Brassinosteroids: an alternative to vine cultivation to enhance drought tolerance, in semiarid land at Chihuahua, Mexico

Authors

  • Miriam E. MARTÍNEZ-PÉREZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Ciudad Universitaria Campus I S/N, C.P. 31310 Chihuahua, Chih. (MX) https://orcid.org/0009-0001-5880-0989
  • Teresita de J. RUÍZ -ANCHONDO Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas, Ciudad Universitaria Campus I S/N, C.P. 31310 Chihuahua, Chih. (MX) https://orcid.org/0000-0002-7238-3405
  • Juan L. JACOBO- CUÉLLAR Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas. Extensión Cuauhtémoc. Presa de La Amistad 2015, La Presa, C.P. 31510 Cuauhtémoc, Chih. (MX) https://orcid.org/0000-0002-6598-0076
  • Rafael Á. PARRA- QUEZADA Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrotecnológicas. Extensión Cuauhtémoc. Presa de La Amistad 2015, La Presa, C.P. 31510 Cuauhtémoc, Chih. (MX) https://orcid.org/0000-0002-9189-8332
  • León R. HERNÁNDEZ-OCHOA Universidad Autónoma de Chihuahua. Facultad de Ciencias Químicas, Circuito Universitario, Campus 2 S/N, C.P. 31125 Chihuahua, Chih. (MX) https://orcid.org/0000-0002-5886-8617

DOI:

https://doi.org/10.15835/nbha52413555

Keywords:

abiotic stress, antioxidant response, brassinosteroids, plant metabolism, Vitis vinifera

Abstract

Chihuahua is an internationally recognized state for its quality in the production of vines (Vitis vinifera), and wines. However, it is exposed to drought events and has presented economic and social problems due to the low availability of fresh water. The aquifers destined for intensive agriculture, such as Cuauhtémoc present the most pronounced deficit and they have been operating with deficits of −197 mm3 year-1. Chihuahua typically receives an average annual rainfall of 224.5 mm. These semiarid ecosystems, with water scarcity, are not suitable for viticulture unless supplementary irrigation is available. One alternative option is to apply brassinosteroids to enhance the response of antioxidant systems under drought stress. Although growers in Chihuahua use auxins, cytokinins, and gibberellins as enhancers in the vine crop, the application of brassinosteroids (BRs) is not yet used, because there is poorly knowledge about their role and its activity involved in the yield and quality components of the vines and their antioxidant capacity. The brassinosteroids are successfully used to increase production, the size and weight of bunches and berries, to improve the color of grapes, to extend their postharvest life, and to increase the tolerance of plants to abiotic stress, specifically drought. Therefore, this review collects, analyses, and summarizes recently published information and highlights the importance of the properties of brassinosteroids as an antioxidant response in metabolism, fruit production, and quality, their postharvest action in vine cultivation, and recommends their safety use for grape-growing areas in Chihuahua, Mexico, and regions in the world that suffer from drought.

References

Abbas S, Latif HH, Elsherbiny EA (2013). Effect of 24-epibrassinolide on the physiological and genetic changes on two varieties of pepper under salt stress conditions. Pakistan Journal of Botany 45:1273-1284.

Acosta ZD, Macías C, Mendoza E, Cabellos P (2013). Efecto de las aguas residuales tratadas sobre el crecimiento, fotosíntesis y rendimiento en vides Tempranillo (Vitis vinifera) en Baja California, México (Effect of treated wastewater on growth, photosynthesis and yield in Tempranillo vines (Vitis vinifera) in Baja California, Mexico). Agrociencia 49(8):753-766.

Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y, Yu J (2013). Role of brassinoesteroids in alleviation of phenanthrene-cadmium co-contamination induced photosynthetic inhibition and oxidative stress in tomato. Journal of Experimental Botany 64:199-2013. https://doi.org/10.1093/jxb/ers323

Ahmad A, García del Moral Garrido B, Martos Núñez MV (2022). Learning about chlorophyll and anthocyanins as potential indicators of plant physiological state. ReiDoCrea 11(15):171-176. https://doi.org/:10.30827/Digibug.73538

Ahmad LW, Majeed N, Yaqoob U, John R (2022). Exogenous brassinosteroid and jasmonic acid improve drought tolerance in Brassica rapa L. genotypes by modulating osmolytes, antioxidants and photosynthetic system. Plant Cell Reports 41(3):603-617. https://doi.org/10.1007/s00299-021-02763-9

Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini A, Choat B, Jansen S (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Science 113(18):5024-5029.

https://doi.org/10.1073/pnas.152567811

Asif Z, Chen Z, Sadiq R, Zhu Y (2023). Climate change impacts on water resources and sustainable water management strategies in North America. Water Resources Management 37:2771-2786. https://doi.org/10.1007/s11269-023-03474-4

Autonomous University of Chihuahua (2023). Entregan en la UACH medallas de oro a los ganadores del México International Wine Competition (Gold medals are awarded at the UACH to the winners of the Mexico International Wine Competition). https://uach.mx/noticias/2023/8/16/entregan-en-la-uach-medallas-de-oro-a-los-ganadores-del-mexico-international-wine-competition-2023/

Babalık, Z., Demirci T, Aşcı AÖ, Baydar GN (2020). Brassinosteroids modify yield, quality, and antioxidant components in grapes (Vitis vinifera cv. Alphonse Lavallée). Journal of Plant Growth Regulation 39:147-156. https://doi.org/10.1007/s00344-019-09970-5

Bai ZY, Wang T, Wu YH, Wang K, Liang QY, PanYZ, … Liu QL (2017). Whole-transcriptome sequence analysis of differentially expressed genes in Phormium tenax under drought stress. Scientific Reports 7(1):41700. https://doi.org/10.1038/srep41700

Bajguz A (2010). An enchancing effect of exogenous brassinolide on the growth and antioxidant activity in Chlorella vulgaris cultures under heavy metal stress. Environmental and Experimental Botany 68(2):175-179. https://doi.org/10.1016/j.envexpbot.2009.11.003

Bajguz A, Piotrowska-Niczyporuk A (2014). Brassinosteroids Implicated in growth and stress responses. In: Lam-Son PT, Sikander P (Eds). Phytohormones: a window to metabolism, signalling and biotechnological applications. Springer, New York, USA pp 163-190

Bajguz, A, Tretyn A (2003). The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry 62(7):1027-1046. https://doi.org/10.1016/S0031-9422(02)00656-8

Barros Junior UO, Lima MD, Alsahli AA, Lobato AK (2021). Unraveling the roles of brassinosteroids in alleviating drought stress in young Eucalyptus urophylla plants: Implications on redox homeostasis and photosynthetic apparatus. Physiologia Plantarum 172(2):748-761. https://doi.org/10.1111/ppl.13291

Bhatla SC, Lal MA (2023). Brassinosteroids. In: Plant Physiology, Development and Metabolism. Springer, Singapore. https://doi.org/10.1007/978-981-99-5736-1_20

Campos IMF, Domínguez IG, Ortiz HT, de los Monteros GNE (2022). Enoturismo, competitividad y cadena de valor: la ruta del vino en Chihuahua como estrategia para el desarrollo territorial (Wine tourism, competitiveness and value chain: the wine route in Chihuahua as a strategy for territorial development). In: Acento (Eds). La industria vitivinícola mexicana en el siglo XXI: retos económicos, ambientales y sociales. Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco A.C., 2022, México pp 167-196

Cannata MG, Bertoli AC, Carvalho R, Augusto AS, Bastos ARR, Freitas MP, Carvalho JG (2015). Stress induced by heavy metals Cd and Pb in bean (Phaseolus vulgaris L.) grown in nutrient solution. Journal of Plant Nutrition 38:497-508. https://doi.org/10.1080/01904167.2014.934476

