Heat stress responses and mitigation strategies in wheat: an updated and comprehensive review
DOI:
https://doi.org/10.15835/nbha52313636Keywords:
breeding, heat shock, heat stress, oxidative stress, phytohormones, proteins, reactive oxygen species, stay greenAbstract
The main consequence of climate change on temperature is global warming. Over the past century, worldwide temperature has increased, rising by about 0.14 degrees Fahrenheit every year. Rising temperature negatively affects morphology, physiology, and yield of crops. Over the last 5 years, agriculture production in Pakistan affected due to temperature increase. Pakistan is an agriculture based developing country. About 2.2% GDP of Pakistan depends on wheat crop which is 1st major cereal crop and ranked as staple food. Nutritionally it provides proteins, dietary fibers, carbohydrates, calcium, and other important compounds but because of the harmful effects of a high temperature, yield of wheat crop in Pakistan has reduced to lowest levels in the last few years. Heat stress affects wheat plants by reducing growth, raised reactive oxygen species (ROS) production, denature cell membranes, and enzymes activity, decreasing photosynthetic activity and disturbing respiration processes. Improving wheat crop productivity is urgently needed to feed the rapidly growing population. Several techniques like Quantitative Trait Locus mapping, omics techniques, and application of nutrients have been used in the past to mitigate high temperature effect on wheat and other different crop plants. This review critically analyzes the response of wheat towards heat stress and its impacts on wheat crop as well as provides critical information on advanced strategies and techniques for the mitigation of heat stress.
References
Abasi F, Raja NI, Ehsan M, Ali H, Shahbaz M (2023). Adaptation strategies with respect to heat shock proteins and antioxidant potential; an era of food security and climate change. International Journal of Biological Macromolecules 128379. https://doi.org/10.1016/j.ijbiomac.2023.128379
Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ, Tran LSP (2017). The stay-green trait and phytohormone signaling networks in plants under heat stress. Plant Cell Reports 36:1009-1025. https://doi.org/10.1007/s00299-017-2119-y
Afzal I, Akram MW, Rehman HU, Rashid S, Basra SMA (2020). Moringa leaf and sorghum water extracts and salicylic acid to alleviate impacts of heat stress in wheat. South African Journal of Botany 129:169-174. https://doi.org/10.1016/j.sajb.2019.04.009
Ahmed M, Schmitz M (2011). Economic assessment of the impact of climate change on the agriculture of Pakistan. Business and Economic Horizons (BEH) 4(1232-2016-101145):1-12. http://dx.doi.org/10.15208/beh.2011.1
Aiqing S, Somayanda I, Sebastian SV, Singh K, Gill K, Prasad PVV, Jagadish SVK (2018). Heat stress during flowering affects time of day of flowering, seed set, and grain quality in spring wheat. Crop Science 58(1):380-392. https://doi.org/10.2135/cropsci2017.04.0221
Akter N, Rafiqul Islam M (2017). Heat stress effects and management in wheat. A review. Agronomy for Sustainable Development 37(5):37. https://doi.org/10.1007/s13593-017-0443-9
Alam MN, Bodruzzaman M, Hossain MM, Sadekuzzaman M (2014). Growth performance of spring wheat under heat stress conditions. International Journal of Agricu;tural Research 4(6):91-103.
Albertos P, Dündar G, Schenk P, Carrera S, Cavelius P, Sieberer T, Poppenberger B (2022). Transcription factor BES1 interacts with HSFA1 to promote heat stress resistance of plants. The EMBO Journal 41(3):e108664. https://doi.org/10.15252/embj.2021108664
Ali A, Syed AAW, Khaliq T, Asif M, Aziz M, Mubeen M (2011). Effects of nitrogen on growth and yield components of wheat. (Report). Science International (Lahore) 24:331-332.
Ali MA, Hassan M, Mehmood M, Kazmi DH, Chishtie FA, Shahid I (2022). The potential impact of climate extremes on cotton and wheat crops in southern Punjab, Pakistan. Sustainability 14(3):1609. https://doi.org/10.3390/su14031609
Ali MB, Ibrahim AMH, Malla S, Rudd J, Hays DB (2013). Family-based QTL mapping of heat stress tolerance in primitive tetraploid wheat (Triticum turgidum L.). Euphytica 192(2):189-203. https://doi.org/10.1007/s10681-012-0824-8
Ali S, Hayat K, Iqbal A, Xie L (2020). Implications of abscisic acid in the drought stress tolerance of plants. Agronomy 10(9):1323. https://doi.org/10.3390/agronomy10091323
Al-Khayri JM, Alshegaihi RM, Mahgoub EI, Mansour E, Atallah OO, Sattar MN, … Aldaej MI, Hassanin AA (2022). Association of high and low molecular weight glutenin subunits with gluten strength in tetraploid durum wheat (Triticum turgidum spp. durum L.). Plants 12(6):1416. https://doi.org/10.3390/plants12061416
Al-Khayri JM, Alwutayd KM, Safhi FA, Alqahtani MM, Alshegaihi RM, Abd El-Moneim D, … Hassanin AA (2023). Assessment of intra- and inter-genetic diversity in tetraploid and hexaploid wheat genotypes based on omega, gamma and alpha-gliadin profiles. PeerJ 11:e16330. https://doi.org/10.7717/peerj.16330
Al-Whaibi MH (2011). Plant heat-shock proteins: a mini review. Journal of King Saud University-Science 23(2):139-150. https://doi.org/10.1016/j.jksus.2010.06.022
Ashraf M, Hafeez, M (2004). Thermotolerance of pearl millet and maize at early growth stages: growth and nutrient relations. Biologia Plantarum 48(1):81-86. https://doi.org/10.1023/B:BIOP.0000024279.44013.61
Asthir B (2015). Protective mechanisms of heat tolerance in crop plants. Journal of Plant Interactions 10(1):202-210. https://doi.org/10.1007/s10535-015-0539-5
Ayub M, Ashraf MY, Kausar A, Saleem S, Anwar S, Altay V, Ozturk M (2021). Growth and physio-biochemical responses of maize (Zea mays L.) to drought and heat stresses. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology 155(3):535-542. https://doi.org/10.1080/11263504.2020.1762785
Bakthisaran R, Tangirala R, Rao CM (2015). Small heat shock proteins: Role in cellular functions and pathology. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1854(4):291-319. https://doi.org/10.1016/j.bbapap.2014.12.019
Bandillo N, Raghavan C, Muyco PA, Sevilla MAL, Lobina IT, Dilla-Ermita CJ, ... Mauleon R (2013). Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6(1):1-15. https://doi.org/10.1186/1939-8433-6-11
Barna J, Csermely P, Vellai T (2018). Roles of heat shock factor 1 beyond the heat shock response. Cellular and Molecular Life Sciences 75:2897-2916. https://doi.org/10.1007/s00018-018-2836-6
Bavita A, Puneet KR, Navtej SB, Virinder SS (2012). Genotypic variation for high temperature tolerance in relation to carbon partitioning and grain sink activity in wheat. American Journal of Plant Sciences 2012.
