Alleviating adverse effects of environmental stress in plants through chitosan application

Authors

  • Tahreem ARSHAD University of Agriculture Faisalabad, Department of Botany, 38000 Faisalabad (PK)
  • Wang LIHONG Baicheng Normal University, College of Tourism and Geographic Science, Baicheng, 137000, Jilin (CN)
  • Hussam F. Najeeb ALAWADI Al-Qadisiyah University, College of Agriculture (IQ)
  • Athar MAHMOOD University of Agriculture Faisalabad, Department of Agronomy, 38000 Faisalabad (PK)
  • Muhammad Anjum ZIA University of Agriculture Faisalabad, Department of Biochemistry, 38000 Faisalabad (PK)
  • Maria NAQVE University of Agriculture Faisalabad, Department of Botany, 38000 Faisalabad (PK)
  • Basharat ALI Khwaja Fareed University of Engineering and Information Technology, Department of Agricultural Engineering, Rahim Yar Khan 62400 (PK)
  • Muhammad NAWAZ Khwaja Fareed University of Engineering and Information Technology, Department of Agricultural Engineering, Rahim Yar Khan 62400 (PK)
  • Muhammad Umair HASSAN Jiangxi Agricultural University, Research Center on Ecological Sciences, Nanchang (CN)
  • Abeer HASHEM King Saud University, College of Science, Botany and Microbiology Department, P.O. Box. 2460, Riyadh 11451 (SA)
  • Elsayed Fathi ABD_ALLAH King Saud University, College of Food and Agricultural Sciences, Plant Production Department, P.O. Box. 2460, Riyadh 11451 (SA)

DOI:

https://doi.org/10.15835/nbha52313538

Keywords:

chitosan, environmental stresses, defense response

Abstract

Chitosan encourages the growth of plants, controls their metabolic processes and homeostasis, and activates their defence mechanisms. On one side, it hinders the ability of pathogens by preventing their growth and limiting their reproduction, so it will become a more common and ideal asset for agricultural sustainability. Additionally, cesium (Cs) stimulated the SOS1 pathway and raised a number of gene transcripts related to energy generation, phenol metabolism, proton motive force, salt compartmentalization, and other processes. However, plants exposed to salt stress were treated with cesium nanoparticles (CsNPs) and modified CsBMs, which boosted indole terpene alkaloid metabolism, defense-related genes, decreased ROS formation by boosting jasmonic acid (JA) signalling, increased essential oil, anthocyanins, membrane stability, alkaloids, and diterpene glycosides. This is the first review that specifically compares Cs/CsNPs/modified CsBMs treatment options under salt stress and offers insights about the biological and biochemical parameters of the plants. It also recommends using CsNPs and modified CsBMs rather than Cs for better plant function under salinity stress.

References

Ab Rahman SFS, Singh E, Pieterseand CM, Schenk PM (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Science 267:102-111. https://doi.org/10.1016/j.plantsci.2017.11.012

Abdelkhalek A, Qari SH, Abu-Saied MAA-R, Khalil AM, Younes HA, Nehelaand Y, Behiry SI (2021). Chitosan nanoparticles inactivate alfalfa mosaic virus replication and boost innate immunity in Nicotiana glutinosa plants. Plants 10:2701. https://doi.org/10.3390/plants10122701

Ahmad W, Zahir A, Nadeem M, Garros L, Drouet S, Renouard S, Doussot J, Giglioli-Guivarc’h N, Hanoand C, Abbasi BH (2019). Enhanced production of lignans and neolignans in chitosan-treated flax (Linum usitatissimum L.) cell cultures. Process Biochemistry 79:155-165. https://doi.org/10.3390/molecules26040791

Ahmed TA, Aljaeid BM (2016). Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Design, Development and Therapy 483-507. https://doi.org/10.2147/dddt.s99651

Al-Ghamdi AA (2019). Marjoram physiological and molecular performance under water stress and chitosan treatment. Acta Physiologiae Plantarum 41:1-8. https://doi.org/10.1007/s11738-019-2830-0

Al‐Hetar M, Zainal Abidin M, Sariahand M, Wong M (2011). Antifungal activity of chitosan against Fusarium oxysporum f. sp. cubense. Journal of Applied Polymer Science 120:2434-2439. https://doi.org/10.1002/app.33455

Altaf MA, Shahid R, Ren M-X, Naz S, Altaf MM, Khan LU, Tiwari RK, Lal MK, Shahidand MA, Kumar R (2022). Melatonin improves drought stress tolerance of tomato by modulating plant growth, root architecture, photosynthesis, and antioxidant defense system. Antioxidants 11:309. https://doi.org/10.3390/antiox11020309

Amborabé B-E, Bonmort J, Fleurat-Lessardand P, Roblin G (2008). Early events induced by chitosan on plant cells. Journal of Experimental Botany 59:2317-2324. https://doi.org/10.1093/jxb/ern096

Arif Y, Siddiquiand H, Hayat S (2022). Role of chitosan nanoparticles in regulation of plant physiology under abiotic stress. In: Sustainable Agriculture Reviews 53: Nanoparticles: A New Tool to Enhance Stress Tolerance. Springer. pp 399-413. https://doi.org/10.1007/978-3-030-86876-5_16

Asif M, Ahmad F, Tariq M, Khan A, Ansari T, Khanand F, Siddiqui AM (2017). Potential of chitosan alone and in combination with agricultural wastes against the root-knot nematode, Meloidogyne incognita infesting eggplant. Journal of Plant Protection Research 57(3). http://dx.doi.org/10.1515/jppr-2017-0041

Attaran Dowom S, Karimian Z, Mostafaei Dehnaviand M, Samiei L (2022). Chitosan nanoparticles improve physiological and biochemical responses of Salvia abrotanoides (Kar.) under drought stress. BMC Plant Biology 22:364. https://doi.org/10.1186/s12870-022-03689-4

Azmana M, Mahmood S, Hilles AR, Rahman A, Arifinand MAB, Ahmed S (2021). A review on chitosan and chitosan-based bionanocomposites: Promising material for combatting global issues and its applications. International Journal of Biological Macromolecules 185:832-848. https://doi.org/10.1016/j.ijbiomac.2021.07.023