Castañeda-Murillo CC, Rojas-Ortiz JG, Sánchez-Reinoso AD, Chávez-Arias CC, Restrepo-Díaz H (2022). Foliar brassinosteroid analogue (DI-31) sprays increase drought tolerance by improving plant growth and photosynthetic efficiency in lulo plants. Heliyon 8(2):08977. https://doi.org/10.1016/j.heliyon.2022.e08977

Champa WAH, Gill MIS, Mahajan BVC, Aror NK, Bedi S (2015). Brassinosteroids improve quality of table grapes (Vitis vinifera L.) cv. Flame Seedless. Tropical Agricultural Research 26(2):368-379. https://doi.org/10.4038/tar.v26i2.8099

Cirillo V, D’Amelia V, Esposito M, Amitrano C, Carillo P, Carputo D, Maggio A (2021). Anthocyanins are key regulators of drought stress tolerance in tobacco. Biology 10(2):139. https://doi.org/10.3390/biology10020139

Clouse SD (2011). Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. The Plant Cell 23(4):1219-1230. https://doi.org/10.1105/tpc.111.084475

Coll García DM (2006). Novedades acerca del mecanismo de reconocimiento y transducción de la señal brasinoesteroide (News about the mechanism of recognition and transduction of the brassinosteroid signal). Revista CENIC Ciencias Biológicas 37(2):67-72.

CONAGUA (2015). Comisión Nacional del Agua. Actualización de la disponibilidad media anual del agua en el acuífero Cuauhtémoc (0805), Estado de Chihuahua, México (Update of the average annual availability of water in the Cuauhtémoc aquifer (0805), State of Chihuahua, Mexico). Retrieved 2023 April 21 from: https://www.gob.mx/cms/uploads/attachment/file/103566/DR_0805.pdf.

Cui J, Zeng G, Gao F, Wang Y, Li D, Wang X, Xi Z (2023). Cloning, characterization and expression analysis of a brassinosteroids biosynthetic gene VvDET2 in Cabernet Sauvignon (Vitis vinifera L.). Plant Cell, Tissue and Organ Culture 154(1):43-54. https://doi.org/10.1007/s11240-023-02508-4

Divi UK, Krishna P (2009). Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnology 26(3-4):131-136. https://doi.org/10.1016j.nbt.2009.07.006

Fàbregas N, Lozano-Elena F, Blasco-Escámez D, Toghe T, Martínez-Andújar C, Albacete A, … Caño-Delgado AI (2018). Overexpression of the vascular brassinosteroid receptor BRL3 confers drought resistance without penalizing plant growth. Nature Communications 9:4680. https://doi.org/10.1038/s41467-018-06861-3

Fanizza G, Ricciardi L (2015). Influence of drought stress on shoot, leaf growth, leaf water potential, stomatal resistance in wine grape genotypes (Vitis vinifera L.). VITIS-Journal of Grapevine Research 29:371.

Ferreyra E, Sellés GV, Ruiz RS, Sellés IM (2003). Efecto del estrés hídrico aplicado en distintos periodos de desarrollo de la vid cv. chardonnay en la producción y calidad del vino (Effect of water stress applied in different periods of development of the vine cv. chardonnay in wine production and quality). Agricultura Técnica 63(3). http://dx.doi.org/10.4067/S0365-28072003000300007

Fuentes-Verduzco C, Lugo-Garcia GA, Perez-Leal R, Camacho-Inzunza FA (2022). Calidad de vinos de la variedad tempranillo, cultivada en tres viñedos en Chihuahua, México. Estudios sociales (Quality wines from the Tempranillo variety, grown in three vineyards in Chihuahua, Mexico. Social studies). Revista de Alimentación Contemporánea y Desarrollo Regional 32(59). https://doi.org/10.24836/es.v32i59.1195

Garrido-Auñón F, Puente-Moreno J, García-Pastor ME, Serrano M, Valero D. (2024). Brassinosteroids: An innovative compound family that could affect the growth, ripening, quality, and postharvest storage of fleshy fruits. Plants 13: 3082. https://doi.org/10.3390/plants13213082

Ghorbani P, Eshghi S, Haghi H (2017). Effects of brassinosteroid (24-epibrassinolide) on yield and quality of grape (Vitis vinifera L.)'Thompson Seedless'. Vitis 56(3):113-117.

