Leaf-based characterization of intermediate forms between Cuban and Honduran mahogany


  • Liuder I. RODRÍGUEZ COCA Transilvania University of Brasov, Bulevardul Eroilor 29, 500001, Brasov (RO)
  • Elena CIOCÎRLAN Transilvania University of Brasov, Bulevardul Eroilor 29, 500001, Brasov (RO) https://orcid.org/0000-0002-7741-6878
  • Ana G. TROCONES BOGGIANO Transilvania University of Brasov, Bulevardul Eroilor 29, 500001, Brasov; University of Sancti Spíritus José Martí Pérez, Faculty of Agricultural Sciences, Agronomy Departament, Avenida delos Mártires #360, Sancti Spíritus (RO) https://orcid.org/0000-0001-5769-2165
  • Luis A. DELGADO FERNÁNDEZ University of Sancti Spíritus José Martí Pérez, Faculty of Agricultural Sciences, Agronomy Departament, Avenida delos Mártires #360, Sancti Spíritus (CU) https://orcid.org/0000-0002-4675-1622
  • Jorge F. LORENZO ÉVORA University of Sancti Spíritus José Martí Pérez, Faculty of Agricultural Sciences, Agronomy Departament, Avenida delos Mártires #360, Sancti Spíritus (CU) https://orcid.org/0009-0003-4472-0210
  • Codrin CODREAN Transilvania University of Brasov, Bulevardul Eroilor 29, 500001, Brasov (RO)
  • Alexandru L. CURTU Transilvania University of Brasov, Bulevardul Eroilor 29, 500001, Brasov (RO) https://orcid.org/0000-0001-8509-279X




Cuban mahogany; Honduran mahogany; Hybrid mahogany; morphometric, Swietenia.


The genus Swietenia includes two mahogany species, Swietenia macrophylla (King.), commonly known as Honduran mahogany, and Swietenia mahagoni (L.) Jacq, commonly known as Cuban mahogany. There are reports of morphologically intermediate forms between Cuban and Honduran mahogany that have been localized in some Caribbean islands. The main objective of this research is to distinguish morphologically intermediate forms between the parental species S. mahagoni and S. macrophylla based on leaf morphological characters. Phenotypic data from a total of 357 mahogany trees were collected in the province of Sancti Spiritus, Cuba. Rachis length, petiole length, leaflet length, leaflet width, number of leaflets and number of nerves were evaluated. Morphological descriptor analysis revealed significant differences in the morphometric variables of the evaluated leaves, with rachis length, number of leaflets, leaflet length, petiole length, leaflet width, and number of nerves being significantly higher in S. macrophylla than in S. mahagoni. ANOVA reflected the variance between all leaf morphological parameters evaluated between the two pure species with statistically significant difference. Using the function obtained in the first DC of the two species, the individuals in the mixed stands were classified into 71 morphologically intermediate forms, 45 S. macrophylla and 64 S. mahagoni. In the second DC with the two species and the morphologically intermediate forms, Wilks’ partial lambda indicates that the variable "leaflet length" with 0.67 contributed most to the overall discrimination.


Akinyele AO, Fabowale AG, Onefeli AO (2020). Comparative morphology of the leaf epidermis in four species of Meliaceae L. Family. Environmental Sciences Proceedings 3(1):1. https://doi.org/10.3390/IECF2020-08032

Akli A, Lorenzo Z, Alía R, Rabhi K, Torres E (2022). Morphometric analyses of leaf shapes in four sympatric Mediterranean oaks and hybrids in the Algerian Kabylie forest. Forests 13(4):4. https://doi.org/10.3390/f13040508

Albert Fuentes D, Zavaro Pérez CA (1995). Meliaceae cubanas: Taxonomía numérica. Fontqueria, XLII. http://sedici.unlp.edu.ar/handle/10915/111223

Al-Radahe S, Ahmed KAA, Salama S, Abdulla MA, Amin ZA, Al-Jassabi S, Hashim H (2013). Anti-ulcer activity of Swietenia mahagoni leaf extract in ethanol-induced gastric mucosal damage in rats. Journal of Medicinal Plants Research 7(16):988-997.

