Eriophyid mites in fruit crops: Biology, ecology, molecular aspects, and innovative control strategies

Authors

  • Syed U. MAHMOOD Institute of Zoology, Guangdong Academy of Sciences, Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangzhou, Guangdong 510260 (CN)
  • Runqian MAO Institute of Zoology, Guangdong Academy of Sciences, Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangzhou, Guangdong 510260 (CN)
  • Inzamam UL HAQ Fujian Agriculture and Forestry University, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou (CN)
  • Xiaoduan FANG Institute of Zoology, Guangdong Academy of Sciences, Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangzhou, Guangdong 510260 (CN)

DOI:

https://doi.org/10.15835/nbha52313781

Keywords:

chemical ecology, eriophyid mite, fruit crop pests, integrated pest management, molecular aspects

Abstract

Eriophyid mites, minute arachnids within the family Eriophyidae, pose significant threats to fruit crops globally, leading to substantial economic losses in agriculture. This comprehensive review aims to elucidate the intricate biology, ecology, molecular aspects, and innovative control strategies of these pervasive pests. Eriophyid mites exhibit a complex life cycle and reproductive strategy, with their habitat preferences and distribution heavily influenced by environmental factors and host-plant interactions. Advances in molecular biology have provided more profound insights into their genetics and interactions at the molecular level, revealing crucial information for developing targeted pest management strategies. Control strategies for eriophyid mites encompass chemical methods, such as applying acaricides and understanding resistance mechanisms, as well as biological control using natural predators and parasitoids. Cultural and physical control methods, including crop rotation and mechanical removal, play vital roles in integrated pest management (IPM). Emerging approaches like RNA interference (RNAi) and semiochemical-based controls offer promising alternatives for sustainable pest management. This review underscores the importance of a multifaceted approach to effectively manage eriophyid mite infestations, integrating traditional and novel strategies. Future research should focus on overcoming current challenges, enhancing the efficacy of control methods, and further exploring the molecular mechanisms underlying mite-plant interactions

References

Abdel Ghani SB, Al-Azzazy MM, Lucini L (2022). The miticidal activity of silver nanoparticles towards phytophagous and predatory mites of citrus: efficacy and selectivity. Emirates Journal of Food and Agriculture 34(6):509-518. http://dx.doi.org/10.9755/ejfa.2022.v34.i6.2888

Abdel-Khalek AA, Momen FM (2022). Biology and life table parameters of Proprioseiopsis lindquisti on three eriophyid mites (Acari: Phytoseiidae: Eriophyidae). Persian Journal of Acarology 11(1):59-69. https://doi.org/10.22073/pja.v11i1.68574

Abo-Shnaf R, Allam SF, El-Sobky ML, Abdul-Shafc AF, El-Tony AG (2022). Biodiversity of mites in mango orchards (Mangifera indica L.) and evaluation of some mineral and essential oils against Cisaberoptus kenyae Keifer (Acari: Eriophyidae) management. Acarologia 62(1):130-142. https://doi.org/10.24349/7izc-dm2n

Adesanya AW, Lavine MD, Moural TW, Lavine LC, Zhu F, Walsh DB (2021). Mechanisms and management of acaricide resistance for Tetranychus urticae in agroecosystems. Journal of Pest Science 94:639-663. https://doi.org/10.1007/s10340-021-01342-x

Agasyeva IS, Ismailov VY, Nefedova MV, Nastasiy AS (2022). Development of methods for the use of aphid alarm and mite aggregation pheromones. Academic Journal of Chemistry 8(4):236-239. https://doi.org/10.32861/jac.84.236.239

Aghazadeh K, Lotfollahi P, Azimi S (2023). Aceria spp. of Maku county with two new records for Asia and eight new records for West Azerbaijan province of Iran. Journal of Entomological Society of Iran 42(3):231-248. https://doi.org/10.52547/JESI.42.3.7

Al-Azzazy M, Ghani S (2023). Avaliação de campo da eficácia de nanopartículas de cobre contra ácaros associados às laranjeiras. Brazilian Journal of Biology 84. https://doi.org/10.1590/1519-6984.270451

Alkathiry H, Al-Rofaai A, Ya’cob Z, Cutmore TS, Mohd-Azami SNI, Husin NA, . . . Ishak SN (2022). Habitat and season drive chigger mite diversity and abundance on small mammals in Peninsular Malaysia. Pathogens 11(10):1087. https://doi.org/10.3390/pathogens11101087

Amini MY, Daneshyar JA, Mohammadi MM, Memlawal R (2023). Simulation of diapause induction in spider mites (Tetranychus urticae and T. kanzawai) by reproducing field environments in the laboratory. NUIJB 2(02):53-60.

Amrine Jr.J, Stasny TA, Flechtmann CH (2003). Revised keys to world genera of Eriophyoidea (Acari: Prostigmata). Indira Publishing House.