Bharti J, Sahil Mehta S, Ahmad S, Singh B, Padhy AK, Srivastava N, Pandey V (2021). Mitogen-activated protein kinase, plants, and heat stress. Harsh environment and plant resilience: molecular and functional aspects 323-354. https://doi.org/10.1007/978-3-030-65912-7_13
Bhattarai RP, Ojha BR, Thapa DB, Kharel R, Ojha A, Sapkota M (2017). Evaluation of elite spring wheat (Triticum aestivum l.) genotypes for yield and yield attributing traits under irrigated condition. International Journal of Applied Sciences and Biotechnology 5(2):194-202. http://doi.org/10.3126/ijasbt.v5i2.17615
Bhunia RK, Chakraborty A, Kaur R, Maiti MK, Sen SK (2016). Enhancement of α-linolenic acid content in transgenic tobacco seeds by targeting a plastidial ω-3 fatty acid desaturase (fad7) gene of Sesamum indicum to ER. Plant Cell Reports 35(1):213-226. https://doi.org/10.1007/s00299-015-1880-z
Bhunia RK, Showman LJ, Jose A, Nikolau BJ (2018). Combined use of cutinase and high-resolution mass-spectrometry to query the molecular architecture of cutin. Plant Methods 14(1):1-17. https://doi.org/10.1186/s13007-018-0384-6
Bita CE, Gerats T (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4:273. https://doi.org/10.3389/fpls.2013.00273
Bradshaw JE (2017). Plant breeding: past, present and future. Euphytica 213:1-12. https://doi.org/10.1007/s10681-016-1815-y
Buttar ZA, Wu SN, Arnao MB, Wang C, Ullah I, Wang C, (2020). Melatonin suppressed the heat stress-induced damage in wheat seedlings by modulating the antioxidant machinery. Plants 9(7):809. https://doi.org/10.3390/plants9070809
Camejo D, Jiménez A, Alarcón JJ, Torres W, Gómez JM, Sevilla F (2006). Changes in photosynthetic parameters and antioxidant activities following heat-shock treatment in tomato plants. Functional Plant Biology 33(2):177-187. https://doi.org/10.1071/FP05067
Capasso G, Santini G, Petraretti M, Esposito S, Landi S (2021). Wild and traditional barley genomic resources as a tool for abiotic stress tolerance and biotic relations. Agriculture 11(11):1102. https://doi.org/10.3390/agriculture11111102
Caubel J, Garcia de Cortazar-Atauri I, Vivant AC, Launay M, de Noblet-Ducoudré N (2018). Assessing future meteorological stresses for grain maize in France. Agricultural Systems 159:237-247. https://doi.org/10.1016/j.agsy.2017.02.010
Chaudhary C, Sharma N, Khurana P (2021). Decoding the wheat awn transcriptome and overexpressing TaRca1β in rice for heat stress tolerance. Plant Molecular Biology 105(1):133-146. https://doi.org/10.1007/s11103-020-01073-0
Chen YE, Zhang CM, Su YQ, Ma J, Zhang, ZW, Yuan M, … Yuan S (2017). Responses of photosystem II and antioxidative systems to high light and high temperature co-stress in wheat. Environmental and Experimental Botany 135:45-55. https://doi.org/10.1016/j.envexpbot.2016.12.001
Comastri A, Janni M, Simmonds J, Uauy C, Pignone D, Nguyen HT, Marmiroli N (2018). Heat in wheat: exploit reverse genetic techniques to discover new alleles within the Triticum durum shsp26 family [original research]. Frontiers in Plant Science 9. https://doi.org/10.3389/fpls.2018.01337
Debnath S, Chakraborty M, Kumawat R (2022). Physiological responses of plants under high temperature stress. Biotechnology Research Today 4:347-349.