Apostol EN, Curtu AL, Daia LM, Apostol B, Dinu CG, Şofletea N (2017). Leaf morphological variability and intraspecific taxonomic units for pedunculate oak and grayish oak (genus Quercus L., series Pedunculatae Schwz.) in Southern Carpathian Region (Romania). Science of the Total Environment 609:497-505. https://doi.org/10.1016/j.scitotenv.2017.05.274

Basil JG (2007). Diversidad genética en poblaciones de Swietenia macrophylla King (Meliaceae) en Costa Rica y Bolivia [Info:ar-repo/semantics/tesis de maestría, CATIE, Turrialba (Costa Rica)]. http://repositorio.inta.gob.ar:80/handle/20.500.12123/11854

Bauer GP, Francis JK (1998). Swietenia macrophylla King. Honduras mahogany. Caoba. Meliaceae Mahogany family. Rio Piedras, Puerto Rico: USDA Forest Service, International Institute of Tropical Forestry, pp 7. https://www.fs.usda.gov/research/treesearch/30214

Bera TK, Chatterjee K, Jana K, Ali KM, De D, Maiti S, Ghosh D (2012). Antihyperglycemic and antioxidative effect of hydro—Methanolic (2:3) extract of the seed of Swietenia mahagoni (L.) Jacq. In streptozotocin-induced diabetic male albino rat: An approach through pancreas. Genomic Medicine, Biomarkers, and Health Sciences 4(4):107-117. https://doi.org/10.1016/j.gmbhs.2012.11.001

Betancourt A (1976). Silvicultura especial. Imprenta Universitaria «André Vosin», Universidad de La Habana.

Bisse J (1981). Los arboles de Cuba. Editorial Científico-Técnica. La Habana, pp 384.

Brown N, Jennings S, Clements T (2003). The ecology, silviculture and biogeography of mahogany (Swietenia macrophylla): A critical review of the evidence. Perspectives in Plant Ecology, Evolution and Systematics 6(1):37-49. https://doi.org/10.1078/1433-8319-00041

Bündchen M, Boeger MRT, Reissmann CB (2015). Leaf structure of canopy and understory woody species from a subtropical forest in southern Brazil. Iheringia, Série Botânica 70(1):105-114.

Cheng-Jun Z, Prado CHB, Yuan-Gang Z, Jia-Qiu G, Ronquim CC, Ferreira LL (2003). Effect of overnight temperature on leaf photosynthesis in seedlings of Swietenia macrophylla King. Journal of Forestry Research 14(2):130-134. https://doi.org/10.1007/BF02856779

Cocuzza GEM, Goldansaz SH, Harsur M (2021). Arthropod pests and their management. The pomegranate: botany, production and uses. Wallingford UK: CAB International, pp 392-427. https://doi.org/10.1079/9781789240764.0392

Curtu AL, Gailing O, Finkeldey R (2007). Evidence for hybridization and introgression within a species-rich oak (Quercus spp.) community. BMC Evolutionary Biology 7(1):1. https://doi.org/10.1186/1471-2148-7-218

Curtu AL, Sofletea N, Toader AV, Enescu M C (2011). Leaf morphological and genetic differentiation between Quercus robur L. and its closest relative, the drought-tolerant Quercus pedunculiflora K. Koch. Annals of Forest Science 68(7):7. https://doi.org/10.1007/s13595-011-0105-z

Daquinta M, Lezcano Y, Cid M, Pina D, Rodríguez R (2007). In vitro morphogenesis of Toona ciliata and Swietenia hybrid. Global Science Books.

Des M, Vauzia, Gusti YS (2020). Characteristics of mahogany stomata (Swietenia macrophylla K.) in polluted environments. In: International Conference on Biology, Sciences and Education (ICoBioSE 2019). Atlantis Press, pp 39-42. https://doi.org/10.2991/absr.k.200807.009

Dünisch O, Montóia VR, Bauch J (2003). Dendroecological investigations on Swietenia macrophylla King and Cedrela odorata L. (Meliaceae) in the central Amazon. Trees 17(3):244-250. https://doi.org/10.1007/s00468-002-0230-2