Arreguin-Zavala JdJ, Otero-Colina G, Pineda S, Lopez-Bautista E, Flores-Martinez BA, Rebollar-Alviter A (2021). Evaluation of different control strategies for the management of redberry disease associated with Acalitus orthomera (Eriophyoidea: Eriophyidae) in commercial blackberry crops. Journal of Plant Diseases and Protection 128:191-202. https://doi.org/10.1007/s41348-020-00361-7

Arribas P, Andújar C, Moraza ML, Linard B, Emerson BC, Vogler AP (2020). Mitochondrial metagenomics reveals the ancient origin and phylodiversity of soil mites and provides a phylogeny of the Acari. Molecular Biology and Evolution 37(3):683-694. https://doi.org/10.1093/molbev/msz255

Bachhar A, Bhaskar H, Pathrose B, Shylaja M (2019). Resistance to acaricides in Tetranychus truncatus Ehara on vegetables. Indian Journal of Entomology 81(1):130-133. https://doi.org/10.5958/0974-8172.2019.00018.X

Beltran MJB (2020). Preliminary sampling of dry bulb mite, Aceria tulipae Keifer in native garlic in Ilocos Region, Luzon Island, Philippines. Archives of Phytopathology and Plant Protection 53(13-14):653-658. https://doi/abs/10.1080/03235408.2020.1789823

Bensoussan A (2018). Estimation and control of dynamical systems. Heidelberg: Springer. https://doi.org/10.1007/978-3-319-75456-7

Bergmann K-C (2022). Biology of house dust mites and storage mites. Allergo Journal International 31(8):272-278. https://doi.org/10.1007/s40629-022-00231-8

Bhuvaneswari K, Mani M, Suganthi A, Manivannan A (2022). Novel insecticides and their application in the management of horticultural crop pests. Trends in Horticultural Entomology 419-454. https://doi.org/10.1007/978-981-19-0343-4_13

Bilki K, Urhan R, Karaca M (2022). Mites of the family Zerconidae (Acari: Mesostigmata) from Southwestern Turkey, with description of three new species. Acarological Studies 4(2):89-103. https://doi.org/10.47121/acarolstud.1129248

Bizzarri L, Baer CS, García-Robledo C (2022). DNA barcoding reveals generalization and host overlap in hummingbird flower mites: implications for the mating rendezvous hypothesis. The American Naturalist 199(4):576-583. https://doi.org/10.1086/718474

Brewer L, Shaw P, Wallis R, Alspach P, Aldworth M, Orellana-Torrejon C, . . . Bus VG (2018). Genetic mapping of pear sawfly (Caliroa cerasi) and pear blister mite (Eriophyes pyri) resistance in an interspecific pear family. Tree Genetics & Genomes 14(3):38. https://link.springer.com/article/10.1007/s11295-018-1254-0

Brown MS, Blubaugh CK, Chong JH (2021). Biology and management of eriophyid mites in turfgrass. Journal of Integrated Pest Management 12(1):25. http://dx.doi.org/10.1093/jipm/pmab020

Buttachon S, Arikit S, Nuchchanart W, Puangmalee T, Duanchay T, Jampameung N, Sanguansub S (2022). Geometric morphometric analysis and molecular identification of coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae) collected from Thailand. Insects 13(11):1022. https://doi.org/10.3390/insects13111022

Chandrashekar G, Maheswarappa H, Hubballi M, Jilu V, Sudarshan G, Basavaraju T (2020). Management of coconut eriophyid mite (Aceria guerreronis Keifer) with INM and azadirachtin under field condition in Karnataka. Journal of Entomology and Zoology Studies 8:982-989.

Chaubey AK, Aasha (2021). Entomopathogenic nematodes. Microbial Approaches for Insect Pest Management 385-418. http://dx.doi.org/10.1016/B978-0-12-823355-9.00007-9

Chen L, Yu XY, Xue XF, Zhang F, Guo LX, Zhang HM, . . . Sun JT (2023). The genome sequence of a spider mite, Tetranychus truncatus, provides insights into interspecific host range variation and the genetic basis of adaptation to a low‐quality host plant. Insect Science. https://doi.org/10.1111/1744-7917.13212

Childers C, Easterbrook M, Solomon M (1996). Chemical control of eriophyoid mites. In: Elsevier. World Crop Pests 6:695-726. https://doi.org/10.1016/S1572-4379(96)80048-0

Choh Y, Janssen A (2023). A tiny cuckoo: Risk‐dependent interspecific brood parasitism in a predatory mite. Functional Ecology. https://doi.org/10.1111/1365-2435.14332

Chong JH (2022). Phytophagous mites and their management on ornamental plants. Clemson (SC): Clemson Cooperative Extension, Land-Grant Press by Clemson Extension, LGP 1154(9).