Gillani SFA, Zhuang Z, Rasheed A, Haq IU, Abbasi A, Ahmed S ... Peng, Y (2022). Brassinosteroids induced drought resistance of contrasting drought-responsive genotypes of maize at physiological and transcriptomic levels. Frontiers in Plant Science 13:961680. https://doi.org/10.3389/fpls.2022.961680

Gruszka D, Janeczko A, Dziurka M, Pociecha E, Oklestkova J, Szarerjko I (2016). Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reactions to drought stress. Frontiers in Plant Science 7:1824. https://doi.org/10.3389/fpls.2016.01824

Gutiérrez M, Gómez VMR, Herrera MTA, López DN (2016). Acuíferos en Chihuahua: estudios sobre sustentabilidad (Aquifers in Chihuahua: studies on sustainability). Tecnociencia Chihuahua 10(2). https://doi.org/10.54167/tch.v10i2.194

Ha Y, Shang Y, Nam KH (2016). Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. Journal of Experimental Botany 10(1):166-176. https://doi.org/10.1016/j.cj.2021.04.004

Hao Z, Singh VP, Xia Y (2018). Seasonal drought prediction: advances, challenges, and future prospects. Reviews of Geophysics 56(1):108-141. https://doi.org/10.1002/2016RG000549

He JX, Gendron MJ, SunY, Gampala Srinivas SL, Gendron N, Sun QC, Wang YZ (2005). BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307:1634-1638 https://doi.org/10.1126/science.1107580

Hernández Pérez JL, Jerez Ramírez DO (2023). The impacts of drought disasters on Mexican agriculture: An interpretation from the perspective of the political economy of disasters. In: Alam A, Rukhsana (Eds). Climate Change, Agriculture and Society. Springer International Publishing pp 65-84.

Hernández Silva E, García Martínez I (2016). Brasinoesteroides en la agricultura I (Brassinosteroids in agriculture I). Revista Mexicana de Ciencias Agrícolas 7(2):441-450

Herrera Eduardo F, Bojórquez M, Navarro CJ, Navarro HI (2016). El flujo de agua subterránea en los acuíferos 0830 y 0835 del estado de Chihuahua (México), importancia del análisis geoestadístico e hidrogeoquímico (Groundwater flow in the 0830 and 0835 aquifers of the state of Chihuahua (Mexico), importance of geostatistical and hydrogeochemical análisis). Memorias en extenso del II Congreso Nacional de riego y drenaje COMEII, Chapingo, Edo. de México (8 al 10 de septiembre de 2016). Artículo: COMEII-16034. Retrieved 2022 May 12 from: http://comeii.com/comeii2016/congreso2016/php/ponencias/extenso/COMEII-16034.pdf.

Intergovernmental Panel of Climate Change (2013). Special report: global warming of 1.5 °C. Impacts of 1.5 °C global warming of natural and human. Retrieved 2022 May 14 from: https://www.ipcc.ch/site/assets/uploads/sites/2/2022/06/SR15_Chapter_3_LR.pdf

Jager CE, Symons GM, Ross JJ, Reid JB (2008). Do brassinosteroids mediate the water stress response? Physiologia Plantarum 133(2):417-425. https://doi.org/10.1111/j.1399-3054.2008.01057.x

Janeczko A, Oklešťková J, Pociecha E, Koscielniak J, Mirek M (2011). Physiological effects and transport of 24-epibrassinolide in heat- stressed barley. Acta Physiologiae Plantarum 33:1249-1259. https://doi.org/10.1007/s11738-010-0655-y

Jangid KK, Dwivedi P (2017). Physiological and biochemical changes by nitric oxide and brassinosteroid in tomato (Lycopersicon esculentum Mill.) under drought stress. Acta Physiologiae Plantarum 39:1-10. https://doi.org/10.1007/s11738-017-2373-1

Janiak A, Kwasniewski M, Sowa M, Gajek K, Żmuda K, Kościelniak J, Szarejko I (2018). No time to waste: Transcriptome study reveals that drought tolerance in barley may be attributed to stressed-like expression patterns that exist before the occurrence of stress. Frontiers in Plant Science 8:2112. https://doi.org/10.3389/fpls.2017.02212.

