Caño-Delgado AI (2020). The physiology of plant responses to drought. Science 368:266-269. https://doi.org/10.1126/science.aaz7614

Hao Z, Li X, Liu X, Xie C, Li M, Zhang D, Zhang S (2010). Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica 174:165-177. https://doi.org/10.1007/s10681-009-0091-5

He K, Zhang Y, Ren W, Chen P, Liu J, Mi G, Chen F, Pan Q (2023). QTL mapping and transcriptome analysis identify candidate genes influencing water–nitrogen interaction in maize. The Crop Journal 11:1872-1883. https://doi.org/10.1016/j.cj.2023.09.001

Hoisington D, Khairallah M, Reeves T, Ribaut J-M, Skovmand B, Taba S, Warburton M (1999). Plant genetic resources: what can they contribute toward increased crop productivity? Proceedings of the National Academy of Sciences 96:5937-5943. https://doi.org/10.1073/pnas.96.11.5937

Hostetler AN, Morais de Sousa Tinoco S, Sparks EE (2024). Root responses to abiotic stress: a comparative look at root system architecture in maize and sorghum. Journal of Experimental Botany 75:553-562. https://doi.org/10.1093/jxb/erad390

Hsiao TC, Xu LK (2000). Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of Experimental Botany 51:1595-1616. https://doi.org/10.1093/jexbot/51.350.1595

Hu X, Wang G, Du X, Zhang H, Xu Z, Wang J, Chen G, Wang B, Li X, Chen X (2021). QTL analysis across multiple environments reveals promising chromosome regions associated with yield-related traits in maize under drought conditions. The Crop Journal 9:759-766. https://doi.org/10.1016/j.cj.2020.10.004

Huang B, Chen Y-E, Zhao Y-Q, Ding C-B, Liao J-Q, Hu C, Zhou L-J, Zhang Z-W, Yuan S, Yuan M (2019). Exogenous melatonin alleviates oxidative damages and protects photosystem II in maize seedlings under drought stress. Frontiers in Plant Science 10:677. https://doi.org/10.3389/fpls.2019.00677

Jiang C, Zu C, Lu D, Zheng Q, Shen J, Wang H, Li D (2017). Effect of exogenous selenium supply on photosynthesis, Na+ accumulation and antioxidative capacity of maize (Zea mays L.) under salinity stress. Scientific Reports 7:42039. https://doi.org/10.1038/srep42039

Jiang Y, Su S, Chen H, Li S, Shan X, Li H, Liu H, Dong H, Yuan Y (2023). Transcriptome analysis of drought‐responsive and drought‐tolerant mechanisms in maize leaves under drought stress. Physiologia Plantarum 175:e13875. https://doi.org/10.1111/ppl.13875

Jiang Y, Zheng Q, Chen L, Liang Y, Wu J (2018). Ectopic overexpression of maize heat shock transcription factor gene ZmHsf04 confers increased thermo and salt-stress tolerance in transgenic Arabidopsis. Acta Physiologiae Plantarum 40:1-12. https://doi.org/10.1007/s11738-017-2587-2

Jiao P, Jiang Z, Miao M, Wei X, Wang C, Liu S, Guan S, Ma Y (2024). Zmhdz9, an HD-Zip transcription factor, promotes drought stress resistance in maize by modulating ABA and lignin accumulation. International Journal of Biological Macromolecules 258:128849. https://doi.org/10.1016/j.ijbiomac.2023.128849

Jurgens SK, Johnson R, Boyer J (1978). Dry matter production and translocation in maize subjected to drought during grain fill 1. Agronomy Journal 70:678-682. https://doi.org/10.2134/agronj1978.00021962007000040036x

Kaur R, Brar K, Sharma P, Singh A, Kaur D, Kaur G, Kumar R (2023). Mapping of yield contributing drought tolerance QTLs in maize and its utilization in marker-assisted breeding. Preprirnt Research Square: https://doi.org/10.21203/rs.3.rs-2685401/v1

Kavar T, Maras M, Kidrič M, Šuštar-Vozlič J, Meglič V (2008). Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Molecular Breeding 21:159-172. https://doi.org/10.1007/s11032-007-9116-8

Khalili M, Naghavi MR, Aboughadareh AP, Rad HN (2013). Effects of drought stress on yield and yield components in maize cultivars (Zea mays L.). International Journal of Agronomy and Plant Production 4(4):809-812.