Balusamy SR, Rahimi S, Sukweenadhi J, Sunderraj S, Shanmugam R, Thangavelu L, Mijakovicand I, Perumalsamy H (2022). Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohydrate Polymers 284:119189. https://doi.org/10.1016/j.carbpol.2022.119189

Bardo C, Matteo C, Sachie K, Stevens DM, Wrzaczekand M, Gitta C (2021). Stress-induced reactive oxygen species compartmentalization, perception and signalling. Nature Plants 7:403-412. https://doi.org/10.1038/s41477-021-00887-0

Berrios L, Rentsch JD (2022). Linking reactive oxygen species (ROS) to abiotic and biotic feedbacks in plant microbiomes: The dose makes the poison. International Journal of Molecular Sciences 23:4402. https://doi.org/10.3390/ijms23084402

Bittelli M, Flury M, Campbelland GS, Nichols EJ (2001). Reduction of transpiration through foliar application of chitosan. Agricultural and Forest Meteorology 107:167-175. https://doi.org/10.1016/S0168-1923(00)00242-2

Boamah PO, Onumah J, Adugubaand WO, Santo KG (2023). Application of depolymerized chitosan in crop production: A review. International Journal of Biological Macromolecules 123858. https://doi.org/10.1016/j.ijbiomac.2023.123858

Boonlertnirun S, Sarobol E, Meechouiand S, Sooksathan I (2007). Drought recovery and grain yield potential of rice after chitosan application. Agriculture and Natural Resources 41:1-6.

Chakraborty M, Hasanuzzaman M, Rahman M, Khan MAR, Bhowmik P, Mahmud NU, Tanveerand M, Islam T (2020). Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture 10:624. https://doi.org/10.3390/agriculture10120624

Choi C, Namand J-P, Nah J-W (2016). Application of chitosan and chitosan derivatives as biomaterials. Journal of Industrial and Engineering Chemistry 33:1-10. https://doi.org/10.1016/j.jiec.2015.10.028

Choudhary DK, Prakashand A, Johri B (2007). Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology 47:289-297. https://doi.org/10.1007/s12088-007-0054-2

Coolen S, Van Pelt JA, Van Weesand SC, Pieterse CM (2019). Mining the natural genetic variation in Arabidopsis thaliana for adaptation to sequential abiotic and biotic stresses. Planta 249:1087-1105. https://doi.org/10.1007/s00425-018-3065-9

Cordon G, Andrade C, Barbaraand L, Romero AM (2022). Early detection of tomato bacterial canker by reflectance indices. Information Processing in Agriculture 9:184-194. https://doi.org/10.1016/j.inpa.2021.06.004

da Silva EC, Nogueira R, da Silvaand MA, de Albuquerque MB (2011). Drought stress and plant nutrition. Plant Stress 5:32-41. https://doi.org/10.5829/idosi.aejaes.2016.16.4.12907

Das K, Roychoudhury A (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science 2:53. https://doi.org/10.3389/fenvs.2014.00053

Das S, Singh VK, Dwivedy AK, Chaudhari AK, Upadhyay N, Singh P, Sharmaand S, Dubey NK (2019). Encapsulation in chitosan-based nanomatrix as an efficient green technology to boost the antimicrobial, antioxidant and in situ efficacy of Coriandrum sativum essential oil. International Journal of Biological Macromolecules 133:294-305. https://doi.org/10.1016/j.ijbiomac.2019.04.070

de Ollas C, Arbonaand V, GóMez‐Cadenas A (2015). Jasmonoyl isoleucine accumulation is needed for abscisic acid build‐up in roots of Arabidopsis under water stress conditions. Plant, Cell & Environment 38:2157-2170. https://doi.org/10.1111/pce.12536

Delezuk JA, Pavinatto A, Moraes ML, Shimizu FM, Rodrigues VC, Campana-Filho SP, Ribeiroand SJ, Oliveira Jr ON (2017). Silk fibroin organization induced by chitosan in layer-by-layer films: Application as a matrix in a biosensor. Carbohydrate Polymers 155:146-151. https://doi.org/10.1016/j.carbpol.2016.08.060

Desai N, Rana D, Salave S, Gupta R, Patel P, Karunakaran B, Sharma A, Giri J, Benivaland D, Kommineni N (2023). Chitosan: a potential biopolymer in drug delivery and biomedical applications. Pharmaceutics 15:1313. https://doi.org/10.3390/pharmaceutics15041313

Ding L-N, Li Y-T, Wu Y-Z, Li T, Geng R, Cao J, Zhangand W, Tan X-L (2022). Plant disease resistance-related signaling pathways: recent progress and future prospects. International Journal of Molecular Sciences 23:16200. https://doi.org/10.3390/ijms232416200

Dolatkhah Dashtmian A, Hosseini Mazinaniand SM, Pazoki A (2023). Exogenous chitosan nanoparticles modulated drought stress through changing yield, biochemical attributes, and fatty acid profile of common bean (Phaseolus vulgaris L.) cultivars. Gesunde Pflanzen 1-14. https://doi.org/10.1007%2Fs10343-023-00912-6

Elansary HO, Abdel-Hamid AM, Yessoufou K, Al-Mana FA, El-Ansary DO, Mahmoudand EA, Al-Yafrasi MA (2020). Physiological and molecular characterization of water-stressed Chrysanthemum under robinin and chitosan treatment. Acta Physiologiae Plantarum 42:1-14. https://doi.org/10.1007/s11738-020-3021-8

Elieh-Ali-Komi D, Hamblin MR (2016). Chitin and chitosan: production and application of versatile biomedical nanomaterials. International Journal of Advanced Research 4:411.