Demard EP, Qureshi JA (2023). Prey suitability and life table analysis of Amblyseius swirskii and Amblyseius aerialis (Parasitiformes: Phytoseiidae) on Panonychus citri (Acariformes: Tetranychidae) and Phyllocoptruta oleivora (Acariformes: Eriophyidae). Biological Control 182:105232. https://doi.org/10.1016/j.biocontrol.2023.105232

Demard EP, Döker I, Qureshi JA (2023). Incidence of eriophyid (Acariformes: Eriophyidae) and predatory mites (Parasitiformes: Phytoseiidae) in Florida citrus orchards under three different pest management programs. https://doi.org/10.1007/s10493-023-00882-4

Demard E, Qureshi JA (2020). Citrus rust mite Phyllocoptruta oleivora (Ashmead)(Arachnida: Acari: Eriophyidae): EENY748/IN1278, 2/2020. EDIS 2020(3). http://dx.doi.org/10.32473/edis-in1278-2020

Desnitskiy AG, Chetverikov PE, Ivanova LA, Kuzmin IV, Ozman-Sullivan SK, Sukhareva SI (2023). Molecular aspects of gall formation induced by mites and insects. Life 13(6):1347. https://doi.org/10.3390/life13061347

Dively GP, Hartman ME, Ochoa R (2022). Population dynamics of eriophyid mites and evaluation of different management practices on timothy grass. Journal of Economic Entomology 115(2):602-610. https://doi.org/10.1093/jee/toac004

Dousseau S, Queiroz R, Alves FdL, Celestino F (2023). O uso de Lithothamnium calcareum para controle do ácaro da falsa Ferrugem Phyllocoptruta Oleivora Ashmed (1879), em laranjais da fazenda Santa Luzia, Rio do Norte, Linhares, ES.

Duso C, Castagnoli M, Simoni S, Angeli G (2010). The impact of eriophyoids on crops: recent issues on Aculus schlechtendali, Calepitrimerus vitis and Aculops lycopersici. Experimental and Applied Acarology 51:151-168. http://dx.doi.org/10.1007/s10493-009-9300-0

Edslev SM, Andersen PS, Agner T, Saunte DML, Ingham AC, Johannesen TB, Clausen M-L (2021). Identification of cutaneous fungi and mites in adult atopic dermatitis: analysis by targeted 18S rRNA amplicon sequencing. BMC Microbiology 21:1-8. https://doi.org/10.1186/s12866-021-02139-9

El-Banhawy E, El-Bagoury M (1985). Toxicity of avermectin and fenvalerate to the eriophyid gall mite Eriophyes dioscoridis and the predacious mite Phytoseius finitimus (Acari: Eriophyidae; Phytoseiidae). International Journal of Acarology 11(4):237-240.

Ermilov SG, Subías LS, Shtanchaeva UY, Friedrich S (2023). Contribution to the knowledge of the oribatid mite genus Hermannobates (Acari, Oribatida, Hermanniellidae). International Journal of Acarology 1-6. http://dx.doi.org/10.1080/01647954.2023.2194890

Fang Y, Fang Y, Chu L, Zuo Z, Liu L, Feng R, . . . Hu C (2022). The first complete mitochondrial genome of Bdelloidea (Trombidiformes, Eupodina) and comparative genomics provide insights into gene rearrangement and evolution of trombidiform mites. Journal of Stored Products Research 98:102009. http://dx.doi.org/10.1016/j.jspr.2022.10200

Furmanczyk EM, Parveaud C-E, Jacquot M, Warlop F, Kienzle J, Kelderer M, . . . Tartanus M (2022). An overview of pest and disease occurrence in organic pome fruit orchards in Europe and on the implementation of practices for their control. Agriculture 12(12):2136. https://doi.org/10.3390/agriculture12122136

Genath A, Sharbati S, Buer B, Nauen R, Einspanier R (2020). Comparative transcriptomics indicates endogenous differences in detoxification capacity after formic acid treatment between honey bees and varroa mites. Scientific Reports 10(1):21943. https://doi.org/10.1038/s41598-020-79057-9

George A, Rao C, Mani M (2022). Pests of citrus and their management. Trends in Horticultural Entomology 551-575. http://dx.doi.org/10.1007/978-981-19-0343-4_17

Gope A, Dey S, Debnath P, Bala SC (2022). Population dynamics of dry bulb mite, Aceria tulipae (Keifer) infesting stored garlic in West Bengal, India.

Hajizadeh J, Hosseini R (2023a). Damage of eriophyid mites (Acari: Eriophyidae) on privet bushes in Guilan province. Plant Pests Research 13(1):63-68. http://dx.doi.org/10.22124/iprj.2023.24532.1518

Hajizadeh J, Hosseini R (2023b). Predatory mites associated with eriophyid mites (Acari: Eriophyidae) on privet bushes in Guilan province Iran. Journal of Biological Studies 6(2):249-257. http://dx.doi.org/10.62400/jbs.v6i2.7909

Hamdi FA, Kataoka K, Arai Y, Takeda N, Yamamoto M, Mohammad YF, . . . Suzuki T (2023). An octopamine receptor involved in feeding behavior of the two-spotted spider mite, Tetranychus urticae Koch: a possible candidate for RNAi-based pest control. Entomologia Generalis 43(1). http://dx.doi.org/10.1127/entomologia/2023/1808

Hamza MZ, Ashfaq M, Riaz H, Saeed S (2023). Current status and distribution of major RNA viruses infecting onion and garlic crops in Punjab, Pakistan. Emirates Journal of Food and Agriculture. http://dx.doi.org/10.9755/ejfa.2023.v35.i8.3123

Hazra T, Adroit B, Denk T, Wappler T, Sarkar SK, Bera S, Khan MA (2023). Marginal leaf galls on Pliocene leaves from India indicate mutualistic behavior between Ipomoea plants and Eriophyidae mites. Scientific Reports 13(1):5702. https://doi.org/10.1038/s41598-023-31393-2

Hoffmann J (2004). Spray formulation efficacy–a holistic and futuristic perspective Jerzy A. Zabkiewicz.