Khan SU, Zheng Y, Chachar Z, Zhang X, Zhou G, Zong N, Leng P, Zhao J (2022). Dissection of maize drought tolerance at the flowering stage using genome-wide association studies. Genes 13:564. https://doi.org/10.3390/genes13040564

Khayatnezhad M, Gholamin R (2012). The effect of drought stress on leaf chlorophyll content and stress resistance in maize cultivars (Zea mays). African Journal of Microbiology Research 6:2844-2848.

Kim K-H, Lee B-M (2023). Effects of climate change and drought tolerance on maize growth. Plants 12:3548. https://doi.org/10.3390/plants12203548

Kopecká R, Kameniarová M, Černý M, Brzobohatý B, Novák J (2023). Abiotic stress in crop production. International Journal of Molecular Sciences 24:6603. https://doi.org/10.3390/ijms24076603

Leng P, Zhao J (2020). Transcription factors as molecular switches to regulate drought adaptation in maize. Theoretical and Applied Genetics 133:1455-1465. https://doi.org/10.1007/s00122-019-03494-y

Li B, Liu R, Liu J, Zhang H, Tian Y, Chen T, Li J, Jiao F, Jia T, Li Y (2024a). ZmMYB56 regulates stomatal closure and drought tolerance in maize seedlings through the transcriptional regulation of ZmTOM7. New Crops 1:100012. https://doi.org/10.1016/j.ncrops.2024.100012

Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013). Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology 31:688-691. https://doi.org/10.1038/nbt.2654

Li Y, Su Z, Lin Y, Xu Z, Bao H, Wang F, Liu J, Hu S, Wang Z, Yu X (2024b). Utilizing transcriptomics and metabolomics to unravel key genes and metabolites of maize seedlings in response to drought stress. BMC Plant Biology 24:34. https://doi.org/10.1186/s12870-023-04712-y

Liao S, Qin X, Luo L, Han Y, Wang X, Usman B, Nawaz G, Zhao N, Liu Y, Li R (2019). CRISPR/Cas9-induced mutagenesis of semi-rolled leaf1, 2 confers curled leaf phenotype and drought tolerance by influencing protein expression patterns and ROS scavenging in rice (Oryza sativa L.). Agronomy 9:728. https://doi.org/10.3390/agronomy9110728

Liu B, Wang N, Yang R, Wang X, Luo P, Chen Y, Wang F, Li M, Weng J, Zhang D (2024a). ZmADF5, a maize actin-depolymerizing factor conferring enhanced drought tolerance in maize. Plants 13:619. https://doi.org/10.3390/plants13050619

Liu H, Song S, Liu M, Mu Y, Li Y, Xuan Y, Niu L, Zhang H, Wang W (2023a). Transcription factor ZmNAC20 improves drought resistance by promoting stomatal closure and activating expression of stress-responsive genes in maize. International Journal of Molecular Sciences 24:4712. https://doi.org/10.3390/ijms24054712

Liu H, Wu Z, Bao M, Gao F, Yang W, Abou‐Elwafa SF, Liu Z, Ren Z, Zhu Y, Ku L (2024b). ZmC2H2‐149 negatively regulates drought tolerance by repressing ZmHSD1 in maize. Plant, Cell & Environment 47:885-899. https://doi.org/10.1111/pce.14798

Liu L, Zhang Y, Tang C, Shen Q, Fu J, Wang Q (2023b). Maize transcription factor ZmHsf28 positively regulates plant drought tolerance. International Journal of Molecular Sciences 24:8089. https://doi.org/10.3390/ijms24098079

Liu S, Qin F (2021). Genetic dissection of maize drought tolerance for trait improvement. Molecular Breeding 41:1-13. https://doi.org/10.1007/s11032-020-01194-w

Liu W, Li S, Zhang C, Jin F, Li W, Li X (2021). Identification of candidate genes for drought tolerance at maize seedlings using genome-wide association. Iranian Journal of Biotechnology 19:e2637. https://doi.org/10.30498/ijb.2021.209324.2637

Liu Y, Chen Z, Zhang C, Guo J, Liu Q, Yin Y, Hu Y, Xia H, Li B, Sun X, Li Y, Liu X (2023c). Gene editing of ZmGA20ox3 improves plant architecture and drought tolerance in maize. Plant Cell Reports 43:18. https://doi.org/10.1007/s00299-023-03090-x

Maazou A-RS, Tu J, Qiu J, Liu Z (2016). Breeding for drought tolerance in maize (Zea mays L.). American Journal of Plant Sciences 7:1858. https://doi.org/10.4236/ajps.2016.714172

Maiti R, Satya P (2014). Research advances in major cereal crops for adaptation to abiotic stresses. GM Crops & Food 5:259-279. https://doi.org/10.4161/21645698.2014.947861