Djanaguiraman M, Boyle DL, Welti R, Jagadish SVK, Prasad PVV (2018). Decreased photosynthetic rate under high temperature in wheat is due to lipid desaturation, oxidation, acylation, and damage of organelles. BMC Plant Biology 18(1):55. https://doi.org/10.1186/s12870-018-1263-z
Djanaguiraman M, Narayanan S, Erdayani E, Prasad PVV (2020). Effects of high temperature stress during anthesis and grain filling periods on photosynthesis, lipids and grain yield in wheat. BMC Plant Biology 20(1):268. https://doi.org/10.1186/s12870-020-02479-0
Djanaguiraman M, Prasad PV, Seppanen M (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry 48(12):999-1007. https://doi.org/10.1016/j.plaphy.2010.09.009
dos Santos TB, Ribas AF, de Souza SGH, Budzinski IGF, Domingues DS (2022). Physiological responses to drought, salinity, and heat stress in plants: A review. Stresses 2(1):113-135. https://doi.org/10.3390/stresses2010009
Driedonks N, Rieu I, Vriezen WH (2016). Breeding for plant heat tolerance at vegetative and reproductive stages. Plant Reproduction 29(1):67-79. https://doi.org/10.1007/s00497-016-0275-9
Dubey R, Pathak H, Chakrabarti B, Singh S, Gupta DK, Harit RC (2020). Impact of terminal heat stress on wheat yield in India and options for adaptation. Agricultural Systems 181:102826. https://doi.org/10.1016/j.agsy.2020.102826
Dutta D, Karmakar S, Hossain A, Sadhukhan R, Atta K, Pramanick S (2023). Wheat and abiotic stress challenges: An overview. Abiotic Stresses in Wheat 1:1-13. https://doi.org/10.1016/B978-0-323-95368-9.00006-0
Eisvand HR, Kamaei H, Nazarian F (2018). Chlorophyll fluorescence, yield and yield components of bread wheat affected by phosphate bio-fertilizer, zinc and boron under late-season heat stress. Photosynthetica 56(4):1287-1296. https://doi.org/10.1007/s11099-018-0829-1
El Melki MN, Al-Khayri JM, Aldaej MI, Almaghasla MI, El Moueddeb K, Khlifi S (2023). Assessment of the effect of climate change on wheat storage in Northwestern Tunisia: control of Rhyzopertha dominica by aeration. Agronomy 13(7):1773. https://doi.org/10.3390/agronomy13071773
El Sabagh A, Hossain A, Barutcular C, Islam MS, Awan S, Galal A, … Meena R (2019). Wheat (Triticum aestivum L.) production under drought and heat stress–adverse effects, mechanisms and mitigation: A review. Applied Ecology and Environmental Research 17(4):8307-8332 http://dx.doi.org/10.15666/aeer/1704_83078332
Essemine J, Ammar S, Bouzid S (2010). Impact of heat stress on germination and growth in higher plants: Physiological, biochemical and molecular repercussions and mechanisms of defence. Journal of Biological Sciences 10(6):565-572. https://doi.org/10.3923/jbs.2010.565.572
Faiz H, Ayyub CM, Khan RW, Ahmad R (2020). Morphological, physiological and biochemical responses of eggplant (Solanum melongena L.) seedling to heat stress. Pakistan Journal of Agricultural Sciences 57(2). http://doi.org/10.21162/PAKJAS/20.9433
Fleitas MC, Mondal S, Gerard GS, Hernández-Espinosa N, Singh RP, Crossa J, Guzmán C (2020). Identification of CIMMYT spring bread wheat germplasm maintaining superior grain yield and quality under heat-stress. Journal of Cereal Science 93:102981. https://doi.org/10.1016/j.jcs.2020.102981
Fortunato S, Lasorella C, Dipierro N, Vita F, de Pinto MC (2023). Redox signaling in plant heat stress response. Antioxidants 12(3):605. https://doi.org/10.3390/antiox12030605
Giordano M, Petropoulos, SA, Rouphael Y (2021). Response and defence mechanisms of vegetable crops against drought, heat and salinity stress. Agriculture 11(5):463. https://doi.org/10.3390/agriculture11050463
Gupta N, Agarwal S, Agarwal V, Nathawat N, Gupta S, Singh G (2013). Effect of short-term heat stress on growth, physiology and antioxidative defence system in wheat seedlings. Acta Physiologiae Plantarum 35(6):1837-1842. https://doi.org/10.1007/s11738-013-1221-1
Haider S, Iqbal J, Naseer S, Yaseen T, Shaukat M, Bibi H, … Mahmood T (2021). Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. Plant Cell Reports 40(12):2247-2271. https://doi.org/10.1007/s00299-021-02696-3
Hamayun M, Khan SA, Khan AL, Shin JH, Ahmad B, Shin DH, Lee IJ (2010). Exogenous gibberellic acid reprograms soybean to higher growth and salt stress tolerance. Journal of Agricultural and Food Chemistry 58(12):7226-7232. https://doi.org/10.1021/jf101221t
Hasan N, Choudhary S, Naaz N, Sharma N, Laskar RA (2021). Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. Journal of Genetic Engineering and Biotechnology 19(1):1-26. https://doi.org/10.1186/s43141-021-00231-1
Hasanuzzaman M, Bhuyan MB, Nahar K, Hossain MS, Mahmud JA, Hossen MS, … Fujita M (2018). Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8(3):31. https://doi.org/10.3390/agronomy8030031
Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013). Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. International Journal of Molecular Sciences 14(5):9643-9684. https://doi.org/10.3390/ijms14059643
He GH, Xu JY, Wang YX, Liu JM, Li PS, Chen M, … Xu ZS (2016). Drought-responsive WRKY transcription factor genes TaWRKY1 and TaWRKY33 from wheat confer drought and/or heat resistance in Arabidopsis. BMC Plant Biology 16:1-16. https://doi.org/10.1186/s12870-016-0806-4
Heckathorn SA, Giri A, Mishra S, Bista D (2013). Heat stress and roots. Climate Change and Plant Abiotic Stress Tolerance 109-136. https://doi.org/10.1002/9783527675265.ch05
Hossain A, Skalicky M, Brestic M, Maitra S, Ashraful Alam M, Syed MA, … Islam T (2021). Consequences and mitigation strategies of abiotic stresses in wheat (Triticum aestivum L.) under the Changing Climate. Agronomy 11(2):241. https://doi.org/10.3390/agronomy11020241
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, … Liu Q (2022). Heat shock proteins: biological functions, pathological roles, and therapeutic opportunities. MedComm 3(3):e161. https://doi.org/10.1002/mco2.161
Hussain N, Abbas A, Hammad M, Rehman A, Ali T, Ashraf S, Javed M (2023). Evaluation of wheat lines for yield and its components under different ecological zones. Journal of Physical, Biomedical and Biological Sciences 2023(1):9-9.
