Responses to foliar sprays of strawberry variety ‘Portola’ to biostimulants on growth, yield, quality, and bioactive compounds
DOI:
https://doi.org/10.15835/nbha52313513Keywords:
biostimulants, fruit yield, photosynthetic pigments, quality, strawberry, vegetative growthAbstract
The acceptance of strawberries in international trade has increased due to their organoleptic qualities, high nutritional value, and richness in antioxidants. This research evaluated the effect of foliar spray with chitosan, brassinosteroids, and thidiazuron as metabolic enhancers on growth, productivity, quality parameters, and bioactive compounds in ‘Portola’ strawberry cultivar in the first year of production. This experiment included six treatments and control with doses of CTS of 100, 300, and 400 mg L-1, of Brassinosteroids (Vitazyme™) 0.5, 1-, and 5-mL L-1 and 0.15 mL L-1 of TDZ (Charger plex™) in applications of these biostimulants alone and combination CTS and BRs. The findings indicated that CTS treatments increased plant length, leaf count, leaf area, and fruit firmness. The joint application of CTS and BRs significantly promotes crown diameter, photosynthetic pigments, carotenoids, fresh and dry weight of roots and aerial parts, and ripening. Applications of CTS 300 mg L-1 and 1 mL L-1 of Vitazyme have shown the highest fruit length, diameter, and weight values. Regarding TDZ, this work showed an increase in crown diameter and in the fresh and dry weight of both the root and the aerial part without significant differences in the content of the chlorophyll and titratable acidity compared to the control. Therefore, it could be safely recommended that foliar application with CTS, BRs, and TDZ can be used as biostimulants to improve the growth, quality and bioactive compounds of strawberry cv ‘Portola’.
References
Abd AJ, Niamah AK (2012). Effect of chitosan on apple juice quality. International Journal of Agricultural and Food Science 2(4):153-157.
Abdel-Mawgoud AMR, Tantawy AS, El-Nemr MA, Sassine YN (2010). Growth and yield responses of strawberry plants to chitosan application. European Journal of Scientific Research 39(1):170-177.
Ahmad A, Ahmad N, Anis M, Alatar AA, Abdel-Salam EM, Qahtan AA, Faisal M (2021). Gibberellic acid and thidiazuron promote micropropagation of an endangered woody tree (Pterocarpus marsupium Roxb.) using in vitro seedlings. Plant Cell, Tissue and Organ Culture 144:449-462. https://doi.org/10.1007/s11240-020-01969-1
Albíter-Pineda JF, Vaca R, Aguila PD, Yáñez-Ocampo G, Lugo J (2020). CO2 flow and its relationship with biochemical properties in greenhouse horticultural crops. Ecosistemas y Recursos Agropecuarios 7(3). https://doi.org/10.19136/era.a7n3.2548
Ali B (2017). Practical applications of brassinosteroids in horticulture—Some field perspectives. Scientia Horticulturae 225:15-21. https://doi.org/10.1016/j.scienta.2017.06.051
Ali HM, KhanT, Khan MA, Ullah N (2022). The multipotent thidiazuron: A mechanistic overview of its roles in callogenesis and other plant cultures in vitro. Biotechnology and Applied Biochemistry 69(6):2624-2640. https://doi.org/10.1002/bab.2311
Alvarado Raya H, Rodríguez Alcázar J, Calderón Zavala G, Cárdenas Soriano E (2000). El thidiazurón, la brotación floral y las dimensiones del ovario en ciruelo japonés (Prunus salicina L.) ‘Shiro’ (Thidiazuron, floral budding and ovary dimensions in Japanese plum (Prunus salicina L.) 'Shiro'). Agrociencia 34(3):321-32
Alves Cleiton J, Arf O, Siviero Garcia NF, Shintate Galindo F, Galassi Dias A (2015). Thidiazuron increases upland rice yield. Pesquisa Agropecuária Tropical 45(3).