Elshamy MT, Husseinyand SM, Farroh KY (2019). Application of nano-chitosan NPK fertilizer on growth and productivity of potato plant. Journal of Scientific Research in Science 36:424-441. https://doi.org/10.21608/JSRS.2019.58522

Eltaweil AS, Omer AM, El-Aqapa HG, Gaber NM, Attia NF, El-Subruiti GM, Mohy-Eldinand MS, Abd El-Monaem EM (2021). Chitosan based adsorbents for the removal of phosphate and nitrate: A critical review. Carbohydrate Polymers 274:118671. https://doi.org/10.1016/j.carbpol.2021.118671

Emami Bistgani Z, Siadat SA, Bakhshandeh A, Ghasemi Pirbaloutiand A, Hashemi M (2017). Morpho-physiological and phytochemical traits of (Thymus daenensis Celak.) in response to deficit irrigation and chitosan application. Acta Physiologiae Plantarum 39:1-13. https://doi.org/10.1080/10412905.2021.1885512

Esposito D (2020). Advanced strategies to deliver bioactive molecules in nutraceuticals. University of Naples Federico II.

Farouk S, Amany AR (2012). Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egyptian Journal of Biology 14:14-16. http://dx.doi.org/10.4314/ejb.v14i1.2

Ferri M, Tassoni A (2011). Chitosan as elicitor of health beneficial secondary metabolites in in vitro plant cell cultures. Handbook of Chitosan Research and Applications 389-414.

Gao Y, Wu Y (2022). Recent advances of chitosan-based nanoparticles for biomedical and biotechnological applications. International Journal of Biological Macromolecules 203:379-388. https://doi.org/10.1016/j.ijbiomac.2022.01.162

Gechev TS, Van Breusegem F, Stone JM, Denevand I, Laloi C (2006). Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. Bioassays 28:1091-1101. https://doi.org/10.1002/bies.20493

Gerami SE, Pourmadadi M, Fatoorehchi H, Yazdian F, Rashediand H, Nigjeh MN (2021). Preparation of pH-sensitive chitosan/polyvinylpyrrolidone/α-Fe2O3 nanocomposite for drug delivery application: Emphasis on ameliorating restrictions. International Journal of Biological Macromolecules 173:409-420. https://doi.org/10.1016/j.ijbiomac.2021.01.067

Ghorbanpour M (2015). Major essential oil constituents, total phenolics and flavonoids content and antioxidant activity of Salvia officinalis plant in response to nano-titanium dioxide. Indian Journal of Plant Physiology 20:249-256. https://doi.org/10.1007/s40502-015-0170-7

Giglou MT, Giglou RH, Esmaeilpour B, Azarmi R, Padash A, Falakian M, Śliwka J, Gohariand G, Lajayer HM (2022). A new method in mitigation of drought stress by chitosan-coated iron oxide nanoparticles and growth stimulant in peppermint. Industrial Crops and Products 187:115286. https://doi.org/10.1016/j.indcrop.2022.115286

Gull A, Loneand AA, Wani NUI (2019). Biotic and abiotic stresses in plants. Abiotic and Biotic Stress in Plants 2019:1-19. https://doi.org/10.5772/intechopen.85832

Guo Q, Wu X, Ji Y, Hao Y, Liao S, Cui Z, Li J, Younasand M, He B (2021). pH-responsive nanofiltration membrane containing chitosan for dye separation. Journal of Membrane Science 635:119445.

Guy CL (1990). Cold acclimation and freezing stress tolerance: role of protein metabolism. Annual Review of Plant Biology 41:187-223. https://doi.org/10.1016/j.memsci.2021.119445

Hancock J, Desikanand R, Neill S (2001). Role of reactive oxygen species in cell signalling pathways. Biochemical Society Transactions 29:345-349. https://doi.org/10.1042/0300-5127:0290345

Harb A, Krishnan A, Ambavaramand MM, Pereira A (2010). Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiology 154:1254-1271. https://doi.org/10.1104/pp.110.161752

Hassan F, Ali E, Gaber A, Fetouhand M, Mazrou R (2021). Chitosan nanoparticles effectively combat salinity stress by enhancing antioxidant activity and alkaloid biosynthesis in Catharanthus roseus (L.) G. Don. Plant Physiology and Biochemistry 162:291-300. https://doi.org/10.1016/j.plaphy.2021.03.004

Hassan MU, Ghareeb RY, Nawaz M, Mahmood A, Shah AN, Abdel-Mageed A, Abdelsalam NR, Hashem M, Alamriand S, Thabit MA (2022a). Melatonin: a vital protectant for crops against heat stress:mechanism and prospects. Agronomy 12:1116 https://doi.org/10.3390/agronomy12051116

Hassan MU, Mahmood A, Awan MI, Maqbool R, Aamer M, Alhaithloul HA, Huang G, Skalicky M, Bressticand M, Pandey S (2022b). Melatonin-induced protection against plant abiotic stress: mechanism and prospects. Frontiers in Plant Science 13:902694. https://doi.org/10.3389/fpls.2022.902694

Hassani F-ZSA, El Bourakadi K, Merghouband N, Bouhfid R (2020). Effect of chitosan/modified montmorillonite coating on the antibacterial and mechanical properties of date palm fiber trays. International Journal of Biological Macromolecules 148:316-323. https://doi.org/10.1016/j.ijbiomac.2020.01.092

He S-B, Yang L, Yang Y, Noreldeen HA, Wu G-W, Peng H-P, Dengand H-H, Chen W (2022). Carboxylated chitosan enabled platinum nanozyme with improved stability and ascorbate oxidase-like activity for a fluorometric acid phosphatase sensor. Carbohydrate Polymers 298:120120. https://doi.org/10.1016/j.carbpol.2022.120120

Hidangmayum A, Dwivedi P, Katiyarand D, Hemantaranjan A (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology of Plants 25:313-326. https://doi.org/10.1007/s12298-018-0633-1

Hidangmayum A, Dwivedi P (2022). Chitosan based nanoformulation for sustainable agriculture with special reference to abiotic stress: a review. Journal of Polymers and the Environment 1-20. https://doi.org/10.1007/s10924-021-02296-y