Huszar J (2023). Influence of temperature and host plants on the development and fecundity of the spider mite Tetranychus urticae (Acarina: Tetranychidae). Plant Protection Science-UZPI (Czech Republic) 40(4). http://dx.doi.org/10.17221/465-PPS

İnak E, Çobanoğlu S, Auger P, Migeon A (2022). Molecular identification and phylogenetic analysis of spider mites (Prostigmata: Tetranychidae) of Turkey. Experimental and Applied Acarology 87(2-3):195-205. https://doi.org/10.1007/s10493-022-00728-5

Incedayi G, Cimen H, Ulug D, Touray M, Bode E, Bode HB, . . . Cakmak I (2021). Relative potency of a novel acaricidal compound from Xenorhabdus, a bacterial genus mutualistically associated with entomopathogenic nematodes. Scientific Reports 11(1):11253. https://doi.org/10.1038/s41598-021-90726-1

Jeppson LR, Keifer HH, Baker EW (1975). Mites injurious to economic plants. Univ of California Press.

Jia X, Jiang X, Li Z, Mu J, Wang Y, Niu Y (2023). Application of deep learning in image recognition of citrus pests. Agriculture 13(5):1023. http://dx.doi.org/10.3390/agriculture13051023

Joshi NK, Phan NT, Biddinger DJ (2023). Management of Panonychus ulmi with various miticides and insecticides and their toxicity to predatory mites conserved for biological mite control in Eastern US apple orchards. Insects 14(3):228. https://doi.org/10.3390/insects14030228

Kalile MO, Cardoso AC, Pallini A, Fonseca MM, Ferreira‐Junior TA, Janssen A (2023). A predatory mite that suppresses Diaphorina citri populations on plants with pollen and oviposition sites. Entomologia Experimentalis et Applicata. https://doi.org/10.1111/eea.13326

Kaur P, Bhullar M (2015). Biological and molecular approaches in management of mite pests. Biological and Molecular Approaches in Pest Management 312.

Kennedy JS, Lekshmi JK (2022). Holistic pest management strategies in tropical plant species. In: Tropical Plant Species and Technological Interventions for Improvement. IntechOpen. http://dx.doi.org/10.5772/intechopen.105104

Kolcu A (2019). Domates pas akarı [Aculops ıycopersici (Massee)] ve avcı akar Amblyseius Swirskii Athias-Henriot (Acari: Eriophyidae, Phytoseiidae) üzerine karşılaştırmalı toksikolojik araştırmalar Bursa Uludağ Üniversitesi].

Kolcu A, Kumral NA (2023). The toxic effects of some acaricides on the tomato russet mite and its predator Amblyseius swirskii Athias-Henriot, 1962 (Acari: Phytoseiidae). Turkish Journal of Entomology 47(1):3-13. http://dx.doi.org/10.16970/entoted.999028

Kumral NA, Çobanoğlu S, Göksel PH, Aksoy A (2021). Toxic effects of some acaricides on Aceria oleae (Nalepa, 1900)(Acari: Eriophyidae) and its predator Neoseiulus californicus (McGregor, 1954)(Acari: Phytoseiidae) under laboratory conditions. Turkish Journal of Entomology 45(4):485-498. https://doi.org/10.16970/entoted.999028

Li N, Sun JT, Yin Y, Hong XY, Xue XF (2023). Global patterns and drivers of herbivorous eriophyoid mite species diversity. Journal of Biogeography 50(2):330-340. http://dx.doi.org/10.1111/jbi.14535

Lindquist E (1996). External anatomy and systematics 1.1. 1. External anatomy and notation of structures. In: World Crop Pests 6:3-31. https://doi.org/10.1016/S1572-4379(96)80003-0

Liu L, Yao G, Yang J, Wang G (2022). One new genus, ten new species, and four new records of eriophyoid mites (Acari: Eriophyoidea) in Tibet, China. Systematic and Applied Acarology 27(7):1295-1336. https://doi.org/10.11158/saa.27.7.3

Lotfollahi P, Honarmand A, Hashemi-Khabir Z, Xue X-F (2023). Three new gall forming Eriophyes species (Acari: Eriophyidae) on rosaceous plants in Iran. Systematic and Applied Acarology 28(8):1429-1446. https://doi.org/10.11158/saa.28.8.13

Lotfollahi P, Mehri-Heyran H, Azimi S, de Lillo E (2023). Field and laboratory observations on the biology of Aceria angustifoliae with emphasis on emergence of overwintering mites. Insects 14(7):633. https://doi.org/10.3390/insects14070633

Luong TKN (2022). Interactions between resistance genes in wheat Triticum aestivum L. and wheat curl mite populations Aceria tosichella Keifer (Eriophyidae).