Manjunath KK, Krishna H, Devate NB, Sunilkumar V, Patil SP, Chauhan D, Singh S, Kumar S, Jain N, Singh GP (2024). QTL mapping: insights into genomic regions governing component traits of yield under combined heat and drought stress in wheat. Frontiers in Genetics 14:1282240. https://doi.org/10.3389/fgene.2023.1282240

Mao H, Yu L, Han R, Li Z, Liu H (2016). ZmNAC55, a maize stress-responsive NAC transcription factor, confers drought resistance in transgenic Arabidopsis. Plant Physiology and Biochemistry 105:55-66. https://doi.org/10.1016/j.plaphy.2016.04.018

McMillen MS, Mahama AA, Sibiya J, Lübberstedt T, Suza WP (2022). Improving drought tolerance in maize: Tools and techniques. Frontiers in Genetics 13:1001001. https://doi.org/10.3389/fgene.2022.1001001

Min H, Chen C, Wei S, Shang X, Sun M, Xia R, Liu X, Hao D, Chen H, Xie Q (2016). Identification of drought tolerant mechanisms in maize seedlings based on transcriptome analysis of recombination inbred lines. Frontiers in Plant Science 7:1080. https://doi.org/10.3389/fpls.2016.01080

Mittler R (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science 11:15-19. https://doi.org/10.1016/j.tplants.2005.11.002

Nikolić A, Anđelković V, Dodig D, Mladenović-Drinić S, Kravić N, Ignjatović-Micić D (2013). Identification of QTL-s for drought tolerance in maize, II: yield and yield components. Genetika 45:341-350. https://doi.org/10.2298/GENSR1302341N

Ningning Z, Binbin L, Fan Y, Jianzhong C, Yuqian Z, Yejian W, Wenjie Z, Xinghua Z, Shutu X, Jiquan X (2023). Molecular mechanisms of drought resistance using genome-wide association mapping in maize (Zea mays L.). BMC Plant Biology 23:468. https://doi.org/10.1186/s12870-023-04489-0

Nuccio ML, Wu J, Mowers R, Zhou H-P, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E (2015). Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nature Biotechnology 33:862-869. https://doi.org/10.1038/nbt.3277

Pei Y-Y, Lei L, Fan X-W, Li Y-Z (2023). Effects of high air temperature, drought, and both combinations on maize: A case study. Plant Science 327:111543. https://doi.org/10.1016/j.plantsci.2022.111543

Prasanna B, Beiki A, Sekhar J, Srinivas A, Ribaut J-M (2009). Mapping QTLs for component traits influencing drought stress tolerance of maize (Zea mays L) in India. Journal of Plant Biochemistry and Biotechnology 18:151-160. https://doi.org/10.1007/BF03263313

Rahman H, Pekic S, Lazic-Jancic V, Quarrie S, Shah S, Pervez A, Shah M (2011). Molecular mapping of quantitative trait loci for drought tolerance in maize plants. Genetic and Molecular Research 10:889-901.

Ren J, Li Z, Wu P, Zhang A, Liu Y, Hu G, Cao S, Qu J, Dhliwayo T, Zheng H (2021). Genetic dissection of quantitative resistance to common rust (Puccinia sorghi) in tropical maize (Zea mays L.) by combined genome-wide association study, linkage mapping, and genomic prediction. Frontiers in Plant Science 12:692205. https://doi.org/10.3389/fpls.2021.692205

Ren Z, Fu J, Abou-Elwafa SF, Ku L, Xie X, Liu Z, Shao J, Wen P, Al Aboud NM, Su H (2024). Analysis of the molecular mechanisms regulating how ZmEREB24 improves drought tolerance in maize (Zea mays) seedlings. Plant Physiology and Biochemistry 207:108292. https://doi.org/10.1016/j.plaphy.2023.108292

Ribaut JM, Betran J, Monneveux P, Setter T (2009). Drought tolerance in maize. Handbook of Maize: its Biology. Springer, New York, NY, pp 311-344. https://doi.org/10.1007/978-0-387-79418-1_16

Robertson M, Fukai S, Ludlow M, Hammer G (1993). Water extraction by grain sorghum in a sub-humid environment. II. Extraction in relation to root growth. Field Crops Research 33:99-112. https://doi.org/10.1016/0378-4290(93)90096-6

Sarkar B, Varalaxmi Y, Vanaja M, RaviKumar N, Prabhakar M, Yadav SK, Maheswari M, Singh VK (2023). Mapping of QTLs for morphophysiological and yield traits under water-deficit stress and well-watered conditions in maize. Frontiers in Plant Science 14:1124619. https://doi.org/10.3389/fpls.2023.1124619