Hong J, Yokomakura A, Nakano Y, Ishihara K, Kaneda M, Onodera M, Nakahama K-I, Morita I, Niikuraand K, Ahn J-W (2006). Inhibition of vacuolar-type (H+)-ATPase by the cytostatic macrolide apicularen A and its role in apicularen A-induced apoptosis in RAW 264.7 cells. FEBS Letters 580:2723-2730. https://doi.org/10.1016/j.febslet.2006.04.031

Huang H, Ullah F, Zhou D-X, Yiand M, Zhao Y (2019). Mechanisms of ROS regulation of plant development and stress responses. Frontiers in Plant Science 10:800. https://doi.org/10.3389/fpls.2019.00800

Huang WX, Chen XW, Wu L, Yu ZS, Gao MY, Zhao HM, Mo CH, Li YW, Caiand QY, Wong MH (2021). Root cell wall chemistry remodelling enhanced arsenic fixation of a cabbage cultivar. Journal of Hazardous Materials 420:126165. https://doi.org/10.1016/j.jhazmat.2021.126165

Hyung J-H, Ahn C-B, Kim BI, Kimand K, Je J-Y (2016). Involvement of Nrf2-mediated heme oxygenase-1 expression in anti-inflammatory action of chitosan oligosaccharides through MAPK activation in murine macrophages. European Journal of Pharmacology 793:43-48. https://doi.org/10.1016/j.ejphar.2016.11.002

Ibrahim EA, Ramadan WA (2015). Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Scientia Horticulturae 184:101-105. https://doi.org/10.1016/j.scienta.2014.11.010

Imran QM, Falak N, Hussain A, Munand B-G, Yun B-W (2021). Abiotic stress in plants; stress perception to molecular response and role of biotechnological tools in stress resistance. Agronomy 11:1579. https://doi.org/10.3390/agronomy11081579

Iriti M, Picchi V, Rossoni M, Gomarasca S, Ludwig N, Garganoand M, Faoro F (2009). Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environmental and Experimental Botany 66:493-500. https://doi.org/10.1016/j.envexpbot.2009.01.004

Iriti M, Faoro F (2009). Chitosan as a MAMP, searching for a PRR. Plant Signaling & Behavior 4:66-68. https://doi.org/10.3390/agronomy11081579

Islam S, Bhuiyanand MR, Islam MN (2017). Chitin and chitosan: structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment 25:854-866. https://doi.org/10.1007/s10924-016-0865-5

Javaid MM, Mahmood A, Alshaya DS, Alkahtani MD, Waheed H, Wasaya A, Khan SA, Naqve M, Haiderand I, Shahid MA (2022). Influence of environmental factors on seed germination and seedling characteristics of perennial ryegrass (Lolium prenne L.). Scientific Reports 12:9522 https://doi.org/10.1038/s41598-022-13416-6

Ji D, Ou L, Ren X, Yang X, Tan Y, Zhouand X, Jin L (2022). Transcriptomic and metabolomic analysis reveal possible molecular mechanisms regulating tea plant growth elicited by chitosan oligosaccharide. International Journal of Molecular Sciences 23:5469. https://doi.org/10.3390/ijms23105469

Jwa N-S, Agrawal GK, Tamogami S, Yonekura M, Han O, Iwahashiand H, Rakwal R (2006). Role of defense/stress-related marker genes, proteins and secondary metabolites in defining rice self-defense mechanisms. Plant Physiology and Biochemistry 44:261-273. https://doi.org/10.1016/j.plaphy.2006.06.010

Kagale S, Marimuthu T, Thayumanavan B, Nandakumarand R, Samiyappan R (2004). Antimicrobial activity and induction of systemic resistance in rice by leaf extract of Datura metel against Rhizoctonia solani and Xanthomonas oryzae pv. oryzae. Physiological and Molecular Plant Pathology 65:91-100. https://doi.org/10.1016/j.pmpp.2004.11.008

Kashyap PL, Xiangand X, Heiden P (2015). Chitosan nanoparticle-based delivery systems for sustainable agriculture. International Journal of Biological Macromolecules 77:36-51. https://doi.org/10.1016/j.ijbiomac.2015.02.039

Katiyar D, Hemantaranjan A, Singhand B, Bhanu AN (2014). A future perspective in crop protection: Chitosan and its oligosaccharides. Advances in Plants & Agriculture Research 1:1-8. https://doi.org/10.15406/apar.2014.01.00006

Khalil MS, Badawy ME (2012). Nematicidal activity of a biopolymer chitosan at different molecular weights against root-knot nematode, Meloidogyne incognita. Plant Protection Science 48:170-178. https://doi.org/10.17221/46/2011-PPS

Khan W-u-D, Sharif F, Naeem MA, Farooq MA, Siddiqand Z, Imran M (2023). Chitosan polymerized silica composite as a potential silicon source: modulation on antioxidant enzymes, ionic homeostasis, and grain quality in maize plants under Na+ stress. Journal of Plant Growth Regulation 42:2374-2388. https://doi.org/10.1007/s00344-022-10711-4

Kim KS, Lee D, Songand CG, Kang PM (2015). Reactive oxygen species-activated nanomaterials as theranostic agents. Nanomedicine 10:2709-2723. https://doi.org/10.2217/nnm.15.108

Kumar MR, Muzzarelli RA, Muzzarelli C, Sashiwaand H, Domb A (2004). Chitosan chemistry and pharmaceutical perspectives. Chemical Reviews 104:6017-6084. https://doi.org/10.1021/cr030441b

Kumar M, Kaur S, Yadav SKR, Sundaram S (2023). Molecular, physiological and biochemical responses of plants to abiotic stress. In: Advances in Plant Physiology. Scientific Publishes, India, pp 93-109.

