Polypodiales a promising fern order as a source of anticancer agent: A comprehensive review
DOI:
https://doi.org/10.15835/nbha52413632Keywords:
anticancer, cytotoxic, fern, in vitro, molecular mechanism, Polypodiales orderAbstract
Ferns are vascular plants that have been extensively studied in recent decades for their phytochemical and anticancer activities. Polypodiales is an order of ferns consisting of 26 families with more than 9600 species (>80% of the total number of fern species). There have been many reports on the potential activity of plants and their phytochemicals that belong to the Polypodiales order in the search for anticancer agents. However, until now, there has been no comprehensive review of the anticancer activity of ferns, specifically in the order. This research is based on a thorough analysis of relevant literature in Scopus and PubMed databases from 1979 to 2022. The literature search used specific keywords, with criteria for this review appropriate for cell-based experiments and molecular mechanisms of anticancer activity. In vivo assay, chemopreventive or cytoprotective activity, and testing of combinations of plants or compounds were excluded. A total of 66 species were distributed in 11 families of the order Polypodiales, were summarized, constructed and discussed the traditional use, pharmacology, and phytochemicals associated with anticancer properties. The comprehensive research study showed that plants of the order Polypodiales and their phytochemicals exhibit anticancer effects against various cancers. Pteridaceae is a family that contains the most anticancer bioactive compounds. ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic acid (5F), terpenoid from Pteridaceae family exhibits promising against colorectal, gastric, hepatocellular, lung, laryngeal, nasopharyngeal, and breast cancer cell lines. The ability to induce apoptosis through several pathways that can activate the mitochondrial-mediated apoptosis pathway, such as inhibiting the NF-kB pathway and increasing ROS formation. Further research is needed to explore more ferns, reveal their active compounds activity and mechanism of action, and conduct in vivo assay to confirm their efficacy and safety for the development of cancer treatment.
References
Afolayan FID, Sulaiman KA, Okunade WT (2020). Ethnobotanical survey of plants used in cancer therapy in Iwo and Ibadan, South-Western of Nigeria. Journal of Pharmacy and Pharmacognosy Research 8(5):346-367. https://doi.org/10.56499/jppres20.798_8.5.346
Al-Assar NB, Khattak MNK, Mashwani Z ur R, Kanan S, Ullah I, Ali U, Khan AA (2021). Phytochemical profile and antiproliferative activities of acetone extracts of Asplenium polypodioides Blume. and A. dalhousiae Hook.in MDA-MB-231 breast cancer cells. Saudi Journal of Biological Sciences 28(11):6324-6331. https://doi.org/10.1016/j.sjbs.2021.06.098
Aldrich LN, Burdette JE, Carcache De Blanco E, Coss CC, Eustaquio AS, … Zhang X (2022). Charlson. Journal of Natural Products 85(3):702-719. https://doi.org/10.1021/ACS.JNATPROD.2C00036/
Almosnid NM, Zhou X, Jiang L, Ridings A, Knott D, Wang S, … Miao J (2018). Evaluation of extracts prepared from 16 plants used in Yao ethnomedicine as potential anticancer agents. Journal of Ethnopharmacology 211:224-234. https://doi.org/10.1016/J.JEP.2017.09.032
Anderson C, Fuller F, Epstein WW (1979). Nonpolar pentacyclic triterpenes of the medicinal fern Polypodium subpetiolatum. Journal of Natural Products 42(2):168-173. https://doi.org/10.1021/np50002a006
Arbiastutie Y, Diba F, Masriani M (2022). Cytotoxicity activity of several medicinal plants grow in mangrove forest against human’s cervical (HELA), breast (T47D), and colorectal (WiDr) cancer cell lines. International Journal of Nutrition, Pharmacology, Neurological Diseases 12(2):46-50. https://doi.org/10.4103/ijnpnd.ijnpnd_57_21
Arullappan S, Sawai S, Chee LA, Mahandan M, Shanmugavelan R (2017). Phytochemical screening and evaluation of cytotoxic effect and antioxidant activity of fractions isolated from Stenochlaena palustri (Burm.f.) bedd. leaves. Indian Journal of Pharmaceutical Education and Research 51(4):S735-S740. https://doi.org/10.5530/ijper.51.4s.106
Arvizu-Espinosa MG, Von Poser GL, Henriques AT, Mendoza-Ruiz A, Cardador-Martínez A, Gesto-Borroto R, … Cardoso-Taketa A (2019). Bioactive dimeric acylphloroglucinols from the Mexican fern Elaphoglossum paleaceum. Journal of Natural Products 82(4):785-791. https://doi.org/10.1021/acs.jnatprod.8b00677
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, Linder T, Wawrosch C, Uhrin P, … Stuppner H (2015). Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances 33(8):1582-1614. https://doi.org/10.1016/J.BIOTECHADV.2015.08.001
Bergman ME, Kortbeek RWJ, Gutensohn M, Dudareva N (2024). Plant terpenoid biosynthetic network and its multiple layers of regulation. Progress in Lipid Research 95:101287. https://doi.org/10.1016/J.PLIPRES.2024.101287
Bray F, Laversanne M, Weiderpass E, Soerjomataram I (2021). The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127(16):3029-3030. https://doi.org/10.1002/CNCR.33587
Cao J, Xia X, Dai X, Wang Q, Xiao J (2014). Chemical composition and bioactivities of flavonoids-rich extract from Davallia cylindrica Ching. Environmental Toxicology and Pharmacology 37(2):571579. https://doi.org/10.1016/J.ETAP.2014.01.011
Cao S, Radwan MM, Norris A, Miller JS, Ratovoson F, Mamisoa A, … Kingston DGI (2006). Cytotoxic and other compounds from Didymochlaena truncatula from the Madagascar rain forest. Journal of Natural Products 69(2):284-286. https://doi.org/10.1021/np050351x
Chai TT, Quah Y, Ooh KF, Ismail NIM, Ang Y Von, Elamparuthi S, … Wong FC (2013). Anti-proliferative, antioxidant and iron-chelating properties of the tropical highland fern, Phymatopteris triloba (Houtt) Pichi Serm (Family Polypodiaceae). Tropical Journal of Pharmaceutical Research 12(5):747-753. https://doi.org/10.4314/tjpr.v12i5.13
Chai TT, Yeoh LY, Mohd Ismail NI, Ong HC, Wong FC (2015). Cytotoxicity and antiglucosidase potential of six selected edible and medicinal ferns. Acta Poloniae Pharmaceutica - Drug Research 72(2):397-401. https://www.ptfarm.pl/pub/File/Acta_Poloniae/2015/2/397.pdf
Chai TT, Yeoh LY, Mohd Ismail NI, Ong HC, Abd Manan F, Wong FC (2015). Evaluation of glucosidase inhibitory and cytotoxic potential of five selected edible and medicinal ferns. Tropical Journal of Pharmaceutical Research 14(3):449-454. https://doi.org/10.4314/tjpr.v14i3.13
Chang HC, Huang GJ, Agrawal DC, Kuo CL, Wu CR, Tsay HS (2007). Antioxidant activities and polyphenol contents of six folk medicinal ferns used as “Gusuibu.” Botanical Studies 48(4):397-406.