Anuradha S, Ram Rao SS (2003). Application of brassinosteroids to rice seeds (Oryza sativa L.) reduced the impact of salt stress on growth, prevented photosynthetic pigment loss and increased nitrate reductase activity. Plant Growth Regulation 40:29-32. https://doi.org/10.1023/a:1023080720374
Arndt FR, Rusch R, Stillfried HV, Hanisch B, MartinWC (1976). A new cotton defoliant. Plant Physiology 57:S-99
Assis Gomes MDM, Campostrini E, Rocha Leal, N, Viana AP, Ferraz TM, do Nascimento Siqueira L, … Teixeira Zullo MA (2006). Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis f. flavicarpa). Scientia Horticulturae 110(3):235-240. https://doi.org/10.1016/j.scientia.2006.06.030
Attia SM (2022). Enhancing fruit set, yield and quality of ‘LeConte’ pear trees by preharvest foliar spray of some plant growth regulators. SVU-International Journal of Agricultural Sciences 4(4):1-7. https://doi.org/10.21508/svuijas.2022.174135.1244
Ávila RG, Magalhães PC, Vitorino LC, Bessa LA, Dázio de Souza KR, Queiroz RB, ... Teixeira MB (2023). Chitosan induces sorghum tolerance to water deficits by positively regulating photosynthesis and the production of primary metabolites, osmoregulators, and antioxidants. Journal of Soil Science and Plant Nutrition 23(1):1156-1172. https://doi.org/10.1007/s42729-022.01111-4
Badizadegan F, Solgi M, Taghizadeh M, Abbasifar A. (2023). Effect of chitosan on propagation of zamiifolia as tropical ornamental indoor plant by leaf cutting. Ornamental Horticulture 29(2):278-285. https://doi.org/10.1590/2447-536X29i2.2626
Baghel M, Nagaraja A, Srivastav M, Meena NK, Senthil Kumar M, Kumar A, Sharma RR (2019). Pleiotropic influences of brassinosteroids on fruit crops: a review. Plant Growth Regulation 87:375-388 https://doi.org/10.1007/s10725-018-0471-8
Bajguz A (2009). Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. Journal of Plant Physiology 166(8):882-886. https://doi.org/10.1016/j.jplph.2008.10.004
Bajguz A, Piotrowska-Niczyporuk A (2013). Synergistic effect of auxins and brassinosteroids on the growth and regulation of metabolite content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry 71:290-297. https://doi.org/10.1016/j.plaphy.2013.08.003
Bajguz A, Piotrowska-Niczyporuk A (2014). Interactive effect of brassinosteroids and cytokinins on growth, chlorophyll, monosaccharide and protein content in the green alga Chlorella vulgaris (Trebouxiophyceae). Plant Physiology and Biochemistry 80:176-183. https://doi.org/10.1016/j.plaphy.2014.04.009
Bakhoum GS, Sadak MS, El Moneim Badr EA (2020). Mitigation of adverse effects of salinity stress on sunflower plant (Helianthus annuus L.) by exogenous application of chitosan. Bulletin of the National Research Centre 44:1-11. https://doi.org/10.1186/s42269-020-00343-7
Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004). Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant physiology 134(4):1624-1631. https://doi.org/10.1104/pp.103.036897
Bohnert HJ, Jensen RG (1996). Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology 14(3):89-97. https://doi.org/10.1016/0167-7799(96)80929-2
Boonlertnirun S, Boonraung C, Suvanasara R (2008). Application of chitosan in rice production. Journal of Metals, Materials and Minerals 18(2):47-52.