Hussain Q, Asim M, Zhang R, Khan R, Farooq S, Wu J (2021). Transcription factors interact with ABA through gene expression and signaling pathways to mitigate drought and salinity stress. Biomolecules 11(8):1159. https://doi.org/10.3390/biom11081159
Huynh BL, Ehlers JD, Huang BE, Muñoz-Amatriaín M, Lonardi S, Santos JRP, … Roberts PA (2018). A multi-parent advanced generation inter-cross (MAGIC) population for genetic analysis and improvement of cowpea (Vigna unguiculata L.). The Plant Journal 93(6):1129-1142. https://doi.org/10.1111/tpj.13827
Iqbal M, Raja NI, Mashwani ZUR, Hussain M, Ejaz M, Yasmeen F (2019). Effect of silver nanoparticles on growth of wheat under heat stress. Iranian Journal of Science and Technology Transactions A: Science 43:387-395. https://doi.org/10.1007/s40995-017-0417-4
Iqbal M, Raja NI, Yasmeen F, Hussain M, Ejaz M, Shah M (2017). Impacts of heat stress on wheat: a critical review. Advances in Crop Science and Technology 5(1):1-9. http://dx.doi.org/10.4172/2329-8863.1000251
Jagadish S, Septiningsih E, Kohli A, Thomson M, Ye C, Redona E, … Ismail A (2012). Genetic advances in adapting rice to a rapidly changing climate. Journal of Agronomy and Crop Science 198(5):360-373. https://doi.org/10.1111/j.1439-037X.2012.00525.x
Jan N, Rather AMUD, John R, Chaturvedi P, Ghatak A, Weckwerth W, … Mir RR (2023). Proteomics for abiotic stresses in legumes: present status and future directions. Critical Reviews in Biotechnology 43(2):171-190. https://doi.org/10.1080/07388551.2021.2025033
Janni M, Gullì M, Maestri E, Marmiroli M, Valliyodan B, Nguyen HT, Marmiroli N (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany 71(13):3780-3802. https://doi.org/10.1093/jxb/eraa034
Jee H (2016). Size dependent classification of heat shock proteins: a mini-review. Journal of Exercise Rehabilitation 12(4):255. https://doi.org/10.12965/jer.1632642.321
Jha UC, Bohra A, Singh NP (2014). Heat stress in crop plants: its nature, impacts and integrated breeding strategies to improve heat tolerance. Plant Breeding 133(6):679-701. https://doi.org/10.1111/pbr.12217
Kamal NM, Gorafi YSA, Abdelrahman M, Abdellatef E, Tsujimoto H (2019). Stay-Green Trait: A prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. International Journal of Molecular Sciences 20(23):5837. https://doi.org/10.3390/ijms20235837
Kamrun N, Kamal Uddin A, Masayuki F (2010). Phenological variation and its relation with yield in several wheat (Triticum aestivum l.) cultivars under normal and late sowing mediated heat stress condition. Notulae Scientia Biologicae 2(3). http://dx.doi.org/10.15835/nsb234723
Kaur B, Sandhu KS, Kamal R, Kaur K, Singh J, Röder MS, Muqaddasi QH (2021). Omics for the improvement of abiotic, biotic, and agronomic traits in major cereal crops: Applications, challenges, and prospects. Plants 10(10):1989. https://doi.org/10.3390/plants10101989
Kaur R, Sinha K, Bhunia RK (2019). Can wheat survive in heat? Assembling tools towards successful development of heat stress tolerance in Triticum aestivum L. Molecular Biology Reports 46(2):2577-2593. https://doi.org/10.1007/s11033-019-04686-x
Khan A, Khan AL, Imran M, Asaf S, Kim YH, Bilal S, … Lee IJ (2020). Silicon-induced thermotolerance in Solanum lycopersicum L. via activation of antioxidant system, heat shock proteins, and endogenous phytohormones. BMC Plant Biology 20(1):1-18. https://doi.org/10.1186/s12870-020-02456-7
Khan MIR, Iqbal N, Masood A, Per TS, Khan NA (2013). Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling & Behavior 8(11):e26374. https://doi.org/10.4161/psb.26374
Kheiri M, Deihimfard R, Kambouzia J, Moghaddam SM, Rahimi-Moghaddam S, Azadi H (2022). Impact of heat stress on rainfed wheat growth and yield under semi-arid, semi-humid and mediterranean climates in Iran condition. International Journal of Plant Production 16(1):29-40. https://doi.org/10.1007/s42106-021-00179-9
Kheiri M, Soufizadeh S, Movahhed Moghaddam S, Ghaffari A (2021). Exploring the impact of weather variability on phenology, length of growing period, and yield of contrast dryland wheat cultivars. Agricultural Research 10(4):556-568. https://doi.org/10.1007/s40003-020-00523-x
Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E, Scharf KD (2007). Complexity of the heat stress response in plants. Current Opinion in Plant Biology 10(3):310-316. https://doi.org/10.1016/j.pbi.2007.04.011
Kothari A, Lachowiec J (2021). Roles of brassinosteroids in mitigating heat stress damage in cereal crops. International Journal of Molecular Sciences 22(5):2706. https://doi.org/10.3390/ijms22052706
Krug AS, BM Drummond E, Van Tassel DL, Warschefsky EJ (2023). The next era of crop domestication starts now. Proceedings of the National Academy of Sciences 120(14):e2205769120. https://doi.org/10.1073/pnas.2205769120