Chang HL, Su JH, Yeh YT, Lee YC, Chen HM, Wu YC, Yuan SSF (2008). Protoapigenone, a novel flavonoid, inhibits ovarian cancer cell growth in vitro and in vivo. Cancer Letters 267(1);85-95. https://doi.org/10.1016/j.canlet.2008.03.007
Chang HL, Wu YC, Su JH, Yeh YT, Yuan SSF (2008). Protoapigenone, a novel flavonoid, induces apoptosis in human prostate cancer cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase 1/2. The Journal of Pharmacology and Experimental Therapeutics 325(3):841–849. https://doi.org/10.1124/jpet.107.135442
Chang SH, Bae JH, Hong DP, Choi KD, Kim SC, Her E, Kim SH, Kang CD (2010). Dryopteris crassirhizoma has anti-cancer effects through both extrinsic and intrinsic apoptotic pathways and G0/G1 phase arrest in human prostate cancer cells. Journal of Ethnopharmacology 130(2):248-254. https://doi.org/10.1016/j.jep.2010.04.038
Charlson AJ (1980). Antineoplastic constituents of some Southern African plants. Journal of Ethnopharmacology 2(4):323-335. https://doi.org/10.1016/S0378-8741(80)81014-2
Chear NJY, Fauzi AN, Khaw KY, Choi SB, Yaacob NS, Lai CS (2019). Free radical scavenging and cytotoxic properties of acylated and non-acylated kaempferol glycosides from Stenochlaena palustris: a perspective on their structure – activity relationships. Pharmaceutical Chemistry Journal 53(3):188-193. https://doi.org/10.1007/s11094-019-01977-2
Chen GG, Liang NC, Lee JFY, Chan UPF, Wang SH, Leung BCS, Leung KL (2004). Over-expression of Bcl-2 against Pteris semipinnata L-induced apoptosis of human colon cancer cells via a NF-kappa B - Related pathway. Apoptosis 9(5):619-627. https://doi.org/10.1023/B:APPT.0000038041.57782.84
Chen WY, Hsieh YA, Tsai CI, Kang YF, Chang FR, Wu YC, Wu CC (2011). Protoapigenone, a natural derivative of apigenin, induces mitogen-activated protein kinase-dependent apoptosis in human breast cancer cells associated with induction of oxidative stress and inhibition of glutathione S-transferase Π. Investigational New Drugs 29(6):1347-1359. https://doi.org/10.1007/s10637-010-9497-0
Chen YH, Chang FR, Lu MC, Hsieh PW, Wu MJ, Du YC, Wu YC (2008). New benzoyl glucosides and cytotoxic pterosin sesquiterpenes from Pteris ensiformis Burm. Molecules 13(2):255-266. https://doi.org/10.3390/molecules13020255
Cheng AS, Chang WC, Cheng YH, Chen KY, Chen KH, Chang TL (2012). The effects of davallic acid from Davallia divaricata Blume on apoptosis induction in A549 lung cancer cells. Molecules 17:12938-12949. https://doi.org/10.3390/MOLECULES171112938
Cheng D, Zhang Y, Gao D, Zhang H (2014). Antibacterial and anti-inflammatory activities of extract and fractions from Pyrrosia petiolosa (Christ et Bar.) Ching. Journal of Ethnopharmacology 155(2):1300-1305. https://doi.org/10.1016/j.jep.2014.07.029
Chiu CC, Chang HW, Chuang DW, Chang FR, Chang YC, … Wu YC (2009). Fern plant-derived protoapigenone leads to DNA damage, apoptosis, and g2/m arrest in lung cancer cell line H1299. DNA and Cell Biology 28(10):501-506. https://doi.org/10.1089/dna.2009.0852
Chu Q, Satoh K, Kanamoto T, Terakubo S, Nakashima H, Wang Q, Sakagami H (2009). Antitumor potential of three herbal extracts against human oral squamous cell lines. Anticancer Research 29(8):3211-3219. https://api.elsevier.com/content/abstract/scopus_id/67650900369
Corradini E, Foglia P, Giansanti P, Gubbiotti R, Samperi R, Laganà A (2011). Flavonoids: chemical properties and analytical methodologies of identification and quantitation in foods and plants. Natural Product Research 25(5):469-495. https://doi.org/10.1080/14786419.2010.482054
Cui C-B, Tezuka Y, Kikuchi T, Nakano H, Tamaoki T, Park J-H (1990). Constituents of a fern, Davallia mariesii Moore. I. Isolation and structures of Davallialactone and a new flavanone glucuronide. Chemical and Pharmaceutical Bulletin 38(12):3218-3225. https://doi.org/10.1248/cpb.38.3218
Cui Q, Yang DH, Chen ZS (2018). Special issue: natural products: anticancer and beyond. molecules. A Journal of Synthetic Chemistry and Natural Product Chemistry 23(6). https://doi.org/10.3390/MOLECULES23061246
Elasbali AM, Al-Soud WA, Al-Oanzi ZH, Qanash H, Alharbi B, Binsaleh NK, … Adnan M (2022). Cytotoxic activity, cell cycle inhibition, and apoptosis-inducing potential of Athyrium hohenackerianum (Lady Fern) with its phytochemical profiling. Evidence-Based Complementary and Alternative Medicine 2022. https://doi.org/10.1155/2022/2055773