Karlidag H, Yildirim E, Turan M (2011). Role of 24-epibrassinolide in mitigating the adverse effects of salt stress on stomatal conductance, membrane permeability, and leaf water content, ionic composition in salt stressed strawberry (Fragaria × ananassa). Scientia Horticulturae 130(1):133-140.

https://doi.org/10.1016/j.scienta.2011.06.025

Kaur H, Sirhindi G, Bhardwaj R (2015). Alteration of antioxidant machinery by 28 homobrassinolide in Brassica juncea L. under salt stress. Advances in Applied Science Research 6(4):166-172.

Kurepin LV, Joo SH, Kim SK, Pharis RP, Back TG (2012). Interaction of brassinosteroids with light quality and plant hormones in regulating shoot growth of young sunflower and Arabidopsis seedlings, Journal of Plant Growth Regulation 31:156-164. https://doi.org/10.1007/s00344-011-9227-7

Le MH, Perez GC, Solomatine D, Nguyen LB (2016). Meteorological drought forecasting based on climate signals using artifcial neural network–a case study in Khanhhoa Province Vietnam. Procedia Engineering 154:1169-1175. https://doi.org/10.1016/j.proeng.2016.07.528.

Li C, Fu K, Guo W, Zhang X, Li C, Li C (2023). Starch and sugar metabolism response to post-anthesis drought stress during critical periods of elite wheat (Triticum aestivum L.) endosperm development. Journal of Plant Growth Regulation 42:5476-5494. https://doi.org/10.1007/s00344-023-10930-3

Liang JQ, Liang Y (2009). Effects of plant growth substances on water-logging resistance of oilseed rape seedling. Xinan Shifan Daxue Xuebao, Ziran Kexueban 34:58-62.

Liu X, Zhu X, Zhang Q, Yang T, Pan Y, Sun P (2020). A remote sensing and artificial neural network-based integrated agricultural drought index: index development and applications. Catena 186:104394.

Lovisolo C, Perrone I, Carra A, Ferrandino A, Flexas J, Medrano H, Schubert A (2010). Drought-induced changes in development and function of grapevine (Vitis spp.) organs and in their hydraulic and non-hydraulic interactions at the whole-plant level: a physiological and molecular update. Functional Plant Biology 37:98-116.

Luan LY, Zhang ZW, Xi ZM, Huo SS, Ma LN (2013). Brassinosteroids regulate anthocyanin biosynthesis in the ripening of grape berries. South African Journal of Enology and Viticulture 34(2):196-203. https://doi.org/10.21548/34-2-1094

Mahesh K, Balaraju PB, Ramakrishna B, Seeta S, Rao SSR (2013). Effect of brassinoesteroids on germination and seedling growth of radish (Raphanus sativus L.) under PEG-6000 induced water stress. American Journal of Plant Science 4(12):2305-2313. http://dx.doi.org/10.4236/ajps.2013.412285.

Martínez-Sifuentes AR, Villanueva-Díaz J, Estrada-Ávalos J, Trucíos-Caciano R, Carlón-Allende T, Castruita-Esparza LU (2022). Two centuries of drought history in the center of Chihuahua, Mexico. Forests 13(6):921. https://doi.org/10.3390/f13060921

Matailo-Ramirez LM, Luna-Romero AE, Cervantes Alava AR, Vega Jaramillo FY (2019). Sequías: efecto sobre los recursos naturales y el desarrollo sostenible (Droughts: effect on natural resources and sustainable development). Revista Científica Agroecosistemas 7(3):154-162.

Méndoza Uribe I (2022). Identification of changes in the rainfall regime in Chihuahua's state (México) (Identification of changes in the rainfall regime in Chihuahua's state (Mexico)). Cuadernos de Investigación Geográfica 48(1):111-132. http://doi.org/10.18172/cig.5049.