Enescu C, Curtu A, Şofletea N (2013). Is Quercus virgiliana a distinct morphological and genetic entity among European white oaks? Turkish Journal of Agriculture and Forestry 37(5):632-641. https://doi.org/10.3906/tar-1210-28

Fetcher N, Wen S, Montaña A, de Castro F (2003). Photosynthetic response of hybrid mahogany grown under contrasting light regimes. In: Lugo AE, Figueroa Colón JC, Alayón M (Eds). Big-Leaf Mahogany: Genetics, Ecology, and Management. Springer, pp 117-128. https://doi.org/10.1007/0-387-21778-9_6

Fisher RA (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics 7(2):179-188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

Fortini P, Di Marzio P, Di Pietro R (2015). Differentiation and hybridization of Quercus frainetto, Q. petraea, and Q. pubescens (Fagaceae): Insights from macro-morphological leaf traits and molecular data. Plant Systematics and Evolution 301(1):375-385. https://doi.org/10.1007/s00606-014-1080-2

Francis JK (2000). Swietenia mahagoni Jacq. Caoba dominicana. Bioecología de Arboles Nativos y Exóticos de Puerto Rico y las Indias Occidentales, pp 499.

Francis JK (2003). Growth of small-leaf mahogany crop trees in St. Croix, U.S. Virgin Islands. In: Lugo AE, Figueroa Colón JC, Alayón M (Eds). Big-Leaf Mahogany: Genetics, Ecology, and Management. Springer, pp 375-378. https://doi.org/10.1007/0-387-21778-9_20

Franklin J, Ripplinger J, Freid EH, Marcano-Vega H, Steadman DW (2015). Regional variation in Caribbean dry forest tree species composition. Plant Ecology 216(6):873-886. https://doi.org/10.1007/s11258-015-0474-8

Geary TF, Nobles RW, Briscoe CB (1972). Hybrid mahogany recommended for planting in the Virgin Islands. Institute of Tropical Forestry, Rio Piedras, Puerto Rico. Forest Service U.S. Department of Agriculture. https://www.cabidigitallibrary.org/doi/full/10.5555/19730607867

Gerber DT, Les DH (1994). Comparison of leaf morphology among submersed species of Myriophyllum (Haloragaceae) from different habitats and geographical distributions. American Journal of Botany 81(8):973-979. https://doi.org/10.1002/j.1537-2197.1994.tb15584.x

Gillies ACM, Navarro C, Lowe AJ, Newton AC, Hernández M, Wilson J, Cornelius JP (1999). Genetic diversity in Mesoamerican populations of mahogany (Swietenia macrophylla), assessed using RAPDs. Heredity 83(6):6. https://doi.org/10.1046/j.1365-2540.1999.00626.x

González-Rodríguez A, Oyama K (2005). Leaf morphometric variation in Quercus affinis and Q. laurina (Fagaceae), two hybridizing Mexican red oaks. Botanical Journal of the Linnean Society 147(4):427-435. https://doi.org/10.1111/j.1095-8339.2004.00394.x

Grogan J, Barreto P (2005). Big-leaf mahogany on CITES Appendix II: Big Challenge, Big Opportunity. Conservation Biology 19(3):973-976.

Grogan J, Peña-Claros M, Günter S (2011). Managing natural populations of big-leaf mahogany. In: Günter S, Weber M, Stimm B, Mosandl R (Eds). Silviculture in the Tropics. Springer, pp 227-235. https://doi.org/10.1007/978-3-642-19986-8_15

Gullison RE, Panfil SN, Strouse JJ, Hubbell SP (1996). Ecology and management of mahogany (Swietenia macrophylla King) in the Chimanes Forest, Beni, Bolivia. Botanical Journal of the Linnean Society 122(1):9-34. https://doi.org/10.1111/j.1095-8339.1996.tb02060.x

Gutiérrez Vázquez BN, Cornejo Oviedo EH, Rodríguez Santiago B, López Upton J, Gutiérrez Vázquez MH, Gómez Cárdenas M, … Flores Montaño A (2016). Selection of outstanding mahogany (Swietenia macrophylla King.) trees in a natural stand based on multivariate methods. Revista Mexicana de Ciencias Forestales 7(37):51-63.