Maity S, Mondal S (2023). Diversity of mite fauna associated with some fruit trees in Paschim Medinipur district of West Bengal, India with their economic importance. Acta Entomology and Zoology 4(1):44-47. https://doi.org/10.33545/27080013.2023.v4.i1a.95

Marcic D (2012). Acaricides in modern management of plant-feeding mites. Journal of Pest Science 85(4):395-408. http://dx.doi.org/10.1007/s10340-012-0442-1

Masier S, Taudière A, Roy LJ, Carrasco D, Barnagaud JY, Planchon C, . . . Roy L (2023). High‐throughput behavioral phenotyping of tiny arthropods: Chemosensory traits in a mesostigmatic hematophagous mite. Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 339(1):46-62. https://doi.org/10.1002%2Fjez.2651

Minguely C, Norgrove L, Burren A, Christ B (2021). Biological control of the raspberry eriophyoid mite Phyllocoptes gracilis using entomopathogenic fungi. Horticulturae 7(3):54. https://doi.org/10.3390/horticulturae7030054

Mohan C, Josephrajkumar A, Prathibha P, Sujithra M, Sajan JV, Anes K (2022). Pests and their management in coconut. Trends in Horticultural Entomology 1411-1439. http://dx.doi.org/10.1007/978-981-19-0343-4_60

Moskalets V, Moskalets T, Kliuchevych M, Pеlеkhаta N, Svitelskyi M (2022). Sea buckthorn gall mite (Aceria hippophaena Nal.) in the orchards of sea buckthorn (Hippophae rhamnoides L.) and elements of its control agrotechnology. Scientific Horizons 25(12). http://dx.doi.org/10.48077/scihor.25(12).2022.51-59

Möth S, Richart-Cervera S, Comsa M, Herrera RA, Hoffmann C, Kolb S, . . . Tolle P (2023). Local management and landscape composition affect predatory mites in European wine-growing regions. Agriculture, Ecosystems & Environment 344:108292. https://doi.org/10.1016/j.agee.2022.108292

Navia D, de Mendonça RS, Skoracka A, Szydło W, Knihinicki D, Hein GL, . . . Lau D (2013). Wheat curl mite, Aceria tosichella, and transmitted viruses: an expanding pest complex affecting cereal crops. Experimental and Applied Acarology 59:95-143. https://doi.org/10.1007/s10493-012-9633-y

Navia D, Ochoa R, Welbourn C, Ferragut F (2009). Adventive eriophyoid mites: A global review of their impact, pathways, prevention and challenges. Experimental & Applied Acarology 51:225-255. https://doi.org/10.1007/s10493-009-9327-2

Nganso BT, Pines G, Soroker V (2022). Insights into gene manipulation techniques for Acari functional genomics. Insect Biochemistry and Molecular Biology 143:103705. https://doi.org/10.1016/j.ibmb.2021.103705

Palmer C, Vea E (2012). IR-4 Ornamental horticulture program mite efficacy: a literature review. The IR-4 Project.

http://www.ir4project.org/about-environmental-horticulture/environmental-horticulture-research-summaries

Parmagnani AS, Mannino G, Brillada C, Novero M, Dall’Osto L, Maffei ME (2023). Biology of two-spotted spider mite (Tetranychus urticae): Ultrastructure, photosynthesis, guanine transcriptomics, carotenoids and chlorophylls metabolism, and decoyinine as a potential acaricide. International Journal of Molecular Sciences 24(2):1715. https://doi.org/10.3390%2Fijms24021715

Perkins JA, Pointon H, Isaacs R (2021). Efficacy of miticticides to reduce Grape Erineum Mite (GEM) infestation in vineyards, 2020. Arthropod Management Tests 46(1):tsab054. http://dx.doi.org/10.1093/amt/tsab054

Pešić V, Jovanović M, Oliveira AE, Pedro A, Freira M, Morais MM (2023). New records of water mites (Acari, Hydrachnidia) from Portugal revealed by DNA barcoding, with the description of Atractidesmarizae sp. nov. ZooKeys 1151:205. https://doi.org/10.3897/zookeys.1151.100766

Pfingstl T, Kerschbaumer M (2022). Sexually dimorphic claws predict courtship and mating sequence in the intertidal oribatid mite Fortuynia atlantica (Acari, Oribatida). Acarologia 62(3):666-671. http://dx.doi.org/10.24349/55m8-v2ub

Pirithiraj U, Soundararajan R (2023). Trophic level interactions of host plant’s biophysical traits with insect pests and natural enemies on three jasmine species: a principal component analysis. Arthropod-Plant Interactions 17(5):661-671. http://dx.doi.org/10.1007/s11829-023-09986-5

Pournajafi H, Khanjani M, Soltani J (2023). Sex-ratio deviation and sex-determining bacteria detected by multiplex PCR in the predatory mite Amblyseius swirskii (Acari: Phytoseiidae). Persian Journal of Acarology 12(2):337-344. http://dx.doi.org/10.22073/pja.v12i2.77489

Prajapati JN, Shukla A, Surani PM (2022). Evaluation of entomopathogenic fungi against sorghum mite, Oligonychus indicus Hirst. Journal of Experimental Zoology India 25(1).