Min Z, Li R, Chen L, Zhang Y, Li Z, Liu M, … Fang Y (2018). Alleviation of drought stress in grapevine by foliar-applied strigolactones, Plant Physiology et Biochemistry 135:99-110. https://doi.org/10.1016/j.plaphy.2018.11.037.

Mitchell JW, Whitehead MR (1941). Responses of vegetative parts of plants following application of extract of pollen from Zea mays. Botanical Gazette 102(4):770-791. https://doi.org/10.1086/335010

Naveen N, Kumari N, Avtar R, Jattan M, Ahlawat S, Rani B, ... Singh M (2021). Evaluation of effect of brassinolide in Brassica juncea leaves under drought stress in field conditions. Horticulturae 7(11):514. https://doi.org/10.3390/horticulturae7110514

Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000). Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiology 124(1):201-209. https://doi.org/10.1104/pp.124.1.201

Nolan TM, Vukašinović NV, Liu D, Russinova E, Yin Y (2020) Brassinosteroids: Multidimensional regulators of plant growth development, and stress responses. The Plant Cell 32(2):295-318. https://doi.org/10.1105/tpc.19.00335

Oliver MJ, Jain R, Balbuena TS, Agrawal G, Gasulla F, Thelen JJ (2011). Proteome analysis of leaves of the dessication-tolerant grass, Sporobolus stapfianus, in response to dehydration. Phytochemistry 72(10):1273-1284. https://doi.org/10.1016/j.phytochem.2010.10.020

Peng J, Tang X, Feng H (2004). Effects of brassinolide treatment on the physiological properties of litchi pericarp (Litchi chinensis) cv. Nuomoci. Scientia Horticulturae 101(4):407-416. https://doi.org/10.1016/j.scienta.2003.11.012

Perez-Borroto LS, Guzzo MC, Posada G, Peña Malavera AN, Castagnaro AP, González Olmedo JL, … Pardo EM (2022). A brassinosteroid functional analogue increases soybean drought resilience. Scientific Reports 12(1):11294 https://doi.org/10.1038/s41598-022-15284-6

Pérez-Borroto LS, Toum L, Castagnaro AP, González-Olmedo JL, Coll-Manchado F, Mariano Pardo E, Coll-García Y (2021). Brassinosteroid and brassinosteroid-mimic differentially modulate Arabidopsis thaliana fitness under drought. Plant Growth Regulation 95(1):3-47. https://doi.org/10.1007/s10725-021-00722-8

Phan VH, Le TTH, Pham DM, Nguyen LTT, Nguyen KC, Bui TM (2024). Effects of concentration and time of brassinosteroid treatment on growth and yield of soybean under drought stress conditions. Plant Science 11(2). https://doi.org/10.14719/pst.3089

Praveena J, Dash S, Behera L, Ranjan Rout G (2020). Brassinosteroids: A multifunctional phytohormone of plant development and stress responses. Current Journal of Applied Science and Technology 39(25):174-196. https://10.9734/CJAST/2020/v39i2530896

Raza MAS, Ibrahim MA, Ditta A, Iqbal R, Aslam MU, Muhammad F, ... Elshikh MS (2023). Exploring the recuperative potential of brassinosteroids and nano-biochar on growth, physiology, and yield of wheat under drought stress. Scientific Reports 13(1):15015. https://doi.org/10.1038/s41598-023-42007-2

Sasse JM (2003) Physiological actions of brassinosteroids: an update. Journal of Plant Growth Regulation 22:276-288. https://doi.org/10.1007/s00344-003-0062-3

Savoi S, Wong DCJ, Degu A, Herrera JC, Bucchetti B, Peterlunger E, … Castellarin SD (2017). Multi-omics and integrated network analyses reveal new insights into the systems relationships between metabolites, structural genes, and transcriptional regulators in developing grape berries (Vitis vinifera L.) exposed to water deficit. Frontiers in Plant Science 8:1124. https://doi.org/10.3389/fpls.2017.01124

She J, Han Z, Kim TW, Wang J, Cheng W, Chang J, … Chai J (2011). Structural insight into brassinosteroid perception by BRI1. Nature 474(7352):472-476. https://doi.org/10.1038/nature10178

Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003). Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiology 131(1):287-297. https://doi.org/10.1104/pp.013029.