Sheoran S, Kaur Y, Kumar S, Shukla S, Rakshit S, Kumar R (2022). Recent advances for drought stress tolerance in maize (Zea mays l.): Present status and future prospects. Frontiers in Plant Science 13:872566. https://doi.org/10.3389/fpls.2022.872566

Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2017). ARGOS 8 variants generated by CRISPR‐Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnology Journal 15:207-216. https://doi.org/10.1111/pbi.12603

Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T (2017). Genomic selection for drought tolerance using genome-wide SNPs in maize. Frontiers in Plant Science 8:550. https://doi.org/10.3389/fpls.2017.00550

Song W, Zhao H, Zhang X, Lei L, Lai J (2016). Genome-wide identification of VQ motif-containing proteins and their expression profiles under abiotic stresses in maize. Frontiers in Plant Science 6:1177. https://doi.org/10.3389/fpls.2015.01177

Tang H, Zhang R, Wang M, Xie X, Zhang L, Zhang X, Liu C, Sun B, Qin F, Yang X (2023). QTL mapping for flowering time in a maize-teosinte population under well-watered and water-stressed conditions. Molecular Breeding 43:67. https://doi.org/10.1007/s11032-023-01413-0

Tardieu F, Simonneau T (1998). Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. Journal of Experimental Botany 419-432.

Tian T, Qin F (2023). CIMBL55: a repository for maize drought resistance alleles. Stress Biology 3:13. https://doi.org/10.1007/s44154-023-00091-4

Turan S, Kumar S, Cornish K (2014). Photosynthetic response of in vitro guayule plants in low and high lights and the role of non-photochemical quenching in plant acclimation. Industrial Crops and Products 54:266-271. https://doi.org/10.1016/j.indcrop.2014.01.022

Vazquez-Pozos V, Serrano-Flores E, Cruz-Izquierdo S, Lobato-Ortiz R (2020). QTL associated with drought tolerance in a population of tropical maize using lines and test crosses. Revista Fitotecnia Mexicana 43:101-112. https://doi.org/10.35196/rfm.2020.1.101

Von Braun J, Byerlee D, Chartres C, Lumpkin T, Olembo N, Waage J (2010). A draft strategy and results framework for the CGIAR. World Bank, CGIAR, Washington DC, USA.

Waititu JK, Zhang X, Chen T, Zhang C, Zhao Y, Wang H (2021). Transcriptome analysis of tolerant and susceptible maize genotypes reveals novel insights about the molecular mechanisms underlying drought responses in leaves. International Journal of Molecular Science 22. https://doi.org/10.3390/ijms22136980

Wang C-T, Ru J-N, Liu Y-W, Li M, Zhao D, Yang J-F, Fu J-D, Xu Z-S (2018a). Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants. International Journal of Molecular Sciences 19:3046. https://doi.org/10.3390/ijms19103046

Wang CT, Ru JN, Liu YW, Yang JF, Li M, Xu ZS, Fu JD (2018b). The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis. International Journal of Molecular Science 19. https://doi.org/10.3390/ijms19092580

Wang L, Chen L, Li R, Zhao R, Yang M, Sheng J, Shen L (2017). Reduced drought tolerance by CRISPR/Cas9-mediated SlMAPK3 mutagenesis in tomato plants. Journal of Agricultural and Food Chemistry 65:8674-8682. https://doi.org/10.1021/acs.jafc.7b02745

Wang N, Liu B, Liang X, Zhou Y, Song J, Yang J, Yong H, Weng J, Zhang D, Li M (2019). Genome-wide association study and genomic prediction analyses of drought stress tolerance in China in a collection of off-PVP maize inbred lines. Molecular Breeding 39:1-16. https://doi.org/10.1007/s11032-019-1013-4

Wang N, Wang Z-P, Liang X-L, Weng J-F, Lv X-L, Zhang D-G, Yang J, Yong H-J, Li M-S, Li F-H (2016). Identification of loci contributing to maize drought tolerance in a genome-wide association study. Euphytica 210:165-179. https://doi.org/10.1007/s10681-016-1688-0

Wang X, Guo Y, Wang Y, Peng Y, Zhang H, Zheng J (2024). ZmHDT103 negatively regulates drought stress tolerance in maize seedlings. Agronomy 14:134. https://doi.org/10.3390/agronomy14010134