Castro AJ, López-Rodríguez MD, Giagnocavo C, Gimenez M, Céspedes L, La Calle A, ... Valera DL (2019). Six collective challenges for sustainability of Almería greenhouse horticulture. International Journal of Environmental Research and Public Health 16(21):4097. https://doi.org/10.3390/ijerph16214097
Chakraborty M, Hasanuzzaman M, Rahman M, Rahman Khan MA, Bhowmik P, Mahmud NU, … Islam T (2020). Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture 10(12):624. https://doi.org/10.3390/agriculture10120624
Chamnanmanoontham N, Pongprayoon W, Pichayangkura R, Roytrakul S, Chadchawan S (2015). Chitosan enhances rice seedling growth via gene expression network between nucleus and chloroplast. Plant Growth Regulation 75:101-114. https://doi.org/10.1007/s10725-014-9935-7
Champa WH, Gill MIS, Mahajan BVC, Aror NK, Bedi S (2015). Brassinosteroids improve quality of table grapes (Vitis vinifera L.) cv. ‘flame seedless’. Tropical Agricultural Research 26(2). https://doi.org/10.4038/tar.v26i2.8099
Chávez-González JL, López-Pérez L, España-Boquera ML, Pedraza-Santos ME, Rebollar-Alvíter Á, Cárdenas-Navarro R (2023). 24-Epibrasinólido (24-EBL) como inductor de enraizamiento de esquejes de arándano azul en diferentes sustratos (24-Epibrasinolide (24-EBL) as a rooting inducer of blueberry cuttings in different substrates). Revista Mexicana de Ciencias Agrícolas 14(1):63-74.
Chen F, Li Q, Su Y, Lei Y, Zhang C (2023). Chitosan spraying enhances the growth, photosynthesis, and resistance of continuous Pinellia ternata and promotes its yield and quality. Molecules 28(5):2053. https://doi.org/10.3390/molecules28052053
Chicaiza Flores, JJ (2015). Determinación de los parámetros físico-químicos y microbiológicos de la fresa (Fragaria vesca) variedad ‘oso grande’ como base para el establecimiento de la norma de requisites (Determination of the physical-chemical and microbiological parameters of the 'oso grande' variety strawberry (Fragaria vesca) as a basis for establishing the requirements standard). Bachelor's thesis. Universidad Regional Autónoma de los Andes, Ecuador.
Choi S, Ban S, Choi C (2023). The impact of plant growth regulators and floral cluster thinning on the fruit quality of ‘Shine Muscat’ Grape. Horticulturae 9(3):392. https://doi.org/10.3390/horticulturae9030392
Clouse SD, Langford M. McMorris TC (1996). A brassinosteroid-insensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiology 111(3):671-678. https://doi.org/10.1104/pp.111.3.671
Clouse SD (2011). Brassinosteroids. The Arabidopsis Book/American society of plant biologists 9. https://doi.org/10.1199/tab.0151
Cortes PA, Terrazas T, León TC, Larqué-Saavedra A (2003). Brassinosteroid effects on the precocity and yield of cladodes of cactus pear (Opuntia ficus-indica (L) Mill.). Scientia Horticulturae 97(1):65-73. https://doi.org/10.1016/S0304-4238(02)00080-8
Dahmane EM, Taourirte M, Eladlani N, Amarouch MY, Mazouzi D, Rhazi M (2022). Physicochemical characterization of α-chitin whiskers-reinforced chitosan nanocomposite films. Polymer Science, Series A 64(5):487-492. https://doi.org/10.1134/S0965545X22700304
Divi UK, Krishna P (2009). Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnology 26(3-4):131-136. https://doi.org/10.1016/j.nbt.2009.07.006
Dzung NA, Phuong Khanh VT, Dzung TT (2011). Research on impact of chitosan oligomers on bio-physical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymers 84(2):751-755. https://doi.org/10.1016/j.carbpol.2010.07.066
El Amerany F, Rhazi M, Wahbi S, Taourirte M, Meddich A (2020). The effect of chitosan, arbuscular mycorrhizal fungi, and compost applied individually or in combination on growth, nutrient uptake, and stem anatomy of tomato. Scientia Horticulturae, 261:109015. https://doi.org/10.1016/j.scienta.2019.109015.