Sirhindi G. (2013). Brassinosteroids: biosynthesis and role in growth, development, and thermotolerance responses. In: Rout GR, Das AB (Eds). Molecular Stress Physiology of Plants. Springer, India pp 309-329.

Song JX, Li JH, Liu MR, Niu JH, Wang R, LV J, … Wang SG (2015). Effects of brassinosteroid application on osmotic adjustment and antioxidant enzymes in Leymus chinensis under drought stress. Acta Prataculturae Sinica 24(8):93-102.

Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006). Grapes on steroids: Brassinosteroids are involved in grape berry ripening. Plant Physiology 140(1):150-158. https://doi.org/10.1104/pp.105.070706

Taiz L, Zeiger E (2010). Plant Physiology. Sinauer Associates. Inc., Publishers (5th ed.). Sunderland Masschusetts.

Tang J, Han Z, Chai J (2016). What are brassinosteroids and how do they act in plants? BMC Biology 14(113):1-5. https://doi.org/10.1186/s12915-016-0340-8

Tang S, Li L, Wang Y, Chen Q, Zhang W, Jia G, Zhi H, … Diao X (2017). Genotype-specific physiological and transcriptomic responses to drought stress in Setaria italica (an emerging model for Panicoidae grasses). Scientific Reports 7(1):10009. https://doi.org/10.1038/s41598-017-08854-6

Tang W, Deng Z, Wang ZY (2010). Proteomics shed light on the brassinosteroid signaling mechanisms. Current Opinion in Plant Biology 13(1):27-33. https://doi.org/10.1016/j.pbi.2009.10.007

Trevisan S, Forestan C, Brojanigo S, Quaggiotti S, Varotto S (2020). Brassinosteroid application affects the growth and gravitropic response of maize by regulating gene expression in the roots, shoots and leaves. Plant Growth Regulation 92:117-130. https://doi.org/10.1007/s10725-020-00626-z

Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, … Poppenberger B (2015). Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. The Plant Cell 27(8):2261-2272. https://doi.org/10.1105/tpc.15.00433

Vardhini BV, Anjum NA (2015). Brassinosteroids make plant life easier under abiotic stresses mainly by modulating major components of antioxidant defense system, Frontiers in Environmental Science 2:1-16. https://doi.org/10.3389/fenvs.2014.00067

Vázquez del Mercado Arribas R, Buenfil Rodríguez MO (2020). Huella Hídrica de América Latina: retos y oportunidades (Water Footprint of Latin America: challenges and opportunities). Aqua-LAC 4(1):41-48. https://doi.org/10.29104/phi-aqualac/2012-v4-1-05

Vergara AE, Díaz K, Carvajal R, Espinoza R, Alcalde JA, Pérez Donoso AG (2018). Exogenous applications of brassinosteroids improve color of red table grape (Vitis vinífera L. Cv. Redglobe). Frontier in Plant Science 9:363 https://doi.org/10.3389/fpls.2018.00363

Vob U, Bishopp A, Farcot E, Bennett MJ (2014). Modelling hormonal response and development. Trends in Plant Science 19(5):311-319. https://dx.doi.org/10.1016/j.tplants.2014.02.004

Wang XH, Chang S, Hao Yuan L, Xiao Qin H, Wang YX (2014). Effects of 0.01% brassinolide solution application on yield of rice and its resistant to autumn low-temperature damage. Acta Agriculturae Jiangxi 26(5):36-38

Wang YT, Chen ZY, Jiang Y, Duan BB, Xi ZM (2019). Involvement of ABA and antioxidant system in brassinosteroid-induced water stress tolerance of grapevine (Vitis vinifera L.). Scientia Horticulturae 256:108596. https://doi.org/10.1016/j.scienta.2019.108596

Wei Z, Li J (2016). Brassinosteroids regulate root growth, development, and symbiosis. Molecular Plant 9:86-100 http://dx.doi.org/10.1016/j.molp.2015.12.003.