El-Tantawy ME, Shams MM, Afifi MS (2015). Chemical composition and biological evaluation of the volatile constituents from the aerial parts of Nephrolepis exaltata (L.) and Nephrolepis cordifolia (L.) C. Presl grown in Egypt. Natural Product Research 30(10):1197-1201. https://doi.org/10.1080/14786419.2015.1046070
Fang W, Ruan J, Cai Y, Wei A, Zhou D, Zhang W (2011). Flavonoids from the aerial parts of Macrothelypteris torresiana. Natural Product Research 25(1):36-39. https://doi.org/10.1080/14786411003766888
Farràs A, Mitjans M, Maggi F, Caprioli G, Vinardell MP, López V (2021). Polypodium vulgare L. (Polypodiaceae) as a source of bioactive compounds: polyphenolic profile, cytotoxicity and cytoprotective properties in different cell lines. Frontiers in Pharmacology 12:2435. https://doi.org/10.3389/FPHAR.2021.727528/BIBTEX
Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer 149(4):778-789. https://doi.org/10.1002/IJC.33588
Gaafar Alaa A, Ali Sami I, Faried Ahmed M, El-Hallouty Salwa M (2018). An insight into chemical content, biological effect and morphological features of pteris vittata l., rarely growing in Egypt. Research Journal of Chemistry and Environment 22(10):47-55.
Ge X, Ye G, Li P, Tang WJ, Gao JL, Zhao WM (2008). Cytotoxic diterpenoids and sesquiterpenoids from Pteris multifida. Journal of Natural Products 71(2):227-231. https://doi.org/10.1021/NP0706421
Gou ZP, Liang NC, Hou J, Li L, Tian Y, Wang CY, Cui X, Zhang BJ, Ma XC (2011). Two new diterpene and sesquiterpene from Pteris dispar. Chinese Chemical Letters 22(12):1451-1453. https://doi.org/10.1016/J.CCLET.2011.09.001
Gupta MP, Arias TD, Correa M, Lamba SS (1979). Ethnopharmacognostic observations on panamanian medicinal plants. Part i. Pharmaceutical Biology 17(3-4):115-130. https://doi.org/10.3109/13880207909065163
Gyanani V, Haley JC, Goswami R (2021). Challenges of current anticancer treatment approaches with focus on liposomal drug delivery systems. Pharmaceuticals (Basel, Switzerland) 14(9). https://doi.org/10.3390/ph14090835
Harinantenaina L, Matsunami K, Otsuka H (2008). Chemical and biologically active constituents of Pteris multifida. Journal of Natural Medicines 62(4):452-455. https://doi.org/10.1007/s11418-008-0265-9
Herrmann F, Romero MR, Blazquez AG, Kaufmann D, Ashour ML, Kahl S, Marin JJG, Efferth T, Wink M (2011). Diversity of pharmacological properties in Chinese and European medicinal plants: Cytotoxicity, antiviral and antitrypanosomal screening of 82 herbal drugs. Diversity 3(4):547-580. https://doi.org/10.3390/d3040547
Hoda M (2021). Potential alternatives to conventional cancer therapeutic approaches: the way forward. Current Pharmaceutical Biotechnology 22(9):1141-1148. https://doi.org/10.2174/1389201021666201016142408
Holdsworth DK (1992). A preliminary study of medicinal plants of easter island, south pacific. Pharmaceutical Biology 30(1):27-32. https://doi.org/10.3109/13880209209054626
Hsieh PF, Jiang WP, Huang SY, Basavaraj P, Wu J Bin, Ho HY, Huang GJ, Huang WC (2020). Emerging therapeutic activity of Davallia formosana on prostate cancer cells through coordinated blockade of lipogenesis and androgen receptor expression. Cancers 12(4). https://doi.org/10.3390/cancers12040914
Hu J, Song Y, Li H, Mao X, Zhao Y, Shi X (2015). Antimicrobial and cytotoxic isopimarane diterpenoid glycosides from Microlepia pilosissima Ching. Fitoterapia 101:27-33. https://doi.org/10.1016/J.FITOTE.2014.12.007
Huang XH, Xiong PC, Xiong CM, Cai YL, Wei AH, Wang JP, Liang XF, Ruan JL (2010). In vitro and in vivo antitumor activity of Macrothelypteris torresiana and its acute/subacute oral toxicity. Phytomedicine 17(12):930-934. https://doi.org/10.1016/j.phymed.2010.03.006
Jan F, Pareek S, Srivastava RP, Zahoor I, Sharma A, Shrivastava D (2022). Anti-cancerous and anti-bacterial potential of silver nanoparticles synthesized using leaf extract of fern-Dryopteris barbigera. Digest Journal of Nanomaterials and Biostructures 17(1):285-299. https://doi.org/10.15251/DJNB.2022.171.285
Janakiraman N, Johnson M (2016). Ethanol extracts of selected cyathea species decreased cell viability and inhibited growth in MCF 7 cell line cultures. JAMS Journal of Acupuncture and Meridian Studies 9(3):151-155. https://doi.org/10.1016/j.jams.2016.04.004