Kumar RR, Dubey K, Arora K, Dalal M, Rai GK, Mishra D, … Praveen S (2021). Characterizing the putative mitogen-activated protein kinase (MAPK) and their protective role in oxidative stress tolerance and carbon assimilation in wheat under terminal heat stress. Biotechnology Reports 29:e00597. https://doi.org/10.1016/j.btre.2021.e00597
Kumar RR, Singh K, Ahuja S, Tasleem M, Singh I, Kumar S, … Praveen S (2019). Quantitative proteomic analysis reveals novel stress-associated active proteins (SAAPs) and pathways involved in modulating tolerance of wheat under terminal heat. Functional & Integrative Genomics 19(2):329-348. https://doi.org/10.1007/s10142-018-0648-2
Laizer HC, Chacha MN, Ndakidemi PA (2019). Farmers knowledge, perceptions and practices in managing weeds and insect pests of common bean in Northern Tanzania. Sustainability 11(15):4076. https://doi.org/10.3390/su11154076
Lal MK, Tiwari RK, Gahlaut V, Mangal V, Kumar A, Singh MP, … Zinta G (2021). Physiological and molecular insights on wheat responses to heat stress. Plant Cell Reports 1-18. https://doi.org/10.1007/s00299-021-02784-4
Lenzoni G, Knight MR (2019). Increases in absolute temperature stimulate free calcium concentration elevations in the chloroplast. Plant and Cell Physiology 60(3):538-548. https://doi.org/10.1093/pcp/pcy227
Li ZS, Li B, Zheng Q, Li H (2015). Review and new progress in wheat wide hybridization for improving the resistance to biotic and abiotic stresses. In Advances in wheat genetics: from genome to field. Springer Tokyo, pp 377-385. https://doi.org/10.1007/978-4-431-55675-6_43
Lipiec J, Doussan C, Nosalewicz A, Kondracka K (2013). Effect of drought and heat stresses on plant growth and yield: a review. International Agrophysics 27(4). https://doi.org/10.2478/intag-2013-0017
Liu P, Guo W, Jiang Z, Pu H, Feng C, Zhu X, … Little C (2011). Effects of high temperature after anthesis on starch granules in grains of wheat (Triticum aestivum L.). The Journal of Agricultural Science 149(2):159-169. https://doi.org/10.1017/S0021859610001024
Liu XH, Lyu YS, Yang W, Yang ZT, Lu SJ, Liu JX (2020). A membrane‐associated NAC transcription factor OsNTL3 is involved in thermotolerance in rice. Plant Biotechnology Journal 18(5):1317-1329. https://doi.org/10.1111/pbi.13297
Ma J, Tang X, Sun B, Wei J, Ma L, Yuan M, ... Chen KM (2022). A NAC transcription factor, TaNAC5D-2, acts as a positive regulator of drought tolerance through regulating water loss in wheat (Triticum aestivum L.). Environmental and Experimental Botany 196:104805. https://doi.org/10.1016/j.envexpbot.2022.104805
Madani B, Mirshekari A, Imahori Y (2019). Chapter 19 - Physiological responses to stress. In: Yahia EM (Ed). Postharvest Physiology and Biochemistry of Fruits and Vegetables. Woodhead Publishing. pp 405-423. https://doi.org/10.1016/B978-0-12-813278-4.00020-8
Maj W, Pertile G, Frąc M (2023). Soil-borne neosartorya spp.: a heat-resistant fungal threat to horticulture and food production—an important component of the root-associated microbial community. International Journal of Molecular Sciences 24(2):1543. https://doi.org/10.3390/ijms24021543
Medina E, Kim SH, Yun M, Choi WG (2021). Recapitulation of the function and role of ROS generated in response to heat stress in plants. Plants 10(2):371. https://doi.org/10.3390/plants10020371
Mendanha T, Rosenqvist E, Hyldgaard B, Ottosen CO (2018). Heat priming effects on anthesis heat stress in wheat cultivars (Triticum aestivum L.) with contrasting tolerance to heat stress. Plant Physiology and Biochemistry 132:213-221. https://doi.org/10.1016/j.plaphy.2018.09.002
Mirza SR (2021). 23. Seed priming enhanced seed germination traits of wheat under water, salt and heat stress. Pure and Applied Biology (PAB) 4(4):650-658. http://dx.doi.org/10.19045/bspab.2015.44025
Mohammed AR, Tarpley L (2010). Effects of high night temperature and spikelet position on yield-related parameters of rice (Oryza sativa L.) plants. European Journal of Agronomy 33(2):117-123. https://doi.org/10.1016/j.eja.2009.11.006
Mohammed S, Huggins TD, Beecher F, Chick C, Sengodon P, Mondal S, … Hays DB (2018). The role of leaf epicuticular wax in the adaptation of wheat (Triticum aestivum L.) to high temperatures and moisture deficit conditions. Crop Science 58(2):679-689. https://doi.org/10.2135/cropsci2017.07.0454
Møller IM, Jensen PE, Hansson A (2007). Oxidative modifications to cellular components in plants. Annals Revolution Plant Biology 58:459-481. https://doi.org/10.1146/annurev.arplant.58.032806.103946
Mondal S, Karmakar S, Panda D, Pramanik K, Bose B, Singhal RK (2023). Crucial plant processes under heat stress and tolerance through heat shock proteins. Plant Stress 10:100227. https://doi.org/10.1016/j.stress.2023.100227
Morgounov A, Sonder K, Abugalieva A, Bhadauria V, Cuthbert RD, Shamanin V, … DePauw RM (2018). Effect of climate change on spring wheat yields in North America and Eurasia in 1981-2015 and implications for breeding. PLoS One 13(10):e0204932. https://doi.org/10.1371/journal.pone.0204932