Hartigan-O’Connor E (2013). Review of mahogany: The costs of luxury in early America. Early American Literature 48(2):509-513.

He T, Marco J, Soares R, Yin Y, Wiedenhoeft A (2019). Machine learning models with quantitative wood anatomy data can discriminate between Swietenia macrophylla and Swietenia mahagoni. Forests 11:36. https://doi.org/10.3390/f11010036

Jennings SB, Brown ND, Boshier DH, Whitmore TC, Lopes J do CA (2001). Ecology provides a pragmatic solution to the maintenance of genetic diversity in sustainably managed tropical rain forests. Forest Ecology and Management 154(1):1-10. https://doi.org/10.1016/S0378-1127(00)00637-X

Khare CP (2007). Swietenia mahagoni Jacq. In: Khare CP (Ed). Indian Medicinal Plants: An Illustrated Dictionary. Springer, pp 1-1. https://doi.org/10.1007/978-0-387-70638-2_1577

Kim JDW, Brunswick P, Shang D, Evans PD (2023). Distinguishing native and plantation-grown mahogany (Swietenia macrophylla) timber using chromatography and high-resolution quadrupole time-of-flight mass spectrometry. Wood and Fiber Science 55(1):1.

Koenen EJM, Clarkson JJ, Pennington TD, Chatrou LW (2015). Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. New Phytologist 207(2);327-339. https://doi.org/10.1111/nph.13490

Krisnawati H, Kallio MH, Kanninen M (2011). Swietenia macrophylla King: Ecology, silviculture and productivity. CIFOR, Bogor.

Lamb FB (1960). An approach to mahogany tree improvement. Caribbean Forester 21:12-20.

Lemes MR, Gribel R, Proctor J, Grattapaglia D (2003). Population genetic structure of mahogany (Swietenia macrophylla King, Meliaceae) across the Brazilian Amazon, based on variation at microsatellite loci: Implications for conservation. Molecular Ecology 12(11):2875-2883. https://doi.org/10.1046/j.1365-294X.2003.01950.x

Lestari ASRD, Hadi YS, Hermawan D, Santoso A (2015). Glulam properties of fast-growing species using mahogany tannin adhesive. BioResources 10(4):7419-7433.

Li Y, Zhang Y, Liao PC, Wang T, Wang X, Ueno S, Du FK (2021). Genetic, geographic, and climatic factors jointly shape leaf morphology of an alpine oak, Quercus aquifolioides Rehder & E.H. Wilson. Annals of Forest Science 78(3):3. https://doi.org/10.1007/s13595-021-01077-w

Liu Y, Li Y, Song J, Zhang R, Yan Y, Wang Y, Du FK (2018). Geometric morphometric analyses of leaf shapes in two sympatric Chinese oaks: Quercus dentata Thunberg and Quercus aliena Blume (Fagaceae). Annals of Forest Science 75(4):90. https://doi.org/10.1007/s13595-018-0770-2

Locatelli B, Catterall CP, Imbac P, Kumar C, Lasco R, Marín-Spiotta E, … Uriarte M (2015). Tropical reforestation and climate change: Beyond carbon. Restoration Ecology 23(4):337-343. https://doi.org/10.1111/rec.12209

Lugo AE, Fu S (2003). Structure and dynamics of mahogany plantations in Puerto Rico. In: Lugo AE, Figueroa Colón JC, Alayón M (Eds). Big-Leaf Mahogany: Genetics, Ecology, and Management. Springer, pp 288-328. https://doi.org/10.1007/0-387-21778-9_15

Lugo AE, Lowe C (2012). Tropical Forests: Management and Ecology. Springer Science & Business Media.