Jarial R, Thakur S, Sakinah M, Zularisam AW, Sharad A, Kanwar SS, Singh L (2018). Potent anticancer, antioxidant and antibacterial activities of isolated flavonoids from Asplenium nidus. Journal of King Saud University - Science 30(2):185-192. https://doi.org/10.1016/j.jksus.2016.11.006
Jiang T, Dai X, Gao T, Wang L, Yang F, Zhang Y, Wang N, Huang G, Cao J (2022). Ancepsone A, a new cheilanthane sesterterpene from Aleuritopteris anceps. Tetrahedron Letters 100:153869. https://doi.org/10.1016/j.tetlet.2022.153869
Kaewsuwan S, Yuenyongsawad S, Plubrukarn A, Kaewchoothong A, Raksawong A, Puttarak P, Apirug C (2015). Bioactive interruptins A and B from cyclosorus terminans: Antibacterial, anticancer, stem cell proliferation and ROS scavenging activities. Songklanakarin Journal of Science and Technology 37(3):309-317. https://doaj.org/article/8cdcb13513a34f0a9ac8f55366d1174d
Karade PG, Jadhav NR (2018). In vitro studies of the anticancer action of Tectaria cicutaria in human cancer cell lines: G0/G1 p53-associated cell cycle arrest-Part I. Journal of Traditional and Complementary Medicine 8(4):459-464. https://doi.org/10.1016/j.jtcme.2017.07.003
Kaur P, Kaur V, Kumar M, Kaur S (2014). Suppression of SOS response in E. coli PQ 37, antioxidant potential and antiproliferative action of methanolic extract of Pteris vittata L. on human MCF-7 breast cancer cells. Food and Chemical Toxicology 74:326-333. https://doi.org/10.1016/j.fct.2014.10.002
Kim JW, Kim HP, Sung SH (2017). Cytotoxic pterosins from Pteris multifida roots against HCT116 human colon cancer cells. Bioorganic and Medicinal Chemistry Letters 27(14):3144-3147. https://doi.org/10.1016/j.bmcl.2017.05.034
Kiran K, Saleem F, Awan S, Ahmad S, Ahmad S, Malik MAA, Akhtar B, Raza M, Peerzada S, Sharif A (2018). Anti-inflammatory and anticancer activity of Pteris cretica whole plant extracts. Pakistan Veterinary Journal 38(3):225-230. https://doi.org/10.29261/pakvetj/2018.063
Kola P, Metowogo K, Kantati YT, Lawson-Evi P, Kpemissi M, El-Hallouty SM, Mouzou AP, Eklu-Gadegbeku K, Aklikokou KA (2020). Ethnopharmacological survey on medicinal plants used by traditional healers in central and Kara regions of Togo for antitumor and chronic wound healing effects. Evidence-Based Complementary and Alternative Medicine 2020(1):6940132. https://doi.org/https://doi.org/10.1155/2020/6940132
Laferriere JE (1994). Medicinal plants of the lowland inga people of Colombia. Pharmaceutical Biology 32(1):90-94. https://doi.org/10.3109/13880209409082977
Lai HY, Lim YY, Kim KH (2010). Blechnum orientale Linn - a fern with potential as antioxidant, anticancer and antibacterial agent. BMC Complementary and Alternative Medicine 10. https://doi.org/10.1186/1472-6882-10-15
Lai HY, Lim YY, Kim KH (2017). Isolation and characterisation of a proanthocyanidin with antioxidative, antibacterial and anti-cancer properties from fern Blechnum orientale. Pharmacognosy Magazine 13(49):31. https://doi.org/10.4103/0973-1296.197659
Lee J, Nho YH, Yun SK, Hwang YS (2019). Anti-invasive and anti-tumor effects of Dryopteris crassirhizoma extract by disturbing actin polymerization. Integrative Cancer Therapies 18. https://doi.org/10.1177/1534735419851197
Li H, Chen J, Xiong C, Wei H, Yin C, Ruan J (2014). Apoptosis induction by the total flavonoids from arachniodes exilis in HepG2 cells through reactive oxygen species-mediated mitochondrial dysfunction involving MAPK activation. Evidence-Based Complementary and Alternative Medicine, 2014. https://doi.org/10.1155/2014/906941
Li H, Jiang D, Zhang L, Wu J (2017). Inhibition of tumor growth of human hepatocellular carcinoma HepG2 cells in a nude mouse xenograft model by the total flavonoids from Arachniodes exilis. Evidence-Based Complementary and Alternative Medicine 2017. https://doi.org/10.1155/2017/5310563
Li J chen, Yuan X rui, Liu Y li, Li Y, Cui N ning, Li L li, Ha J (2017). Two new diterpenoids from Aleuritopteris argentea. Phytochemistry Letters 20:22-25. https://doi.org/10.1016/j.phytol.2017.03.007
Li L, Chen GG, Lu YN, Liu Y, Wu KF, Gong XL, … Liang NC (2012). Ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid inhibits growth of human lung cancer A549 cells by arresting cell cycle and triggering apoptosis. Chinese Journal of Cancer Research 24(2):109-115. https://doi.org/10.1007/s11670-012-0109-8
Li L, Lü YN, Liu Y, Wu KF, Chen GG, Liang NC (2010). Apoptosis in HepG2 cells induced by Pteris semipinnata extract 5F involves p53 activation and VEGF inhibition. Chinese Traditional and Herbal Drugs 41(2):241-245.