Quaintance AL (1912). The Leaf Blister Mite:(Eriophyes Pyri Pagenstecher). US Department of Agriculture, Bureau of Entomology.

Queiroz MCV, de Oliveira FA, de Souza AP, Sato ME (2021). Development of microsatellite markers for the predatory mite Phytoseiulus macropilis and cross-amplification in three other species of phytoseiid mites. Experimental and Applied Acarology 83(1):1-12. https://doi.org/10.1007/s10493-020-00572-5

Revynthi AM, Cruz LF, Canon MA, Crane JH, Kendra PE, Mannion C, Carrillo D (2022). Evaluation of abamectin as a potential chemical control for the lychee erinose mite (Acari: Eriophyidae), a new invasive pest in Florida. Florida Entomologist 105(1):1-5. http://dx.doi.org/10.1653/024.105.0101

Rodrigues S, Figueiredo E, Mexia A, Mateus C, Godinho MDC (2011). Integrated pest management in vegetable protected crops in the Oeste region. Acta Horticulturae 917:93-101. https://doi.org/10.17660/ActaHortic.2011.917.11

Rosa-Diaz I, Rowe J, Cayuela-Lopez A, Arbona V, Diaz I, Jones AM (2023). Stomata, a vulnerability in the plant defence against phytophagous mites that ABA can overcome. bioRxiv 2023.2009. 2029.555308. https://doi.org/10.1101/2023.09.29.555308

Roseleen SSJ, Ramaraju K (2012). Acaricidal effects and residues of profenofos and abamectin on the nut-infesting eriophyid mite, Aceria guerreronis Keifer (Acari: Prostigmata) on coconut. International Journal of Acarology 38(6):465-470. http://dx.doi.org/10.1080/01647954.2012.662523

Rueda-Ramírez D, Santos JC, Young MR, Mowery J, Bauchan G, Ochoa R, Palevsky E (2022). In memory of Gary Bauchan: Utilizing an integrated taxonomy approach for the description of a new species of Gamasellodes (Mesostigmata: Ascidae). Systematic and Applied Acarology 27(2):165-180. http://dx.doi.org/10.11158/saa.27.2.2

Salazar‐Fillippo AA, Teunkens B, Leirs H, Frouz J, van Diggelen R, Miko L (2022). Quantitative assessment of the dispersal of soil‐dwelling oribatid mites via rodents in restored heathlands. Ecology and Evolution 12(12):e9653. https://doi.org/10.1002%2Fece3.9653

Sarwar M (2019). Biology and ecology of some predaceous and herbivorous mites important from the agricultural perception. Pests Control and Acarology 123. http://dx.doi.org/10.5772/intechopen.83744

Sarwar M (2020). Mite (Acari acarina) vectors involved in transmission of plant viruses. Applied Plant Virology 257-273. Elsevier. http://dx.doi.org/10.1016/B978-0-12-818654-1.00020-7

Sathish B, Radadia G, Abhishek S (2019). Feeding potential of phytoseiid predator, Neoseiulus baraki Athias-Henriot on coconut eriophyid mite, Aceria guerreronis Keifer. Annals of Plant Protection Sciences 27(3):312-315. http://dx.doi.org/10.5958/0974-0163.2019.00067.3

Sathish B, Radadia G, Shukla A (2019). Laboratory evaluation of different bio-pesticides against coconut eriophyid mite, Aceria guerreronis Kiefer. Journal of Entomology and Zoological Studies 7(3):1185-1188.

Schmidt-Jeffris RA, Beers EH, Duso C (2019). Integrated management of mite pests of tree fruit. In: Integrated management of diseases and insect pests of tree fruit. Burleigh Dodds Science Publishing, pp 425-452.

Seeman OD, Walter DE (2023). Phoresy and mites: More than just a free ride. Annual Review of Entomology 68:69-88. http://dx.doi.org/10.1146/annurev-ento-120220-013329

Selvaraj C, Devi M, Umapathy G (2018). Assessment of damage potential and management of jasmine eriophyid mite, Aceria jasmini. Advances in Floriculture and Urban Horticulture 305.

Serber Z (2022). Characterizing the identity and seasonality of common arthropods on CBD hemp in northern Indiana. Purdue University.