Kumaraswamy R, Kumari S, Choudhary RC, Pal A, Raliya R, Biswasand P, Saharan V (2018). Engineered chitosan-based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. International Journal of Biological Macromolecules 113:494-506. https://doi.org/10.1016/j.ijbiomac.2018.02.130

Kumari S, Kishor R (2020). Chitin and chitosan: origin, properties, and applications. Handbook of chitin and chitosan. Elsevier, pp 1-33. https://doi.org/10.1016/B978-0-12-817970-3.00001-8

Lee HB, Yu M-R, Yang Y, Jiangand Z, Za H (2003). Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. Journal of the American Society of Nephrology 14:S241-S245. https://doi.org/10.1097/01.ASN.0000077410.66390.0F

Li K, Xing R, Liuand S, Li P (2020a). Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. Journal of Agricultural and Food Chemistry 68:12203-12211. https://doi.org/10.1021/acs.jafc.0c05316

Li Q, Dunn E, Grandmaisonand E, Goosen MF (2020b). Applications and properties of chitosan, Applications of Chitan and Chitosan. CRC Press, pp 3-29.

Li S, Yan L, Venuste M, Xu F, Shi L, White PJ, Wangand X, Ding G (2023). A critical review of plant adaptation to environmental boron stress: Uptake, utilization, and interplay with other abiotic and biotic factors. Chemosphere 139474. https://doi.org/10.1016/j.chemosphere.2023.139474

Li Z, Zhang Y, Zhang X, Merewitz E, Peng Y, Ma X, Huangand L, Yan Y (2017). Metabolic pathways regulated by chitosan contributing to drought resistance in white clover. Journal of Proteome Research 16:3039-3052. https://doi.org/10.1021/acs.jproteome.7b00334

Liang J, Yan H, Puligundla P, Gao X, Zhouand Y, Wan X (2017). Applications of chitosan nanoparticles to enhance absorption and bioavailability of tea polyphenols: A review. Food Hydrocolloids 69:286-292. https://doi.org/10.1016/j.foodhyd.2017.01.041

Limpanavech P, Chaiyasuta S, Vongpromek R, Pichyangkura R, Khunwasi C, Chadchawan S, Lotrakul P, Bunjongrat R, Chaideeand A, Bangyeekhun T (2008). Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Scientia Horticulturae 116:65-72. https://doi.org/10.1016/j.scienta.2007.10.034

M Younis A, Aly-Eldeenand MA, Elkady EM (2019). Effect of different molecular weights of chitosan on the removal efficiencies of heavy metals from contaminated water. Egyptian Journal of Aquatic Biology and Fisheries 23:149-158. https://doi.org/10.21608/EJABF.2019.52591

Mahdavi B, Modarres Sanavy SAM, Aghaalikhani M, Sharifiand M, Dolatabadian A (2011). Chitosan improves osmotic potential tolerance in safflower (Carthamus tinctorius L.) seedlings. Journal of Crop Improvement 25:728-741. https://doi.org/10.1080/15427528.2011.606354

Mahmood A, Bibi S, Naqve M, Javaid MM, Zia MA, Jabbar A, Ud-Din W, Attia KA, Khanand N, Al-Doss AA (2022). Physiological, Biochemical, and yield responses of linseed (Linum usitatissimum L.) in α-Tocopherol-mediated alleviation of salinity stress. Frontiers in Plant Science 13:867172. https://doi.org/10.3389/fpls.2022.867172

Malerba M, Cerana R (2016). Chitosan effects on plant systems. International Journal of Molecular Sciences 17:996. https://doi.org/10.3390/ijms17070996

Maluin FN, Hussein MZ (2020). Chitosan-based agronanochemicals as a sustainable alternat ive in crop protection. Molecules 2525:161125:1611. https://doi.org/10.3390/molecules25071611

Martins AF, Facchi SP, Follmann HD, Pereira AG, Rubiraand AF, Muniz EC (2014). Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: a review. International Journal of Molecular Sciences 15:20800-20832. https://doi.org/10.3390/ijms151120800

McKersie BD, Lesheim Y (2013). Stress and stress coping in cultivated plants. Springer Science & Business Media.

Meena KK, Sorty AM, Bitla UM, Choudhary K, Gupta P, Pareek A, Singh DP, Prabha R, Sahuand PK, Gupta VK (2017). Abiotic stress responses and microbe-mediated mitigation in plants: the omics strategies. Frontiers in Plant Science 8:172. https://doi.org/10.3389/fpls.2017.00172

Mehregan M, Mehrafarin A, Labbafiand M, Naghdi Badi H (2017). Effect of different concentrations of chitosan biostimulant on biochemical and morphophysiological traits of stevia plant (Stevia rebaudiana Bertoni). Journal of Medicinal Plants 16(62).

Mendes J, Paschoalin R, Carmona V, Neto ARS, Marques A, Marconcini J, Mattoso L, Medeirosand E, Oliveira J (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers 137:452-458. https://doi.org/10.1016/j.carbpol.2015.10.093

Mittler R (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science 11:15-19. https://doi.org/10.1016/j.carbpol.2015.10.093

Moenne A, González A (2021). Chitosan-, alginate-carrageenan-derived oligosaccharides stimulate defense against biotic and abiotic stresses, and growth in plants: A historical perspective. Carbohydrate Research 503:108298. https://doi.org/10.1016/j.carres.2021.108298

Morin-Crini N, Lichtfouse E, Torriand G, Crini G (2019). Fundamentals and applications of chitosan. Sustainable agriculture reviews 35: chitin and chitosan: history, fundamentals and innovations. Springer 35:49-123.

Motahharifar N, Nasrollahzadeh M, Taheri-Kafrani A, Varmaand RS, Shokouhimehr M (2020). Magnetic chitosan-copper nanocomposite: A plant assembled catalyst for the synthesis of amino-and N-sulfonyl tetrazoles in eco-friendly media. Carbohydrate Polymers 232:115819. https://doi.org/10.1016/j.carbpol.2019.115819

Muley AB, Shingote PR, Patil AP, Dalviand SG, Suprasanna P (2019). Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate Polymers 210:289-301. https://doi.org/10.1016/j.carbpol.2019.01.056

Munnik T, Meijer HJ (2001). Osmotic stress activates distinct lipid and MAPK signalling pathways in plants. FEBS Letters 498:172-178. https://doi.org/10.1016/S0014-5793(01)02492-9