Li MC, Yao Z, Zhang YW, Takaishi Y, Duan HQ (2007). A novel chalcone derivative from Onychium japonicum. Chinese Chemical Letters 18(7):840-842. https://doi.org/10.1016/j.cclet.2007.05.033
Li Y, Li W, Deng W, Gan Y, Wu K, Sun J (2017). Synergistic anti-proliferative and pro-apoptotic activities of 5F and cisplatin in human non-small cell lung cancer NCI-H23 cells. Oncology Letters 14(5):5347-5353. https://doi.org/10.3892/ol.2017.6848
Liang YH, Wang W, Yu SW, Ye M, He XH, Gong NB, … Guo DA (2010). A new chiratane type triterpenoid from the rhizomes of Drynaria fortunei. Fitoterapia 81(8):988-991. https://doi.org/10.1016/J.FITOTE.2010.06.013
Lin AS, Chang FR, Wu CC, Liaw CC, Wu YC (2005). New cytotoxic flavonoids from Thelypteris torresiana. Planta Medica 71(9):867-870. https://doi.org/10.1055/s-2005-871292
Liu D-M, Sheng J-W, Wang S-H, Zhang W-F, Zhang W, Zhang D-J (2016). Cytoproliferative and cytoprotective effects of striatisporolide a isolated from rhizomes of Athyrium multidentatum (Doell.) Ching on Human umbilical vein endothelial cells. Molecules (Basel, Switzerland) 21(10). https://doi.org/10.3390/molecules21101280
Liu H, Jiang C, Xiong C, Ruan J (2012). DEDC, a new flavonoid induces apoptosis via a ROS-dependent mechanism in human neuroblastoma SH-SY5Y cells. Toxicology in Vitro 26(1):16-23. https://doi.org/10.1016/j.tiv.2011.10.002
Liu H, Xiao Y, Xiong C, Wei A, Ruan J (2011). Apoptosis induced by a new flavonoid in human hepatoma HepG2 cells involves reactive oxygen species-mediated mitochondrial dysfunction and MAPK activation. European Journal of Pharmacology 654(3):209-216. https://doi.org/10.1016/j.ejphar.2010.12.036
Liu W, Feng Y, Yu S, Fan Z, Li X, Li J, Yin H (2021). The flavonoid biosynthesis network in plants. International Journal of Molecular Sciences 22(23). https://doi.org/10.3390/IJMS222312824
Liu Y, Chen GG, Lü YN, Hsin MKY, Underwood MJ, Liang NC (2010). Effects of 5F on IκKβ, IκB, p65, and p50 mRNA expression of non-small lung cancer NCI-H460 cells. Chinese Traditional and Herbal Drugs 41(3):435-439.
Liu ZD, Zhao DD, Jiang S, Xue B, Zhang YL, Yan XF (2018). Anticancer phenolics from Dryopteris fragrans (L.) schott. Molecules 23(3). https://doi.org/10.3390/molecules23030680
Liu ZM, Chen GG, Vlantis AC, Liang NC, Deng YF, Van Hasselt CA (2005). Cell death induced by ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid in anaplastic thyroid carcinoma cells is via a mitochondrial-mediated pathway. Apoptosis 10(6):1345-1356. https://doi.org/10.1007/s10495-005-1730-5
Liu Z, Cao S, Jin C, He Y, Zhou X, Zhang H, Liu Z (2019). The antagonism between apigenin and protoapigenone to the PDK-1 target in Macrothelypteris torresiana. Fitoterapia 134:14-22. https://doi.org/10.1016/J.FITOTE.2019.02.005
Liu Z, Ng EKW, Liang NC, Deng YF, Leung BCS, Chen GG (2005). Cell death induced by Pteris semipinnata L. is associated with p53 and oxidant stress in gastric cancer cells. FEBS Letters 579(6):1477-1487. https://doi.org/10.1016/j.febslet.2005.01.050
Lu J, Peng C, Cheng S, Liu J, Ma Q, Shu J (2019). Four new pterosins from Pteris cretica and their cytotoxic activities. Molecules 24(15):2767. https://doi.org/10.3390/MOLECULES24152767
Mazzio EA, Soliman KFA (2009). In vitro screening for the tumoricidal properties of international medicinal herbs. Phytotherapy Research 23(3):385-398. https://doi.org/10.1002/ptr.2636
Muhammad M, Ismail ZS, Schneider H, Hawkins JA (2020). Medicinal use of ferns: an ethnobotanical review. Sains Malaysiana 49(5):1003-1014. https://doi.org/10.17576/jsm-2020-4905-05
Ni G, Fu NJ, Zhang D, Yang HZ, Chen XG, Yu DQ (2015). An unusual dihydrobenzofuroisocoumarin and ent-kaurane diterpenoids from Pteris multifida. Journal of Asian Natural Products Research 17(5):423-429. https://doi.org/10.1080/10286020.2015.1040777
Nitta JH, Schuettpelz E, Ramírez-Barahona S, Iwasaki W (2022). An open and continuously updated fern tree of life. In Frontiers in Plant Science 13. https://doi.org/10.3389/fpls.2022.909768
Nugraha AS, Wangchuk T, Willis AC, Haritakun R, Sujadmiko H, Keller PA (2019). Phytochemical and pharmacological studies on four Indonesian epiphytic medicinal plants: Drynaria rigidula, Hydnophytum formicarum, Usnea misaminensis, and Calymperes schmidtii. Natural Product Communications 14(6). https://doi.org/10.1177/1934578X19856792
Ouyang DW, Ni X, Xu HY, Chen J, Yang PM, Kong DY (2010). Pterosins from Pteris multifida. Planta Medica 76(16):1896-1900. https://doi.org/10.1055/s-0030-1249934
Peng C, Lu J, Liu J, Huang H, Zhu Y, Shu J (2020). Three novel pterosin dimers form Pteris obtusiloba. Fitoterapia 146:104713. https://doi.org/10.1016/J.FITOTE.2020.104713
Petkov V, Batsalova T, Stoyanov P, Mladenova T, Kolchakova D, Argirova M, Raycheva T, Dzhambazov B (2021). Selective anticancer properties, proapoptotic and antibacterial potential of three asplenium species. Plants 10(6):1053. https://doi.org/10.3390/plants10061053
Philips N, Conte J, Chen YJ, Natrajan P, Taw M, Keller T, … Gonzalez S (2009). Beneficial regulation of matrixmetalloproteinases and their inhibitors, fibrillar collagens and transforming growth factor-β by Polypodium leucotomos, directly or in dermal fibroblasts, ultraviolet radiated fibroblasts, and melanoma cells. Archives of Dermatological Research 301(7):487-495. https://doi.org/10.1007/s00403-009-0950-x