Nadeem M, Li J, Wang M, Shah L, Lu S, Wang X, Ma C (2018). Unraveling field crops sensitivity to heat stress: mechanisms, approaches, and future prospects. Agronomy 8(7):128. https://doi.org/10.3390/agronomy8070128
Nesar NA, Hameedi A, Attri M, Kumar R, Bochalya RS, Stanikzai RG, Srivastava H (2022). Terminal heat stress and its mitigation options through agronomic interventions in wheat crop: A review. International Journal of Environment and Climate Change 12(11):131-139. http://dx.doi.org/10.9734/IJECC/2022/v12i1130955
Ni Z, Li H, Zhao Y, Peng H, Hu Z, Xin M, Sun Q (2018). Genetic improvement of heat tolerance in wheat: Recent progress in understanding the underlying molecular mechanisms. The Crop Journal 6(1):32-41. https://doi.org/10.1016/j.cj.2017.09.005
Pagamas P, Nawata E (2008). Sensitive stages of fruit and seed development of chili pepper (Capsicum annuum L. var. Shishito) exposed to high-temperature stress. Scientia Horticulturae 117(1):21-25. https://doi.org/10.1016/j.scienta.2008.03.017
Pandey GC, Geetika M, Pradeep S, Vinay S, (2019). Terminal heat tolerance in wheat: an overview. Journal of Cereal Research 11(1):1-16. http://dx.doi.org/10.25174/2249-4065/2019/79252
Parmar N, Singh KH, Sharma D, Singh L, Kumar P, Nanjundan J, … Thakur AK (2017). Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: a comprehensive review. 3 Biotechnology 7:1-35. https://doi.org/10.1007/s13205-017-0870-y
Patil P, Shrivastav SP, Landge R, Patil K, Salunkhe H (2022). Heat stress and tolerance in wheat: A review. The Pharma Innovation Journal SP-11:362-368.
Paudel S, Pokharel NP, Adhikari S, Poudel S (2021). heat and drought stress effect in wheat genotypes: A review. Food and Agri Economics Review (FAER) 1(2):77-79. http://doi.org/10.26480/faer.02.2021.77.79
Plaut Z, Butow BJ, Blumenthal CS, Wrigley CW (2004). Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research 86(2):185-198. https://doi.org/10.1016/j.fcr.2003.08.005
Posch BC, Kariyawasam BC, Bramley H, Coast O, Richards RA, Reynolds MP, … Atkin OK (2019). Exploring high temperature responses of photosynthesis and respiration to improve heat tolerance in wheat. Journal of Experimental Botany 70(19):5051-5069. https://doi.org/10.1093/jxb/erz257
Poudel H, Khanal B, Poudel K, Dhungana M, Pandey R, Dhungana S (2021). Effect of heat stress in wheat: A review. Agriculture Environment 2:63.
Poudel MR, Ghimire S, Dhakal KH, Thapa DB, Poudel HK (2020). Evaluation of wheat genotypes under irrigated, heat stress and drought conditions. Journal of Biology and Today's World 9(1):1-12. http://doi.org/10.35248/2322-3308.20.9.212
Prasad PV, Djanaguiraman M (2014). Response of floret fertility and individual grain weight of wheat to high temperature stress: sensitive stages and thresholds for temperature and duration. Functional Plant Biology 41(12):1261-1269. https://doi.org/10.1071/FP14061
Rabara RC, Msanne J, Basu S, Ferrer MC, Roychoudhury A (2021). Coping with inclement weather conditions due to high temperature and water deficit in rice: an insight from genetic and biochemical perspectives. Physiologia Plantarum 172(2):487-504. https://doi.org/10.1111/ppl.13272
Rai KK, Pandey N, Rai SP (2020). Salicylic acid and nitric oxide signaling in plant heat stress. Physiologia Plantarum 168(2):241-255. https://doi.org/10.1111/ppl.12958
Rajametov SN, Yang EY, Jeong HB, Cho MC, Chae SY, Paudel N (2021). Heat treatment in two tomato cultivars: a study of the effect on physiological and growth recovery. Horticulturae 7(5):119. https://www.mdpi.com/2311-7524/7/5/119
Rangan P, Furtado A, Henry R (2020). Transcriptome profiling of wheat genotypes under heat stress during grain-filling. Journal of Cereal Science 91:102895. https://doi.org/10.1016/j.jcs.2019.102895
Rawat N, Singla‐Pareek SL, Pareek A (2021). Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiologia Plantarum 171(4):653-676. https://doi.org/10.1111/ppl.13217
Raza A, Tabassum J, Kudapa H, Varshney RK (2021). Can omics deliver temperature resilient ready-to-grow crops? Critical Reviews in Biotechnology 41(8):1209-1232. https://doi.org/10.1080/07388551.2021.1898332
Rehman A, Khan I, Farooq M (2023). Secondary metabolites mediated reproductive tolerance under heat stress in plants. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-023-11161-2
Rehman RS, Ali M, Ali Zafar S, Hussain M, Pasha A, Saqib Naveed M, … Waseem M (2022). Abscisic acid mediated abiotic stress tolerance in plants. Asian Journal of Research in Crop Science 7(1):1-17. https://doi.org/10.9734/ajrcs%2F2022%2Fv7i130128
Riaz MW, Yang L, Yousaf MI, Sami A, Mei XD, Shah L, ... Ma C (2021). Effects of heat stress on growth, physiology of plants, yield and grain quality of different spring wheat (Triticum aestivum L.) genotypes. Sustainability 13(5):2972. https://doi.org/10.3390/su13052972
Rodríguez M, Canales E, Borrás-Hidalgo O (2005). Molecular aspects of abiotic stress in plants. Biotecnologia Aplicada 22(1):1-10.