Wu J, Jiang Y, Liang Y, Chen L, Chen W, Cheng B (2019). Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiology and Biochemistry 137:179-188. https://doi.org/10.1016/j.plaphy.2019.02.010

Wu X, Feng H, Wu D, Yan S, Zhang P, Wang W, Zhang J, Ye J, Dai G, Fan Y (2021). Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biology 22:1-26. https://doi.org/10.1186/s13059-021-02377-0

Xue Y, Warburton ML, Sawkins M, Zhang X, Setter T, Xu Y, Grudloyma P, Gethi J, Ribaut J-M, Li W (2013). Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theoretical and Applied Genetics 126:2587-2596. https://doi.org/10.1007/s00122-013-2158-x

Yang G, Pan Y, Pan W, Song Q, Zhang R, Tong W, Cui L, Ji W, Song W, Song B (2024). Combined GWAS and eGWAS reveals the genetic basis underlying drought tolerance in emmer wheat (Triticum turgidum L.). New Phytologist 242:2115-2131. https://doi.org/10.1111/nph.19589

Yang Y, Wang B, Wang J, He C, Zhang D, Li P, Zhang J, Li Z (2022). Transcription factors ZmNF-YA1 and ZmNF-YB16 regulate plant growth and drought tolerance in maize. Plant Physiology 190:1506-1525. https://doi.org/10.1093/plphys/kiac340

Ying S, Zhang D-F, Fu J, Shi Y-S, Song Y-C, Wang T-Y, Li Y (2012). Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis. Planta 235:253-266. https://doi.org/10.1007/s00425-011-1496-7

Zenda T, Liu S, Wang X, Liu G, Jin H, Dong A, Yang Y, Duan H (2019). Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines. International Journal of Molecular Sciences 20:1268. https://doi.org/10.3390/ijms20061268

Zhang C, Yang R, Zhang T, Zheng D, Li X, Zhang ZB, Li LG, Wu ZY (2023a). ZmTIFY16, a novel maize TIFY transcription factor gene, promotes root growth and development and enhances drought and salt tolerance in Arabidopsis and Zea mays. Plant Growth Regulation 100:149-160. https://doi.org/10.1007/s10725-022-00946-2

Zhang Y, Xu J, Li R, Ge Y, Li Y, Li R (2023b). Plants’ response to abiotic stress: Mechanisms and strategies. International Journal of Molecular Sciences 24:10915. https://doi.org/10.3390/ijms241310915

Zhang Z, Qu J, Lu M, Zhao X, Xu Y, Wang L, … Wang W (2024). The maize transcription factor CCT regulates drought tolerance by interacting with Fra a 1, E3 ligase WIPF2, and auxin response factor Aux/IAA8. Journal of Experimental Botany 75:103-122. https://doi.org/10.1093/jxb/erad372

Zheng H, Yang Z, Wang W, Guo S, Li Z, Liu K, Sui N (2020). Transcriptome analysis of maize inbred lines differing in drought tolerance provides novel insights into the molecular mechanisms of drought responses in roots. Plant Physiology and Biochemistry 149:11-26. https://doi.org/10.1016/j.plaphy.2020.01.027

Zhong X, Hong W, Shu Y, Li J, Liu L, Chen X, Islam F, Zhou W, Tang G (2022). CRISPR/Cas9 mediated gene-editing of GmHdz4 transcription factor enhances drought tolerance in soybean (Glycine max [L.] Merr.). Frontiers in Plant Science 13:988505. https://doi.org/10.3389/fpls.2022.988505

Zhou Y, Schideman L, Park D, Stirbet A, Rupassara S, Krehbiel J, Seufferheld M (2015). Characterization of a Chlamydomonas reinhardtii mutant strain with improved biomass production under low light and mixotrophic conditions. Algal Research 11:134-147. https://doi.org/10.1016/j.algal.2015.06.001

Zou C, Tan H, Huang K, Zhai R, Yang M, Huang A, Wei X, Mo R, Xiong F (2024). Physiological characteristic changes and transcriptome analysis of maize (Zea mays L.) roots under drought stress. International Journal of Genomics 2024. https://doi.org/10.1155/2024/5681174

Downloads

Published

2024-09-12

How to Cite

GAO, Z.-W., CUI, Y.-H., LI, X.-N., BAI, M.-Y., ASSERI, T. A., HASHEM, M., & WANG, Z.-J. (2024). Genetic improvement of drought stress tolerance in maize, recent advancements and future research direction. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(3), 13840. https://doi.org/10.15835/nbha52313840

Issue

Section

Review Articles
CITATION
DOI: 10.15835/nbha52313840

Most read articles by the same author(s)