Philips N, Dulaj L, Upadhya T (2009). Cancer cell growth and extracellular matrix remodeling mechanism of ascorbate; beneficial modulation by P. leucotomos. Anticancer Research 29(8):3233-3238. https://api.elsevier.com/content/abstract/scopus_id/68549109511
PPG I (2016). A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution 54(6):563-603. https://doi.org/https://doi.org/10.1111/jse.12229
Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD (2001). Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature 409(6820):618-622. https://doi.org/10.1038/35054555
Qi G, Liu Z, Fan R, Yin Z, Mi Y, Ren B, Liu X (2017). Athyrium multidentatum (Doll.) Ching extract induce apoptosis via mitochondrial dysfunction and oxidative stress in HepG2 cells. Scientific Reports 7(1):2275. https://doi.org/10.1038/s41598-017-02573-8
Qiu M, Yang B, Cao D, Zhu J, Jin J, Chen Y, … Zhao, Z. (2016). Two new hydroxylated ent-kauranoic acids from Pteris semipinnata. Phytochemistry Letters 16:156-162. https://doi.org/10.1016/J.PHYTOL.2016.03.015
Qiu S, Wu X, Liao H, Zeng X, Zhang S, Lu X, … Zhu X (2017). Pteisolic acid G, a novel ent-kaurane diterpenoid, inhibits viability and induces apoptosis in human colorectal carcinoma cells. Oncology Letters 14(5):5540-5548. https://doi.org/10.3892/ol.2017.6889
Radhika NK, Sreejith PS, Asha VV (2010). Cytotoxic and apoptotic activity of Cheilanthes farinosa (Forsk.) Kaulf. against human hepatoma, Hep3B cells. Journal of Ethnopharmacology 128(1):166-171. https://doi.org/10.1016/j.jep.2010.01.002
Rautray S, Panikar S, Amutha T, Rajananthini AU (2018). Anticancer activity of Adiantum capillus veneris and Pteris quadriureta L. in human breast cancer cell lines. Molecular Biology Reports 45(6):1897-1911. https://doi.org/10.1007/s11033-018-4337-y
Rodríguez-Yanes E, Cuevas J, González S, Mallol J (2014). Oral administration of Polypodium leucotomos delays skin tumor development and increases epidermal p53 expression and the anti-oxidant status of UV-irradiated hairless mice. Experimental Dermatology 23:526-528. https://doi.org/10.1111/exd.12454
Roudsari M, Bahrami A, Dehghani H (2012). Bracken-fern extracts induce cell cycle arrest and apoptosis in certain cancer cell lines. Asian Pacific Journal of Cancer Prevention: APJCP 13(12):6047-6053. https://doi.org/10.7314/APJCP.2012.13.12.6047
Saad N, Chia SL, Abdullah CAC, Sulaiman F (2024). Natural product testing: selecting in vivo anticancer assay model. Journal of Tropical Life Science 14(1):155-172. https://doi.org/10.11594/JTLS.14.01.16
Schultz F, Anywar G, Wack B, Quave CL, Garbe LA (2020). Ethnobotanical study of selected medicinal plants traditionally used in the rural Greater Mpigi region of Uganda. Journal of Ethnopharmacology 256:112742. https://doi.org/10.1016/j.jep.2020.112742
Shen B, Chen S, Zhou Q, Jian Y, Daniyal M, Sheng W, … Wang W (2020). Flavonoid glycosides from the rhizomes of Pronephrium penangianum. Phytochemistry 179. https://doi.org/10.1016/J.PHYTOCHEM.2020.112500
Shi YS, Zhang Y, Hu WZ, Zhang LH, Chen X, Zhang N, Li G, Tan LY (2017). Cytotoxic diterpenoids from Pteris ensiformis. Journal of Asian Natural Products Research 19(2):188-193. https://doi.org/10.1080/10286020.2016.1274307
Shi YS, Zhang Y, Hu WZ, Zhang XF, Fu X, Lv X (2017). Dihydrochalcones and diterpenoids from Pteris ensiformis and their bioactivities. Molecules 22(9):1413. https://doi.org/10.3390/MOLECULES22091413
Shrestha SS, Sut S, Di Marco SB, Zengin G, Gandin V, De Franco M, … Rajbhandary S (2019). Phytochemical fingerprinting and in vitro bioassays of the ethnomedicinal fern Tectaria coadunata (J. Smith) C. Christensen from Central Nepal. Molecules 24(24). https://doi.org/10.3390/molecules24244457
Silalahi M, Nisyawati Walujo EB, Supriatna J, Mangunwardoyo W (2015). The local knowledge of medicinal plants trader and diversity of medicinal plants in the Kabanjahe traditional market, North Sumatra, Indonesia. Journal of Ethnopharmacology 175:432-443. https://doi.org/10.1016/j.jep.2015.09.009
Su Y, Wan D, Song W (2016). Dryofragin inhibits the migration and invasion of human osteosarcoma U2OS cells by suppressing MMP-2/9 and elevating TIMP-1/2 through PI3K/AKT and p38 MAPK signaling pathways. Anti-Cancer Drugs 27(7):660-668. https://doi.org/10.1097/CAD.0000000000000381
Sukumaran K, Kuttan R (1991). Screening of 11 ferns for cytotoxic and antitumor potential with special reference to Pityrogramma calomelanos. Journal of Ethnopharmacology 34(1):93-96. https://doi.org/10.1016/0378-8741(91)90194-I
Sul’ain MD, Zakaria F, Johan MF (2019). Anti-proliferative effects of methanol and water extracts of Pyrrosia piloselloides on the hela human cervical carcinoma cell line. Asian Pacific Journal of Cancer Prevention 20(1):185-192. https://doi.org/10.31557/APJCP.2019.20.1.185
Sun Y, Gao C, Luo M, Wang W, Gu C, Zu Y, … Fu Y (2013). Aspidin PB, a phloroglucinol derivative, induces apoptosis in human hepatocarcinoma HepG2 cells by modulating PI3K/Akt/GSK3β pathway. Chemico-Biological Interactions 201(1-3):1-8. https://doi.org/10.1016/j.cbi.2012.11.005
Sun Y, Mu F, Li C, Wang W, Luo M, Fu Y, Zu Y (2013). Aspidin BB, a phloroglucinol derivative, induces cell cycle arrest and apoptosis in human ovarian HO-8910 cells. Chemico-Biological Interactions 204(2):88-97. https://doi.org/10.1016/j.cbi.2013.04.008