Sable A, Agarwal SK (2018). Plant heat shock protein families: essential machinery for development and defense. Journal of Biological Sciences and Medicine 4(1):51-64.
Sakpal A, Yadav S, Choudhary R, Saini N, Vasudev S, Yadava DK, … Yadav SK (2023). Heat-stress-induced changes in physio-biochemical parameters of mustard cultivars and their role in heat stress tolerance at the seedling stage. Plants, 12(6):1400. https://doi.org/10.3390/plants12061400
Salman M, Majeed S, Rana IA, Atif RM, Azhar MT (2019). Novel breeding and biotechnological approaches to mitigate the effects of heat stress on cotton. Recent approaches in omics for plant resilience to climate change 251-277. https://doi.org/10.1007/978-3-030-21687-0_11
Sattar A, Sher A, Ijaz M, Ul-Allah S, Rizwan MS, Hussain M, … Cheema MA (2020). Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLoS One 15(5):e0232974. https://doi.org/10.1371/journal.pone.0232974
Sehgal A, Sita K, Siddique KH, Kumar R, Bhogireddy S, Varshney RK, … Nayyar H (2018). Drought or/and heat-stress effects on seed filling in food crops: impacts on functional biochemistry, seed yields, and nutritional quality. Frontiers in Plant Science 9:1705. https://doi.org/10.3389/fpls.2018.01705
Shahzad A, Ullah S, Dar AA, Sardar MF, Mehmood T, Tufail MA, … Haris M (2021). Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environmental Science and Pollution Research 28:14211-14232. https://doi.org/10.1007/s11356-021-12649-8
Sharma D, Mamrutha H, Gupta VK, Tiwari R, Singh R (2015). Association of SSCP variants of HSP genes with physiological and yield traits under heat stress in wheat. Research on Crops 16(1). http://dx.doi.org/10.5958/2348-7542.2015.00020.0
Sharma D, Singh R, Tiwari R, Kumar R, Gupta VK (2019). Wheat responses and tolerance to terminal heat stress: a review. Wheat Production in Changing Environments 149-173. https://doi.org/10.1007/978-981-13-6883-7_7
Sharma P, Jha AB, Dubey RS, Pessarakli M (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany 2012:217037. https://doi.org/10.1155/2012/217037
Shashikumara P, Gajghate R, Bhatt Devate N, Harikrishna, Mamrutha H, Gopalareddy K, Singh G (2022). Heat stress in wheat: Adaptation strategies. In: Thermotolerance in Crop Plants. Springer, pp 1-21. https://doi.org/10.1007/978-981-19-3800-9_1
Sparrow-Muñoz I, Chen TC, Burgess SJ (2023). Recent developments in the engineering of Rubisco activase for enhanced crop yield. Biochemical Society Transactions. https://doi.org/10.1042/BST20221281
Steward PR, Dougill AJ, Thierfelder C, Pittelkow CM, Stringer LC, Kudzala M, Shackelford GE (2018). The adaptive capacity of maize-based conservation agriculture systems to climate stress in tropical and subtropical environments: A meta-regression of yields. Agriculture, Ecosystems & Environment 251:194-202. https://doi.org/10.1016/j.agee.2017.09.019
Sumesh K, Sharma-Natu P, Ghildiyal M (2008). Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains. Biologia Plantarum 52(4):749-753. https://doi.org/10.1007/s10535-008-0145-x
Suzuki N (2023). Fine tuning of ros, redox and energy regulatory systems associated with the functions of chloroplasts and mitochondria in plants under heat stress. International Journal of Molecular Sciences 24(2):1356. https://doi.org/10.3390/ijms24021356
Tack J, Barkley A, Hendricks N (2017). Irrigation offsets wheat yield reductions from warming temperatures. Environmental Research Letters 12(11):114027. http://doi.org/10.1088/1748-9326/aa8d27
Tan W, wei Meng Q, Brestic M, Olsovska K, Yang X (2011). Photosynthesis is improved by exogenous calcium in heat-stressed tobacco plants. Journal of Plant Physiology 168(17):2063-2071. https://doi.org/10.1016/j.jplph.2011.06.009
Tao Zq, Chen Yq, Li C, Zou Jx, Yan P, Yuan Sf, … Sui P (2016). The causes and impacts for heat stress in spring maize during grain filling in the North China Plain. A review. Journal of Integrative Agriculture 15(12):2677-2687. https://doi.org/10.1016/S2095-3119(16)61409-0
Thomason K, Babar MA, Erickson JE, Mulvaney M, Beecher C, MacDonald G (2018). Comparative physiological and metabolomics analysis of wheat (Triticum aestivum L.) following post-anthesis heat stress. PLoS One 13(6):e0197919. https://doi.org/10.1371/journal.pone.0197919
Tian X, Qin Z, Zhao Y, Wen J, Lan T, Zhang L, … Zhao A (2022). Stress granule‐associated TaMBF1c confers thermotolerance through regulating specific mRNA translation in wheat (Triticum aestivum). New Phytologist 233(4):1719-1731. https://doi.org/10.1111/nph.17865
Tiwari RK, Lal MK, Kumar R, Chourasia KN, Naga KC, Kumar D, … Zinta G (2021). Mechanistic insights on melatonin-mediated drought stress mitigation in plants. Physiologia Plantarum 172(2):1212-1226. https://doi.org/10.1111/ppl.13307
Todaka D, Nakashima K, Shinozaki K, Yamaguchi-Shinozaki K (2012). Toward understanding transcriptional regulatory networks in abiotic stress responses and tolerance in rice. Rice 5(1):1-9. https://doi.org/10.1186/1939-8433-5-6