Machado MR, Camara R, Sampaio P de TB, Ferraz JBS, Pereira MG (2018). Silvicultural performance of five forest species in the central Brazilian Amazon. Acta Amazonica 48:10-17. https://doi.org/10.1590/1809-4392201700602

Maruyama E, Ishii K (1999). Somatic embryogenesis in big-leaf mahogany (Swietenia macrophylla King). In: Jain SM, Gupta PK, Newton RJ (Eds). Somatic Embryogenesis in Woody Plants. Springer Netherlands, pp 45-62. https://doi.org/10.1007/978-94-011-4774-3_3

Meza Picado V, Coreas Arias E, Chinchilla Mora O (2020). Mejora genética y costos iniciales asociados al manejo de plantaciones clonales de Swietenia macrophylla en la región noreste de Costa Rica. Revista Ciencias Ambientales 54(2):180-189. https://doi.org/10.15359/rca.54-2.10

Montiel K, Detlefsen G, Ureña C (2020). Árboles y palmas emblemáticos de las Américas. Instituto Interamericano de Cooperación para la Agricultura (IICA).

Navarro C. 2000. Diagnóstico de la caoba (Swietenia macrophylla King) en Mesoamérica. Silvicultura-Genética. Centro Científico Tropical. PROARCA/CAPAS.

Navarro-Cerrillo RM, Ruiz Gómez FJ, Cabrera-Puerto RJ, Sánchez-Cuesta R, Palacios Rodriguez G, Quero Pérez JL (2018). Growth and physiological sapling responses of eleven Quercus ilex ecotypes under identical environmental conditions. Forest Ecology and Management 415-416. https://doi.org/10.1016/j.foreco.2018.01.004

Nelson, HP, Devenish-Nelson ES, Rusk BL, Geary M, Lawrence AJ (2020). A review of tropical dry forest ecosystem service research in the Caribbean – gaps and policy-implications. Ecosystem Services 43. https://doi.org/10.1016/j.ecoser.2020.101095

Nytch CJ, Rojas-Sandoval J, Erazo Oliveras A, Santiago García RJ, Meléndez-Ackerman EJ (2023). Effects of historical land use and recovery pathways on composition, structure, ecological function, and ecosystem services in a Caribbean secondary forest. Forest Ecology and Management 546:121311. https://doi.org/10.1016/j.foreco.2023.121311

Oliveira SS (2018). Diversidade e estrutura genética de Swietenia macrophylla King em floresta manejada na Amazônia sul-ocidental. http://www.alice.cnptia.embrapa.br/handle/doc/1110195

Olvera Moreno S, López Upton J, Sánchez Monsalvo V, Jiménez Casas M, Olvera Moreno S, López Upton J, … Jiménez Casas M (2022). Repeatability of useful characteristics as morphological descriptors in Cedrela odorata L. clones. Revista Mexicana de Ciencias Forestales 13(69):4-30. https://doi.org/10.29298/rmcf.v13i69.938

Ovalle-Magallanes B, Madariaga-Mazón A, Navarrete A, Mata R (2016). Mechanisms of action of antihyperglycemic mexicanolides isolated from Swietenia humillis: In vivo and in silico approaches. Planta Medica 82(01):P136. https://doi.org/10.1055/s-0036-1596301

Palacios WA, Torres MDL, Quintana MA, Asadobay P, Iglesias J, Quillupangui R, … Rivas-Torres G (2023). A new species and a new record for Cedrela (Meliaceae, Sapindales) in Ecuador: Morphological, molecular, and distribution evidence. Phytotaxa 595(2):2. https://doi.org/10.11646/phytotaxa.595.2.1

Pancel L (2016). Species Files in Tropical Forestry. In: Pancel L, Köhl M (Eds). Tropical Forestry Handbook. Springer, pp 1221-1440. https://doi.org/10.1007/978-3-642-54601-3_112

Pérez-Pedraza A, Rodríguez-Correa H, Valencia-Ávalos S, Torres-Miranda CA, Arenas-Navarro M, Oyama K (2021). Effect of hybridization on the morphological differentiation of the red oaks Quercus acutifolia and Quercus grahamii (Fagaceae). Plant Systematics and Evolution 307(3):37. https://doi.org/10.1007/s00606-021-01757-0

Platt Jas, Jun (1901). Mahogany. Notes and Queries VIII(193):201-202. https://doi.org/10.1093/nq/s9-VIII.193.201c

Poorter L, Bongers F, Aide TM, Almeyda Zambrano AM, Balvanera P, Becknell JM, … Rozendaal DMA (2016). Biomass resilience of Neotropical secondary forests. Nature 530(7589):7589. https://doi.org/10.1038/nature16512

Puentes DA, Farrat LR, Escalera VV (2002). Consideraciones sobre el género Swietenia Jacq. (Swietenioideae, Meliaceae) en Cuba. Botánica Complutensis 26(2002):63-78.