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71(3):209-249. https://doi.org/10.3322/CAAC.21660
Tan S, Li D, Zhu X (2020). Cancer immunotherapy: Pros, cons and beyond. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 124. https://doi.org/10.1016/J.BIOPHA.2020.109821
Taylor P, Cesari I, Arsenak M, Ballen D, Abad M, Fernández A, … Michelangeli F (2006). Evaluation of Venezuelan medicinal plant extracts for antitumor and antiprotease activities. Pharmaceutical Biology 44(5):349-362. https://doi.org/10.1080/13880200600748119
Thi Minh T, Hoai Thu N, Khanh Toan H, Thuong Quang T, Thi Viet Thanh N, Thu Huong T, Van Sung T (2022). Three new phenolic sulfates from Acrostichum aureum collected from coastal area of Thai Binh Province, Vietnam and their cytotoxic activity. Nature Products 16:66-73. https://doi.org/10.25135/rnp.252.21.03.2014
Tiwary BK, Bihani S, Kumar A, Chakraborty R, Ghosh R (2015). The in vitro cytotoxic activity of ethno-pharmacological important plants of Darjeeling district of West Bengal against different human cancer cell lines. BMC Complementary and Alternative Medicine 15(1). https://doi.org/10.1186/s12906-015-0543-5
Uddin SJ, Grice D, Tiralongo E (2012). Evaluation of cytotoxic activity of patriscabratine, tetracosane and various flavonoids isolated from the Bangladeshi medicinal plant Acrostichum aureum. Pharmaceutical Biology 50(10):1276-1280. https://doi.org/10.3109/13880209.2012.673628
Uddin SJ, Jason TLH, Beattie KD, Grice ID, Tiralongo E (2011). (2 S,3 S)-sulfated pterosin C, a cytotoxic sesquiterpene from the Bangladeshi mangrove fern Acrostichum aureum. Journal of Natural Products 74(9):2010-2013. https://doi.org/10.1021/np2004598
Uddin SJ, Tiralongo E, Grice ID (2011). Cytotoxic effects of Bangladeshi medicinal plant extracts. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1093/ecam/nep111
Vera-Nuñez LDC, Cornejo-Ruiz JO, Arenas-Chávez CA, de Hollanda LM, Alvarez-Risco A, Del-Aguila-Arcentales S, … Vera-Gonzales C (2022). Green synthesis of a novel silver nanoparticle conjugated with Thelypteris glandulosolanosa (Raqui-Raqui): Preliminary characterization and anticancer activity. Processes 10(7). https://doi.org/10.3390/pr10071308
Vlantis AC, Lo CS, Chen GG, Ci Liang N, Lui VWY, Wu K, … Van Hasselt CA (2010). Induction of laryngeal cancer cell death by Ent-11-hydroxy-15-oxo-kaur-16- en-19-oic acid. Head and Neck 32(11):1506-1518. https://doi.org/10.1002/hed.21357
Wan D, Jiang C, Hua X, Wang T, Chai Y (2015). Cell cycle arrest and apoptosis induced by aspidin PB through the p53/p21 and mitochondria-dependent pathways in human osteosarcoma cells. Anti-Cancer Drugs 26(9):931-941. https://doi.org/10.1097/CAD.0000000000000269
Wang C-R, Mahmood J, Zhang Q-R, Vedadi A, Warrington J, Ou N, Bristow RG, Jaffray DA, Lu Q-B (2016). In vitro and in vivo studies of a new class of anticancer molecules for targeted radiotherapy of cancer. Molecular Cancer Therapeutics 15(4):640-650. https://doi.org/10.1158/1535-7163.MCT-15-0862
Wang F, Jiang Z, Wu X, Liang D, Zhang N, Shi L, Ma X, Zhang D (2020). Structural determination and in vitro tumor cytotoxicity evaluation of five new cycloartane glycosides from Asplenium ruprechtii Sa. Kurata. Bioorganic Chemistry 102. https://doi.org/10.1016/J.BIOORG.2020.104085
Wei AH, Zeng L, Ruan JL, Zhou DN (2022). Apoptosis induced by DICO, a novel non-aromatic B-ring flavonoid via a ROS-dependent mechanism in human colon cancer cells. Natural Product Research 36(23):6050-6055. https://doi.org/10.1080/14786419.2022.2042283
Wei A, Zhou D, Xiong C, Cai Y, Ruan J (2011). A novel non-aromatic b-ring flavonoid: Isolation, structure elucidation and its induction of apoptosis in human colon ht-29 tumor cell via the reactive oxygen species-mitochondrial dysfunction and mapk activation. Food and Chemical Toxicology 49(9):2445-2452. https://doi.org/10.1016/j.fct.2011.06.067
Wei H, Zhang X, Wu G, Yang X, Pan S, Wang Y, Ruan J (2013). Chalcone derivatives from the fern Cyclosorus parasiticus and their anti-proliferative activity. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association 60:147-152. https://doi.org/10.1016/J.FCT.2013.07.045
Woerdenbag HJ, Lutke LR, Bos R, Stevens JF, Hulst R, Kruizinga WH, … Pras N (1996). Isolation of two cytotoxic diterpenes from the fern Pteris multifida. Zeitschrift Fur Naturforschung. C, Journal of Biosciences 51(9-10):635-638. https://doi.org/10.1515/znc-1996-9-1006
Wu J, Meng L, Long M, Ruan Y, Li X, Huang Y, Qiu W (2017). Inhibition of breast cancer cell growth by the Pteris semipinnata extract ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid. Oncology Letters 14(6):6809-6814. https://doi.org/10.3892/ol.2017.7113
Wu K, Liu Y, Lv Y, Cui L, Li W, Chen J, Liang NC, Li L (2013). Ent-11α-hydroxy-15-oxo-kaur-16-en-19-oic-acid induces apoptosis and cell cycle arrest in CNE-2Z nasopharyngeal carcinoma cells. Oncology Reports 29(6):2101. https://doi.org/10.3892/OR.2013.2375
Wufuer H, Xu Y, Wu D, He W, Wang D, Zhu W, Wang L (2022). Liglaurates A–E, cytotoxic bis(lauric acid-12yl)lignanoates from the rhizomes of Drynaria roosii Nakaike. Phytochemistry 198:113143. https://doi.org/10.1016/J.PHYTOCHEM.2022.113143
Wulandari ET, Elya B, Hanani E, Pawitan JA (2013). In vitro antioxidant and cytotoxicity activity of extract and fraction Pyrrosia piloselloides (L) M.G Price. International Journal of PharmTech Research CODEN 5(1):119-125.