Muzzarelli RA, Boudrant J, Meyer D, Manno N, DeMarchisand M, Paoletti MG (2012). Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydrate Polymers 87:995-1012. https://doi.org/10.1016/j.carbpol.2011.09.063

Nardi S, Schiavonand M, Francioso O (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules 26:2256. https://doi.org/10.3390/molecules26082256

Nawaz M, Hassan MU, Chattha MU, Mahmood A, Shah AN, Hashem M, Alamri S, Batool M, Rasheedand A, Thabit MA (2022). Trehalose: A promising osmo-protectant against salinity stress—physiological and molecular mechanisms and future prospective. Molecular Biology Reports 49:11255-11271. https://doi.org/10.1007/s11033-022-07681-x

Özkurt N, Bektaş Y (2022). Alleviation of salt stress with chitosan foliar application and its effects on growth and development in tomato (Solanum lycopersicum l.). Türkiye Tarımsal Araştırmalar Dergisi 9:342-351. https://doi.org/10.19159/tutad.1168393

Pastori GM, Foyer CH (2002). Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant Physiology 129:460-468. https://doi.org/10.1104/pp.011021

Patel T, Babbar A, Behera K, Katara CK, Anand KJ, Vyshnavi R, Pachoriand S, Bichewar N (2023). Exploring the potential of proximal remote sensing in plant stress phenotyping: A comprehensive review. International Journal of Environment and Climate Change 13:2602-2621. https://doi.org/10.9734/ijecc/2023/v13i92511

Paul D, Nair S (2008). Stress adaptations in a plant growth promoting rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. Journal of Basic Microbiology 48:378-384. https://doi.org/10.1002/jobm.200700365

Peniche C, Argüelles-Monaland W, Goycoolea F (2008). Chitin and chitosan: major sources, properties and applications, Monomers, polymers and composites from renewable resources. Elsevier, pp 517-542. https://doi.org/10.1016/B978-0-08-045316-3.00025-9

Percival GC (2023). Heat tolerance of urban tree species-a review. Urban Forestry & Urban Greening 128021. https://doi.org/10.1016/j.ufug.2023.128021

Pichyangkura R, Chadchawan S (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulturae 196:49-65. https://doi.org/10.1016/j.scienta.2015.09.031

Pongprayoon W, Siringam T, Panyaand A, Roytrakul S (2022). Application of chitosan in plant defense responses to biotic and abiotic stresses. Applied Science and Engineering Progress 15. https://doi.org/10.14416/j.asep.2020.12.007

Povero G, Loreti E, Pucciariello C, Santaniello A, Di Tommaso D, Di Tommaso G, Kapetis D, Zolezzi F, Piaggesiand A, Perata P (2011). Transcript profiling of chitosan-treated Arabidopsis seedlings. Journal of Plant Research 124:619-629. https://doi.org/10.1007/s10265-010-0399-1

Prajapati D, Pal A, Dimkpa C, Singh U, Devi KA, Choudharyand JL, Saharan V (2022). Chitosan nanomaterials: A prelim of next-generation fertilizers; existing and future prospects. Carbohydrate Polymers 288:119356. https://doi.org/10.1016/j.carbpol.2022.119356

Qiu H, Su L, Wangand H, Zhang Z (2021). Chitosan elicitation of saponin accumulation in Psammosilene tunicoides hairy roots by modulating antioxidant activity, nitric oxide production and differential gene expression. Plant Physiology and Biochemistry 166:115-127. https://doi.org/10.1016/j.plaphy.2021.05.033

Raafat D, Sahl HG (2009). Chitosan and its antimicrobial potential–a critical literature survey. Microbial Biotechnology 2:186-201. https://doi.org/10.1111/j.1751-7915.2008.00080.x

Rasheed A, Li H, Tahir MM, Mahmood A, Nawaz M, Shah AN, Aslam MT, Negm S, Moustafaand M, Hassan MU (2022). The role of nanoparticles in plant biochemical, physiological, and molecular responses under drought stress: A review. Frontiers in Plant Science 13:976179. https://doi.org/10.3389/fpls.2022.976179

Regni L, Del Buono D, Micheli M, Facchin SL, Tolisanoand C, Proietti P (2022). Effects of biogenic ZnO nanoparticles on growth, physiological, biochemical traits and antioxidants on olive tree in vitro. Horticulturae 8:161. https://doi.org/10.3390/horticulturae8020161

Riseh RS, Hassanisaadi M, Vatankhah M, Soroushand F, Varma RS(2022b). Nano/microencapsulation of plant biocontrol agents by chitosan, alginate, and other important biopolymers as a novel strategy for alleviating plant biotic stresses. International Journal of Biological Macromolecules https://doi.org/10.1016/j.ijbiomac.2022.09.278

Riseh RS, Hassanisaadi M,Vatankhah M, Babakiand SA, Barka EA (2022a). Chitosan as potential natural compound to manage plant diseases. International Journal of Biological Macromolecules https://doi.org/10.1016/j.ijbiomac.2022.08.109

Rivero RM, Mittler R, Blumwaldand E, Zandalinas SI (2022). Developing climate‐resilient crops: improving plant tolerance to stress combination. The Plant Journal 109:373-389. https://doi.org/10.1111/tpj.15483

Rizwan M, Ali S, ur Rehman MZ, Adrees M, Arshad M, Qayyum MF, Ali L, Hussain A, Chathaand SAS, Imran M (2019). Alleviation of cadmium accumulation in maize (Zea mays L.) by foliar spray of zinc oxide nanoparticles and biochar to contaminated soil. Environmental Pollution 248:358-367. https://doi.org/10.1016/j.envpol.2019.02.031

Rkhaila A, Chtouki T, Erguig H, El Halouiand N, Ounine K (2021). Chemical proprieties of biopolymers (chitin/chitosan) and their synergic effects with endophytic Bacillus species: Unlimited applications in agriculture. Molecules 26:1117. https://doi.org/10.3390/molecules26041117

Rose MA (2023). Endophytic bacteria Isolated from Aeschynomene indica plants and their role in nod-factor independent nodule formation and nitrogen fixation. Doctoral dissertation, The University of Texas at Arlington.