Tyagi H, Jha S, Sharma M, Giri J, Tyagi AK (2014). Rice SAPs are responsive to multiple biotic stresses and overexpression of OsSAP1, an A20/AN1 zinc-finger protein, enhances the basal resistance against pathogen infection in tobacco. Plant Science 225:68-76. https://doi.org/10.1016/j.plantsci.2014.05.016
Ul Hassan M, Rasool T, Iqbal C, Arshad A, Abrar M, Abrar MM, … Fahad S (2021). Linking plants functioning to adaptive responses under heat stress conditions: a mechanistic review. Journal of Plant Growth Regulation 1-18. https://doi.org/10.1007/s00344-021-10493-1
Ullah A, Nadeem F, Nawaz A, Siddique KHM, Farooq M (2022). Heat stress effects on the reproductive physiology and yield of wheat. Journal of Agronomy and Crop Science 208(1):1-17. https://doi.org/10.1111/jac.12572
Upreti K, Sharma M (2016). Role of plant growth regulators in abiotic stress tolerance. In: Abiotic Stress Physiology of Horticultural Crops. Springer, pp 19-46. https://doi.org/10.1007/978-81-322-2725-0_2
Usman M (2016). Contribution of agriculture sector in the GDP growth rate of Pakistan. Journal of Global Economics 4(2):1-3. https://doi.org/10.4172/2375-4389.1000184
Usman MG, Rafii M, Ismail M, Malek M, Latif MA, Oladosu Y (2014). Heat shock proteins: functions and response against heat stress in plants. International Journal of Science and Technology Research 3(11):204-218.
Wu B, Qiao J, Wang X, Liu M, Xu S, Sun D, (2021). Factors affecting the rapid changes of protein under short-term heat stress. BMC Genomics 22(1):263. https://doi.org/10.1186/s12864-021-07560-y
Wu J, Gao T, Hu J, Zhao L, Yu C, Ma F (2022). Research advances in function and regulation mechanisms of plant small heat shock proteins (sHSPs) under environmental stresses. Science of the Total Environment: 154054. https://doi.org/10.1016/j.scitotenv.2022.154054
Yadav A, Singh J, Ranjan K, Kumar P, Khanna S, Gupta M, … Sirohi A (2020). Heat shock proteins: master players for heat‐stress tolerance in plants during climate change. Heat stress tolerance in plants: physiological, molecular and genetic perspectives 189-211. https://doi.org/10.1002/9781119432401.ch9
Yadav MR, Choudhary M, Singh J, Lal MK, Jha PK, Udawat P, … Prasad PVV (2022). Impacts, tolerance, adaptation, and mitigation of heat stress on wheat under changing climates. International Journal of Molecular Sciences 23(5):2838. https://doi.org/10.3390/ijms23052838
Yamamoto Y (2016). Quality control of photosystem ii: The mechanisms for avoidance and tolerance of light and heat stresses are closely linked to membrane fluidity of the thylakoids [Review]. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.01136
Younis A, Khattab H, Emam M (2020). Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. Biological Plant 64:343-352. http://doi.org/10.32615/bp.2020.030
Yumurtaci A (2015). Utilization of wild relatives of wheat, barley, maize and oat in developing abiotic and biotic stress tolerant new varieties. Emirates Journal of Food and Agriculture 01-23. http://dx.doi.org/10.9755/ejfa.v27i1.17852
Zafar SA, Hameed A, Ashraf M, Khan AS, Qamar Zu, Li X, Siddique KHM (2020). Agronomic, physiological and molecular characterisation of rice mutants revealed the key role of reactive oxygen species and catalase in high-temperature stress tolerance. Functional Plant Biology 47(5):440-453. https://doi.org/10.1071/FP19246
Zahra N, Hafeez MB, Ghaffar A, Kausar A, Zeidi MA, Siddique KHM, Farooq M (2023). Plant photosynthesis under heat stress: Effects and management. Environmental and Experimental Botany 206:105178. https://doi.org/10.1016/j.envexpbot.2022.105178
Zahra N, Wahid A, Hafeez MB, Ullah A, Siddique KH, Farooq M (2021). Grain development in wheat under combined heat and drought stress: Plant responses and management. Environmental and Experimental Botany 188:104517. https://doi.org/10.1016/j.envexpbot.2021.104517
Zhang D, Zhang Z, Unver T, Zhang B (2021). CRISPR/Cas: A powerful tool for gene function study and crop improvement. Journal of Advanced Research 29:207-221. https://doi.org/10.1016/j.jare.2020.10.003
Zhao H, Dai T, Jing Q, Jiang D, Cao W (2007). Leaf senescence and grain filling affected by post-anthesis high temperatures in two different wheat cultivars. Plant Growth Regulation 51:149-158. https://doi.org/10.1016/j.sajb.2019.04.009
Zheng L, Wu W, Chen Q, Zhang G, Gao F, Zhou Y (2022). Integrated transcriptomics, proteomics, and metabolomics identified biological processes and metabolic pathways involved in heat stress response in jojoba. Industrial Crops and Products 183:114946. https://doi.org/10.1016/j.indcrop.2022.114946
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Zain Ul Abidin, Athar MAHMOOD, Hussam F. Najeeb Alawadi, Muhammad Saad ULLAH, Adeel SHAHID, Jameel Mohammed AL-KHAYRI, Mohammed Ibrahim ALDAEJ, Othman AL-DOSSARY, Bader ALSUBAIE, Wael Fathi SHEHATA
This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.