Yang J, Kwon YS, Kim MJ (2015). Isolation and characterization of bioactive compounds from Lepisorus thunbergianus (Kaulf.). Arabian Journal of Chemistry 8(3):407-413. https://doi.org/10.1016/j.arabjc.2014.11.056
Yang SJ, Liu MC, Liang N, Xiang HM, Yang S (2013). Chemical constituents of Cyrtomium fortumei (J.) Smith. Natural Product Research 27(21):2066-2068. https://doi.org/10.1080/14786419.2013.824442
Yang S, Liu M, Liang N, Zhao Q, Zhang Y, Xue W, Yang S (2013). Discovery and antitumor activities of constituents from Cyrtomium fortumei (J.) Smith rhizomes. Chemistry Central Journal 7(1):24. https://doi.org/10.1186/1752-153X-7-24
Yang S, Liu M, Zhao Q, Zhao H, Xue W, Yang S (2015). Antiproliferative and apoptosis inducing effect of essential oil extracted from Cyrtomium fortumei (J.) Smith leaves. Medicinal Chemistry Research 24(4):1644-1652. https://doi.org/10.1007/s00044-014-1244-1
Yunlong X, Kubo I, Yunbao M (1993). A cytotoxic flavanone glycoside from Onychium japonicum: Structure of onychin. Phytochemistry 33(2):510-511. https://doi.org/10.1016/0031-9422(93)85552-3
Zhang S, Feng N, Huang J, Wang M, Zhang L, Yu J, Dai X, Cao J, Huang G (2020). Incorporation of amino moiety to alepterolic acid improve activity against cancer cell lines: Synthesis and biological evaluation. Bioorganic Chemistry 98:103756. https://doi.org/10.1016/j.bioorg.2020.103756
Zhang T, Wang L, Duan D, Zhang Y, Huang S, Chang Y (2018). Cytotoxicity-guided isolation of two new phenolic derivatives from Dryopteris fragrans (L.) Schott. Molecules (Basel, Switzerland) 23(7):1-11. https://doi.org/10.3390/MOLECULES23071652
Zhang Y, Luo M, Zu Y, Fu Y, Gu C, Wang W, Yao L, Efferth T (2012). Dryofragin, a phloroglucinol derivative, induces apoptosis in human breast cancer MCF-7 cells through ROS-mediated mitochondrial pathway. Chemico-Biological Interactions 199(2):129-136. https://doi.org/10.1016/j.cbi.2012.06.007
Zhang ZB, Ip SP, Shing Cho WC, Hu Z, Huang YF, Luo DD, Xian YF, Lin ZX (2020). Evaluation of the effects of androgenic Chinese herbal medicines on androgen receptors and tumor growth in experimental prostate cancer models. Journal of Ethnopharmacology 260. https://doi.org/10.1016/j.jep.2020.113058
Zhao DD, Zhao QS, Liu L, Chen ZQ, Zeng WM, Lei H, Zhang YL (2014). Compounds from Dryopteris fragrans (l.) schott with cytotoxic activity. Molecules 19(3):3345-3355. https://doi.org/10.3390/molecules19033345
Zhao Z, Ruan J, Jin J, Zou J, Zhou D, Fang W, Zeng F (2006). Flavan-4-ol glycosides from the rhizomes of Abacopteris penangiana. Journal of Natural Products 69(2):265-268. https://doi.org/10.1021/np050191p
Zhong ZC, Zhao DD, Liu ZD, Jiang S, Zhang YL (2017). A new human cancer cell proliferation inhibition sesquiterpene, dryofraterpene a, from medicinal plant Dryopteris fragrans (L.) Schott. Molecules: A Journal of Synthetic Chemistry and Natural Product Chemistry 22(1). https://doi.org/10.3390/MOLECULES22010180
Zhou D, Wei A, Cao C, Ruan J (2013). DICO, a novel nonaromatic B-ring flavonoid, induces G2/M cell cycle arrest and apoptosis in human hepatoma cells. Food and Chemical Toxicology 57:322-329. https://doi.org/https://doi.org/10.1016/j.fct.2013.03.032

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Dwi Koko Pratoko, Puji Astuti, Triana Hertiani, Ari Satia Nugraha

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.