Sadeghipour O (2021). Chitosan application improves nickel toxicity tolerance in soybean. Journal of Soil Science and Plant Nutrition 21:2096-2104. https://doi.org/10.1007/s42729-021-00505-0

Safikhan S, Khoshbakht K, Chaichi MR, Aminiand A, Motesharezadeh B (2018). Role of chitosan on the growth, physiological parameters and enzymatic activity of milk thistle (Silybum marianum (L.) Gaertn.) in a pot experiment. Journal of Applied Research on Medicinal and Aromatic Plants 10:49-58. https://doi.org/10.1016/j.jarmap.2018.06.002

Saharan V, Kumaraswamy R, Choudhary RC, Kumari S, Pal A, Raliyaand R, Biswas P (2016). Cu-chitosan nanoparticle mediated sustainable approach to enhance seedling growth in maize by mobilizing reserved food. Journal of Agricultural and Food Chemistry 64:6148-6155. https://doi.org/10.1021/acs.jafc.6b02239

Saini P, Beniwal A, Kokkiligaddaand A, Vij S (2018). Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochemistry 72:1-12. https://doi.org/10.1016/j.procbio.2018.07.001

Salimgandomi S, Shabrangi A (2016). The effect of chitosan on antioxidant activity and some secondary metabolites of Mentha piperita L. Journal of Pharmaceutical & Health Sciences 4:135-142.

Santiago R, Barros-Riosand J, Malvar RA (2013). Impact of cell wall composition on maize resistance to pests and diseases. International Journal of Molecular Sciences 14:6960-6980. https://doi.org/10.3390/ijms14046960

Sara K, Hossein A, Masoudand SJ, Hassan M (2012). Effects of water deficit and chitosan spraying on osmotic adjustment and soluble protein of cultivars castor bean (Ricinus communis L.). Journal of Stress Physiology & Biochemistry 8:160-169.

Sathiyabama M, Manikandan A (2018). Application of copper-chitosan nanoparticles stimulate growth and induce resistance in finger millet (Eleusine coracana Gaertn.) plants against blast disease. Journal of Agricultural and Food Chemistry 66:1784-1790. https://doi.org/10.1021/acs.jafc.7b05921

Sathiyabama M, Parthasarathy R (2016). Biological preparation of chitosan nanoparticles and its in vitro antifungal efficacy against some phytopathogenic fungi. Carbohydrate Polymers 151:321-325. https://doi.org/10.1016/j.carbpol.2016.05.033

Selvakumar G, Kim K, Huand S, Sa T (2014). Effect of salinity on plants and the role of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria in alleviation of salt stress. Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment 1:115-144.

Shahrajabian MH, Chaski C, Polyzos N, Tzortzakisand N, Petropoulos SA (2021). Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules 11:819. https://doi.org/10.3390/biom11060819

Shahryari F, Rabieiand Z, Sadighian S (2020). Antibacterial activity of synthesized silver nanoparticles by sumac aqueous extract and silver-chitosan nanocomposite against Pseudomonas syringae pv. syringae. Journal of Plant Pathology 102:469-475. https://doi.org/10.1007/s42161-019-00478-1

Sharma D, Singh R, Tiwari R, Kumarand R, Gupta VK (2019). Wheat responses and tolerance to terminal heat stress: a review. Wheat production in changing environments: responses, adaptation and tolerance 149-173. https://doi.org/10.1007/978-981-13-6883-7_7

Shokraei S, Mirzaei E, Shokraei N, Derakhshan MA, Ghanbariand H, Faridi‐Majidi R (2021). Fabrication and characterization of chitosan/kefiran electrospun nanofibers for tissue engineering applications. Journal of Applied Polymer Science 138:50547. https://doi.org/10.1002/app.50547

Silveira NM, Prataviera PJ, Pieretti JC, Seabra AB, Almeida RL, Machadoand EC, Ribeiro RV (2021). Chitosan-encapsulated nitric oxide donors enhance physiological recovery of sugarcane plants after water deficit. Environmental and Experimental Botany 190:104593. https://doi.org/10.1016/j.envexpbot.2021.104593

Singh Dhillon G, Kaur S, Jyoti Sarma S, Kaur Brar S, Vermaand M, Yadagiri Surampalli R (2013). Recent development in applications of important biopolymer chitosan in biomedicine, pharmaceuticals and personal care products. Current Tissue Engineering (Discontinued) 2:20-40.

Singh A, Kukreti R, Sasoand L, Kukreti S (2022). Mechanistic insight into oxidative stress-triggered signaling pathways and type 2 diabetes. Molecules 27:950. https://doi.org/10.3390/molecules27030950

Song X-P, Verma KK, Tian D-D, Zhang X-Q, Liang Y-J, Huang X, Liand C-N, Li Y-R (2021). Exploration of silicon functions to integrate with biotic stress tolerance and crop improvement. Biological Research 54:1-12. https://doi.org/10.1186/s40659-021-00344-4

Stasińska-Jakubas M, Hawrylak-Nowak B, Wójciakand M, Dresler S (2023). Comparative effects of two forms of chitosan on selected phytochemical properties of Plectranthus amboinicus (Lour.). Molecules 28:376. https://doi.org/10.3390/molecules28010376

Stasińska-Jakubas M, Hawrylak-Nowak B (2022). Protective, biostimulating, and eliciting effects of chitosan and its derivatives on crop plants. Molecules 27:2801. https://doi.org/10.3390/molecules27092801

Sucharitha K, Beulahand A, Ravikiran K (2018). Effect of chitosan coating on storage stability of tomatoes (Lycopersicon esculentum Mill). International Food Research Journal 25:93-99.