El Amerany F, Meddich A, Wahbi S. Taourirte M, Rhazi M (2023). Application of Compost, as a peat substitute, and foliar spray of chitosan and/or roots inoculation with beneficial fungus increases tomato plants productivity and fruit size. Gesunde Pflanzen 75(5):1485-1495. https://doi.org/10.1007/s10343-023-00837-0
El-Khateeb MA, El-Attar AB, Nour RM (2017). Application of plant biostimulants to improve the biological responses and essential oil production of marjoram (Majorana hortensis, Moench) plants. Middle East Journal of Agriculture Research 6(4):928-941.
El-Miniawy SM, Ragab ME, Youssef SM, Metwally AA (2013). Response of strawberry plants to foliar spraying of chitosan. Research Journal of Agriculture and Biological Sciences 9(6):366-372.
El-Tantawy EM (2009). Behavior of tomato plants as affected by spraying with chitosan and aminofort as natural stimulator substances under application of soil organic amendments. Pakistan Journal of Biological Sciences 12(17):1164-1173. https://doi.org/10.3923/pjbs.2009.1164.1173
Famiani F, Battistelli A, Moscatello S, Boco M, Antognozzi E (1999). Thidiazuron affects fruit growth, ripening and quality of Actinidia deliciosa. The Journal of Horticultural Science and Biotechnology 74(3):375-380. https://doi.org/10.1080/14620316.1999.11511124
Fariduddin Q, Ahmad A, Hayat S. (2003). Photosynthetic response of Vigna radiata to pre-sowing seed treatment with 28-Homobrassinolide. Photosynthetica 41:307-310 https://doi.org/10.1023/B:PHOT.0000011968.78037.b1
Farouk S, Amany AR (2012). Improving growth and yield of cowpea by foliar application of chitosan under water stress. Egyptian Journal of Biology 14:14-16. https://doi.org/10.4314/ejb.v14i1.2
Ferrante A, Tognoni F, Mensuali-Sodi A, Serra G (2003). Treatment with thidiazuron for preventing leaf yellowing in cut tulips and chrysanthemum. Acta Horticulturae 624:357-363. https://doi.org/10.17660/actahortic.2003.624
Flores Córdova MA, Soto Parra JM, Salas Salazar NA, Sánchez Chávez E, Piña Ramírez FJ (2018). Effect of CaCO3 industrial by product on quality attributes, phenolic content and antioxidant capacity of apple cvs ‘Golden Delicious’ and ‘Top Red’. Nova Scientia 10(20):64-82.
Furio RN, Salazar SM, Mariotti-Martínez JA, Martínez-Zamora GM, Coll Y, Díaz-Ricci JC (2022). Brassinosteroid applications enhance the tolerance to abiotic stresses, production and quality of strawberry fruits. Horticulturae 8(7):572. https://doi.org/10.3390/horticulturae8070572
Ghoname AA, El-Nemr MA, Abdel-Mawgoud AMR, El-Tohamy WA (2010). Enhancement of sweet pepper crop growth and production by application of biological, organic and nutritional solutions. Research Journal of Agriculture and Biological Sciences 6(3):349-355.
Ghorbanpour, M., Hatami, M. (2015). Changes in growth, antioxidant defense system and major essential oils constituents of Pelargonium graveolens plant exposed to nano-scale silver and thidiazuron. Indian Journal of Plant Physiology 20:116-123. https://doi.org/10.1007/s40502-015-0145-8
Gohari G, Farhadi H, Panahirad S, Zareei E, Labib P, Jafari H, … Fotopoulos V (2023). Mitigation of salinity impact in spearmint plants through the application of engineered chitosan-melatonin nanoparticles. International Journal of Biological Macromolecules 224:893-907.