Shahid M, Haq E, Mohamed A, Rizvi PQ, Kolanthasamy E (2023). Entomopathogen-based biopesticides: insights into unraveling their potential in insect pest management. Frontiers in Microbiology 14. http://dx.doi.org/10.21203/rs.3.rs-2684613/v1

Shanovich HN, Chediack A, Fischbach JA, Aukema BH (2023). Spatial patterns suggest movement of the filbert bud mite (Phytoptus avellanae) between plants and overwintering infestations in a hazelnut (Corylus spp.) orchard. Research Square. https://doi.org/10.21203/rs.3.rs-2684613/v1

Sharma A, Sharma S, Yadav PK (2023). Entomopathogenic fungi and their relevance in sustainable agriculture: A review. Cogent Food & Agriculture 9(1):2180857. http://dx.doi.org/10.1080/23311932.2023.2180857Page

Sharma RK, Bhullar MB, Sangha MK (2019). Biochemical basis of resistance in laboratory selected fenazaquin resistant strain of two-spotted spider mite, Tetranychus urticae Koch. Indian Journal of Experimental Biology 57(10).

Shatrov AB, Kudryashova NI (2006). Taxonomy, life cycles and the origin of parasitism in trombiculid mites. In: Micromammals and macroparasites: from evolutionary ecology to management. Springer, pp 119-140. http://dx.doi.org/10.1007/978-4-431-36025-4_8

Shaw B, Nagy C, Fountain MT (2021). Organic control strategies for use in IPM of invertebrate pests in apple and pear orchards. Insects 12(12). https://doi.org/10.3390/insects12121106

Shukla A (2021). Mites. Polyphagous Pests of Crops 409-455.

Silva DE, Do Nascimento JM, Pavan AM, Corrêa LLC, Bizarro GL, Ferla JJ, . . . Ferla NJ (2022). Mite fauna abundance and composition on apples in southern Brazil. Systematic and Applied Acarology 27(11):2139-2155. http://dx.doi.org/10.11158/saa.27.11.2

Skoracka A, Lopes LF, Alves MJ, Miller A, Lewandowski M, Szydło W, . . . Kuczyński L (2018). Genetics of lineage diversification and the evolution of host usage in the economically important wheat curl mite, Aceria tosichella Keifer, 1969. BMC Evolutionary Biology 18(1):1-15. http://dx.doi.org/10.1186/s12862-018-1234-x

Skoracka A, Smith L, Oldfield G, Cristofaro M, Amrine JW (2010). Host-plant specificity and specialization in eriophyoid mites and their importance for the use of eriophyoid mites as biocontrol agents of weeds. Eriophyoid Mites: Progress and Prognoses 93-113. http://dx.doi.org/10.1007/s10493-009-9323-6

Song W-Y, Lv Y, Yin P-W, Yang Y-Y, Guo X-G (2023). Potential distribution of Leptotrombidium scutellare in Yunnan and Sichuan Provinces, China, and its association with mite-borne disease transmission. Parasites & Vectors 16(1):1-13. http://dx.doi.org/10.1186/s13071-023-05789-y

Song Y-F, Tian T-A, Chen Y-C, Zhang K-S, Yang M-F, Liu J-F (2023). A mite parasitoid Pyemotes zhonghuajia negatively impacts the fitness traits and immune response of the fall armyworm Spodoptera frugiperda. Journal of Integrative Agriculture. http://dx.doi.org/10.1016/j.jia.2023.05.022

Sreekumar K, Srinivasa N, Sivamoorthy R (2019). First report of incidence of eriophyid mite Aceria sp. on Amaranthus. Entomology 44(4). http://dx.doi.org/10.33307/entomon.v44i4.485

Suganthi A, Ramaraju K, Kuttalam S, Chandrasekaran S (2006). Bioefficacy of Spiromesifen (Oberon") 240 SC against coconut eriophyid. Journal of Entomology 3(4):325-330. https://doi.org/10.3923/je.2006.325.330

Takabayashi J (2022). Herbivory-induced plant volatiles mediate multitrophic relationships in ecosystems. Plant and Cell Physiology 63(10):1344-1355. https://doi.org/10.1093/pcp/pcac107

Tsuchida Y, Masui S, Kasai A (2022). Effects of intraguild predation and cannibalism in two generalist phytoseiid species on prey density of the pink citrus rust mite in the presence of high-quality food. BioControl 67(3):287-296. http://dx.doi.org/10.1007/s10526-022-10139-5

Van Leeuwen T, Vontas J, Tsagkarakou A, Tirry L (2009). Mechanisms of acaricide resistance in the two-spotted spider mite Tetranychus urticae. Biorational Control of Arthropod Pests: Application and Resistance Management 347-393. https://doi.org/10.1016/j.ibmb.2010.05.008

Van Leeuwen T, Witters J, Nauen R, Duso C, Tirry L (2010). The control of eriophyoid mites: state of the art and future challenges. Experimental and Applied Acarology 51:205-224. https://doi.org/10.1007/s10493-009-9312-9

Vervaet L, De Vis R, De Clercq P, Van Leeuwen T (2021). Is the emerging mite pest Aculops lycopersici controllable? Global and genome‐based insights in its biology and management. Pest Management Science 77(6):2635-2644. https://doi.org/10.1002/ps.6265

Vidović B, Cvrković T, Orapa W (2023). A new genus and new species of eriophyid mites from Papua New Guinea: a potential biological control agent of Falcataria moluccana (Fabaceae). Acarologia 63(3):933-944. http://dx.doi.org/10.21203/rs.3.rs-2470896/v1

Villacis-Perez E, Alba JM, Cotte J, van Loon Z, Breeuwer JA, Van Leeuwen T (2022). Interactions with plant defences isolate sympatric populations of an herbivorous mite. Frontiers in Ecology and Evolution 10:819894. https://doi.org/10.3389/fevo.2022.819894

Vinaykumar P, Gundannava K, Hiremath S, Prabhu S (2022). Evaluation of newer acaricides and biorationals against jasmine eriophyid mite, Aceria jasmini Chann. in Jasminum multiflorum (Burm. f.) Andrews. Journal of Experimental Zoology India 25(2):592-599.