Sukhova E, Ratnitsyna D, Gromovaand E, Sukhov V (2022). Development of two-dimensional model of photosynthesis in plant leaves and analysis of induction of spatial heterogeneity of CO2 assimilation rate under action of excess light and drought. Plants 11:3285. https://doi.org/10.3390/plants11233285

Synowiecki J, Al-Khateeb NA (2003). Production, properties, and some new applications of chitin and its derivatives. Critical Reviews in Food Science and Nutrition 43(2):145-171. https://doi.org/10.1080/10408690390826473

Tang W, Liu X, Heand Y, Yang F (2022). Enhancement of vindoline and catharanthine accumulation, antioxidant enzymes activities, and gene expression levels in Catharanthus roseus leaves by chitooligosaccharides elicitation. Marine Drugs 20:188. https://doi.org/10.3390/md20030188

Tarassoli Z, Najjarand R, Amani A (2021). Formulation and optimization of lemon balm extract loaded azelaic acid-chitosan nanoparticles for antibacterial applications. Journal of Drug Delivery Science and Technology 65:102687. https://doi.org/10.1016/j.jddst.2021.102687

Thakur P, Kumar S, Malik JA, Bergerand JD, Nayyar H (2010). Cold stress effects on reproductive development in grain crops: an overview. Environmental and Experimental Botany 67:429-443. https://doi.org/10.1016/j.envexpbot.2009.09.004

Van Toan N, Hanh TT (2013). Application of chitosan solutions for rice production in Vietnam. African Journal of Biotechnology 12(4):382-384. https://doi.org/10.5897/AJB12.2884

Varamin JK, Fanoodi F, Sinaki JM, Rezvanand S, Damavandi A (2020). Foliar application of chitosan and nano-magnesium fertilizers influence on seed yield, oil content, photosynthetic pigments, antioxidant enzyme activities of sesame (Sesamum indicum L.) under water-limited conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 48:2228-2243. https://doi.org/10.15835/nbha48411852

Vercesi AE, Castilho RF, Kowaltowski AJ, de Oliveira HC, de Souza-Pinto NC, Figueiraand TR, Busanello EN (2018). Mitochondrial calcium transport and the redox nature of the calcium-induced membrane permeability transition. Free Radical Biology and Medicine 129:1-24. http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.034

Verma KK, Song X-P, Joshi A, Tian D-D, Rajput VD, Singh M, Arora J, Minkinaand T, Li Y-R (2022). Recent trends in nano-fertilizers for sustainable agriculture under climate change for global food security. Nanomaterials 12:173. https://doi.org/10.3390/nano12010173

Wang W, Meng Q, Li Q, Liu J, Zhou M, Jinand Z, Zhao K (2020). Chitosan derivatives and their application in biomedicine. International Journal of Molecular Sciences 21:487. https://doi.org/10.3390/ijms21020487

Wu S, Shanand L, He P (2014). Microbial signature-triggered plant defense responses and early signaling mechanisms. Plant Science 228:118-126. https://doi.org/10.1016/j.plantsci.2014.03.001

Yang J, Shen M, Luo Y, Wu T, Chen X, Wangand Y, Xie J (2021). Advanced applications of chitosan-based hydrogels: From biosensors to intelligent food packaging system. Trends in Food Science & Technology 110:822-832. https://doi.org/10.1016/j.tifs.2021.02.032

Yeboah A, Lu J, Yang T, Shi Y, Amoanimaa-Dede H, Boatengand CGA, Yin X (2020). Assessment of castor plant (Ricinus communis L.) tolerance to heavy metal stress-a review. Phyton 89:453. https://doi.org/10.32604/phyton.2020.09267

Yeh C-H, Linand P-W, Lin Y-C (2010). Chitosan microfiber fabrication using a microfluidic chip and its application to cell cultures. Microfluidics and Nanofluidics 8:115-121. https://doi.org/10.1007/s10404-009-0485-7

Yu D, Regenstein JM, Zang J, Xia W, Xu Y, Jiangand Q, Yang F (2018). Inhibitory effects of chitosan-based coatings on endogenous enzyme activities, proteolytic degradation and texture softening of grass carp (Ctenopharyngodon idellus) fillets stored at 4 °C. Food Chemistry 262:1-6. https://doi.org/10.1016/j.foodchem.2018.04.070

Zafar S, Afzal H, Ijaz A, Mahmood A, Ayub A, Nayab A, Hussain S, Maqsood U-H, Sabirand MA, Zulfiqar U (2023). Cotton and drought stress: An updated overview for improving stress tolerance. South African Journal of Botany 161:258-268. https://doi.org/10.1016/j.sajb.2023.08.029

Zandalinas SI, Mittler R (2022). Plant responses to multifactorial stress combination. New Phytologist 234:1161-1167. https://doi.org/10.1111/nph.18087

Zayed M, Elkafafi S, Zedanand AM, Dawoud SF (2017). Effect of nano chitosan on growth, physiological and biochemical parameters of Phaseolus vulgaris under salt stress. Journal of Plant Production 8:577-585. https://doi.org/10.21608/JPP.2017.40468

Zhai L, Bai Z, Zhu Y, Wangand B, Luo W (2018). Fabrication of chitosan microspheres for efficient adsorption of methyl orange. Chinese Journal of Chemical Engineering 26:657-666. https://doi.org/10.1016/j.cjche.2017.08.015

Zhang S, Zhang M, Khalid AR, Li L, Chen Y, Dong P, Wangand H, Ren M (2020). Ethylicin prevents potato late blight by disrupting protein biosynthesis of Phytophthora infestans. Pathogens 9:299. https://doi.org/10.3390/pathogens9040299

Zong H, Liu S, Xing R, Chenand X, Li P (2017). Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium. Ecotoxicology and Environmental Safety 138:271-278. https://doi.org/10.1016/j.ecoenv.2017.01.009

Downloads

Published

2024-08-20

How to Cite

ARSHAD, T., LIHONG, W., ALAWADI, H. F. N., MAHMOOD, A., ZIA, M. A., NAQVE, M., ALI, B., NAWAZ, M., HASSAN, M. U., HASHEM, A., & ABD_ALLAH, E. F. (2024). Alleviating adverse effects of environmental stress in plants through chitosan application. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(3), 13538. https://doi.org/10.15835/nbha52313538

Issue

Section

Review Articles
CITATION
DOI: 10.15835/nbha52313538

Most read articles by the same author(s)

1 2 > >>