Wurtz M, Angeliaume A, Herrera MTA, Blot F, Paegelow M, Reyes VM (2019). A spatial application of the water poverty index (WPI) in the State of Chihuahua, Mexico. Water Policy 21(1):147-161 https://doi.org/10.2166/wp.2018.152

Xi ZM, Zhang ZW, Huo SS, Luan LY, Gao X, Maa LN, Fang YL (2013). Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chemistry 141(3):3056-3065. https://doi.org/10.1016/j.foodchem.2013.05.137

Xing J, Wang Y, Yao Q, Zhang Y, Zhang M, Li Z (2022). Brassinosteroids modulate nitrogen physiological response and promote nitrogen uptake in maize (Zea mays L.). The Crop Journal 10(1):166-176.

Xu F, Luan LY, Zhang ZW, Huo SS, Gao X, Fang YL, Xi ZM (2014). Phenolic profiles and antioxidant properties of young wines made from Yan73 (Vitis vinifera L.) and Cabernet Sauvignon (Vitis vinifera L.) grapes treated by 24-Epibrassinolide. Molecules 19:10189-10207. https://doi.org/10.3390/molecules190710189

Xu F, Xi ZM, Zhang H, Zhang CJ, Zhang ZW (2015). Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera “Cabernet Sauvignon” berries during veraison. Plant Physiology and Biochemistry 94:197-208. https://doi.org/10.1016/j.plaphy.2015.06.005.

Yin Y, Vafeados D, Tao Y, Yoshida S, Asami T, Chory J (2005). A new class of transcription factors mediates brassinosteroid regulated gene expression in Arabidopsis. Cell 120(2):249-259. https://doi.org/10.1016/j.cell.2004.11.044

Yuan GF, Jia CG, Li Z, Sun B, Zhang LP, Liu N, Wang QM (2010). Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Scientia Horticulturae 126(2):103-108. https://doi.org/10.1016/j.scienta.2010.06.014

Zeng G, Gao F, Li C, Li D, Xi Z (2022). Characterization of 24-epibrassinolide-mediated modulation of the drought stress responses: Morphophysiology, antioxidant metabolism and hormones in grapevine (Vitis vinifera L.). Plant Physiology and Biochemistry 184:98-111. https://doi.org/j.plaphy.2022.05.019

Zeng G, Wan Z, Xie R, Lei B, Li C, Gao F, ... Xi Z. (2024). 24-epibrassinolide enhances drought tolerance in grapevine (Vitis vinifera L.) by regulating carbon and nitrogen metabolism. Plant Cell Reports 43(9):219. https://doi.org/10.1007/s00299-024-03283-y

Zhou Y, Yuan C, Ruan S, Zhang Z, Meng J, Xi Z (2018). Exogenous 24-epibrassinolide interacts with light to regulate anthocyanin and proanthocyanidin biosynthesis in cabernet sauvignon (Vitis vinifera L.). Molecules 23(1):93 https://doi.org/10.3390/molecules23010093

Zullo MAT, Bajguz A (2019). The brassinosteroids family – structural diversity of natural compounds and their precursors. In: Hayat S, Yusuf M, Bhardwaj R, Bajguz A (Eds). Brassinosteroids: Plant Growth and Development. Springer, Singapore.

Downloads

Published

2024-11-15

How to Cite

MARTÍNEZ-PÉREZ, M. E., RUÍZ -ANCHONDO, T. de J., JACOBO- CUÉLLAR, J. L., PARRA- QUEZADA, R. Á., & HERNÁNDEZ-OCHOA, L. R. (2024). Brassinosteroids: an alternative to vine cultivation to enhance drought tolerance, in semiarid land at Chihuahua, Mexico. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(4), 13555. https://doi.org/10.15835/nbha52413555

Issue

Section

Review Articles
CITATION
DOI: 10.15835/nbha52413555

Most read articles by the same author(s)