Riana D, Rahayu S, Hasan M, Anton (2021). Comparison of segmentation and identification of Swietenia mahagoni wood defects with augmentation images. Heliyon 7(6):e07417. https://doi.org/10.1016/j.heliyon.2021.e07417

Rodan BD, Newton AC, Verissimo A (1992). Mahogany conservation: status and policy initiatives. Environmental Conservation 19(4):331-338. https://doi.org/10.1017/S0376892900031453

Romero S, Lira R, Dávila P (2000). A phenetic study of the taxonomic delimitation of Quercus acutifolia and Q. conspersa (Fagaceae). Brittonia 52(2):177-187. https://doi.org/10.2307/2666509

Sánchez EER, Trapero-Quintana AD (2018). Colección Entomológica del Instituto de Ecología y Sistemática con etiquetas circulares del catálogo numérico de Pastor Alayo Dalmau / Entomological Collection of Ecology and Systematics Institute with circular labels of the numerical catalog of Pastor Al. Article 507. http://www.revistasgeotech.com/index.php/poey/article/view/249

Schmidt L, Jøker D (2000). Swietenia mahagoni (L.) Jacq. Seed Leaflet - Danida Forest Seed Centre, No. 18. https://www.cabdirect.org/cabdirect/abstract/20073264708

StatSoft. (2008). STATISTICA for Windows. Software-System For Data Analysis, Tulsa, OK,USA (Versión 8) [Software].

Styles BT (1981). Swietenioideae. Meliaceae (Flora neotropica monograph, no 28). New York Botanical Garden, New York, pp 359-418.

Sun YP, Jin WF, Wang YY, Wang G, Morris-Natschke SL, Liu JS, … Lee KH (2018). Chemical structures and biological activities of limonoids from the genus Swietenia (Meliaceae). Molecules 23(7):7. https://doi.org/10.3390/molecules23071588

Syame SM, Mohamed SM, Elgabry EA, Darwish YAA, Mansour AS (2022). Chemical characterization, antimicrobial, antioxidant, and cytotoxic potentials of Swietenia mahagoni. AMB Express 12(1):77. https://doi.org/10.1186/s13568-022-01406-w

Timyan J, Verret L, Elie Y, Béliard C (1997). Mahogany (Swietenia) Trials in Haiti: 1989-1996. HAITI productive land use systems project. South-East Consortium for International Development and Auburn University.

Wang M, Zhang J, Guo Z, Guan Y, Qu G, Liu J, Guo Y, Yan X (2020). Morphological variation in Cynodon dactylon (L.) Pers., and its relationship with the environment along a longitudinal gradient. Hereditas 157(1):4. https://doi.org/10.1186/s41065-020-00117-1

Whitmore JL, Hinojosa G (1977). Mahogany (Swietenia) hybrids. No. ITF-23. https://www.cabdirect.org/cabdirect/abstract/19800664090

Yang K, Wu J, Li X, Pang X, Yuan Y, Qi G, Yang M (2022). Intraspecific leaf morphological variation in Quercus dentata Thunb.: A comparison of traditional and geometric morphometric methods, a pilot study. Journal of Forestry Research 33(6):1751-1764. https://doi.org/10.1007/s11676-022-01452-x

Yildirim N, Turna İ (2021). Variation in leaf morphology of Quercus pontica natural populations in Turkey. Baltic Forestry 27(1):1. https://doi.org/10.46490/BF541




How to Cite

RODRÍGUEZ COCA, L. I., CIOCÎRLAN, E., TROCONES BOGGIANO, A. G., DELGADO FERNÁNDEZ, L. A., LORENZO ÉVORA, J. F., CODREAN, C., & CURTU, A. L. (2024). Leaf-based characterization of intermediate forms between Cuban and Honduran mahogany. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), 13731. https://doi.org/10.15835/nbha52113731



Research Articles
DOI: 10.15835/nbha52113731

Most read articles by the same author(s)