Wei X, Li G, Zhang ZQ (2023). Prey life stages modulate effects of predation stress on prey lifespan, development, and reproduction in mites. Insect Science 30(3):844-856. https://doi.org/10.1111/1744-7917.13124

Xiong Q, Wan AT, Tsui SK-W (2020). A mini-review of the genomes and allergens of mites and ticks. Current Protein and Peptide Science 21(2):114-123. https://doi.org/10.2174/1389203720666190719150432

Xue X-F, Liu X-Y (2022). Three new species of Calepitrimerus (Acari: Eriophyidae) from China. Zootaxa 5133(2):279-292. https://doi.org/10.11646/zootaxa.5133.2.8

Yang H, Yang Z, Dong W (2022). Morphological identification and phylogenetic analysis of Laelapin mite species (Acari: Mesostigmata: Laelapidae) from China. The Korean Journal of Parasitology 60(4):273. https://doi.org/10.3347/kjp.2022.60.4.273

Yazdanpanah S, Fathipour Y (2023). Predators of mite pests. In: Insect Predators in Pest Management. CRC Press, pp 245-283. http://dx.doi.org/10.1016/B978-0-12-803265-7.00011-7

Yin X, Gong T, Liu W, Chen H, Fei Y (2023). Community structure of soil mites under different crops and its response to environmental factors in the buffer zone of Shibing Karst World Natural Heritage. Environmental Research Communications. https://doi.org/10.1088/2515-7620/acda1b

Yin Y, Yao LF, Hu Y, Shao ZK, Hong XY, Hebert PD, Xue XF (2022). DNA barcoding uncovers cryptic diversity in minute herbivorous mites (Acari, Eriophyoidea). Molecular Ecology Resources 22(5):1986-1998. https://doi.org/10.1111/1755-0998.13599

Zhang A, Zhang Y, Potapov AM, Bhusal DR, Qiang W, Wang M, Pang X (2023). Changes in diversity and functional groups of soil mite communities are associated with properties of food resources along a subalpine secondary succession. Geoderma 432:116395. https://doi.org/10.1016/j.geoderma.2023.116395

Zhang K-X, Ma Y, Li C-C, Quandahor P, Haq IU, Zhang Q, . . . Liu C-Z (2023). Population growth of Tetranychus truncatus (Acari: Tetranychidae) on different drought-tolerant potato cultivars. Journal of Economic Entomology toad028. http://dx.doi.org/10.1093/jee/toad028

Zhang NX, Andringa J, Brouwer J, Alba JM, Kortbeek RW, Messelink GJ, Janssen A (2022). The omnivorous predator Macrolophus pygmaeus induces production of plant volatiles that attract a specialist predator. Journal of Pest Science 1-13. https://doi.org/10.1111/1744-7917.12655

Zhang Y-X, Chen X, Wang J-P, Zhang Z-Q, Wei H, Yu H-Y, . . . Lin J-Z (2019). Genomic insights into mite phylogeny, fitness, development, and reproduction. BMC Genomics 20:1-22. https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6281-1

Zhang Z-Q, Fan Q-H, Heath AC, Minor MA (2022). Acarological Frontiers: Proceedings of the XVI International Congress of Acarology (1–5 Dec. 2022, Auckland, New Zealand). Zoosymposia, 22, 3-19-13-19. http://dx.doi.org/10.11646/zoosymposia.22.1.1

Zhao Y, Li W, Wang G (2018). New Asian phyllocoptines (Eriophyidae, Phyllocoptinae): descriptions of Namengia latifloris gen. nov. & sp. nov. (Acaricalini) and Petanovicia cathartica sp. nov. (Phyllocoptini) from Northwest Laos. Systematic and Applied Acarology 23(10):2022-2032. http://dx.doi.org/10.11158/saa.23.10.11

Zhu KY, Palli SR (2020). Mechanisms, applications, and challenges of insect RNA interference. Annual Reviews in Entomology 65:293-311. https://doi.org/10.1146/annurev-ento-011019-025224

Downloads

Published

2024-09-09

How to Cite

MAHMOOD, S. U., MAO, R., UL HAQ, I., & FANG, X. (2024). Eriophyid mites in fruit crops: Biology, ecology, molecular aspects, and innovative control strategies. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(3), 13781. https://doi.org/10.15835/nbha52313781

Issue

Section

Review Articles
CITATION
DOI: 10.15835/nbha52313781