González-García MP, Vilarrasa-Blasi J, Zhiponova M, Divol F, Mora-García S, Russinova E, Caño-Delgado AI (2011). Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138(5):849-859. https://doi.org/10.1242/dev.057331
González-Jiménez SL, Castillo-González AM, García-Mateos M, Valdez-Aguilar LA, Ybarra-Moncada C, Avitia-García E (2020). Response of strawberry CV. festival to salinity. Revista Fitotecnia Mexicana 43(1):53-60. https://doi.org/10.35196/RFM.2020.1.53
Greene DW (1995). Thidiazuron effects on fruit set, fruit quality, and return bloom of apples. HortScience 30(6):1238-1240. https://doi.org/10.21273/HORTSCI.30.6.1238
Guan YJ, Hu J, Wang XJ, Shao CX (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University Science B. 10(6): 427-433.
Guo B, Abbasi BH, Zeb A, Xu LL, Wei YH (2011). Thidiazuron: a multi-dimensional plant growth regulator. African Journal of Biotechnology 10(45):8984-9000. https://doi.org/10.5897/AJB11.636
Hancock JF (2020). Strawberries. (2nd ed). CABI International Publishing. New York.
Hansen M, Chae HS, Kieber JJ (2009). Regulation of ACS protein stability by cytokinin and brassinosteroid. The Plant Journal 57(4):606-614. https://doi.org/10.1111/j.1365-313X.2008.03711.x
Harpreet K, Sirhindi G, Bhardwaj R (2015). Alteration of antioxidant machinery by 28-homobrassinolide in Brassica juncea L. under salt stress. Advances in Applied Science Research 6(4):166-172.
Hayat S, Ahmad A, Mobin M, Fariduddin Q, Azam ZM (2001). Carbonic anhydrase, photosynthesis, and seed yield in mustard plants treated with phytohormones. Photosynthetica 39:111-114.
He Y, Li J, Ban Q, Han S, Rao J. (2018). Role of brassinosteroids in persimmon (Diospyros kaki L.) fruit ripening. Journal of Agricultural and Food Chemistry 66(11):2637-2644. https://doi.org/10.1021/acs.jafc.7b06117
Hernández Silva E, García-Martínez I. (2016). Brasinoesteroides en la agricultura I (Brassinosteroids in agriculture I). Revista Mexicana de Ciencias Agrícolas 7(2):441-450.
Hernández Valencia RD, Juárez Maldonado A, Pérez Hernández A, Lozano Cavazos CJ, Zermeño González A, González Fuentes JA (2022). Influencia de fertilizantes orgánicos y del silicio sobre la fisiología, el rendimiento y la calidad nutracéutica del cultivo de fresa (Influence of organic fertilizers and silicon on the physiology, yield and nutraceutical quality of strawberry cultivation). Nova Scientia 14(28):1-16. https://10.21640/ns.v14i28.3032
Horwitz, W, Latimer GW (2000). Official methods of analysis of AOAC International. Gaithersburg: AOAC International (17th ed). Gaithersburg, Maryland
IBM Corp. Released (2017). IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.
Ibraheim SKA, Mohsen AAM (2015). Effect of chitosan and nitrogen rates on growth and productivity of summer squash plants. Middle East Journal of Agriculture Research 4(4):673-681.
Isci B, Gökbayrak Zeli HA (2015). Influence of brassinosteroids on fruit yield and quality of table grape 'Alphonse Lavallée'. VITIS-Journal of Grapevine Research 54(1):17-19. https://doi.org/10.1016/j.scienta.2006.06.030
Islam MM, Kabir MH, Mamun ANK, Islam M, Das P (2018). Studies on yield and yield attributes in tomato and chilli using foliar application of oligo-chitosan. GSC Biological and Pharmaceutical Sciences 3(3):20-28. https://doi.org/10.30574/gscbps.2018.3.3.0038
Kessel Domini A (2018). Potencialidades del quitosano para la fresa. Usos en la mejora y conservación de los frutos (Potential of chitosan for strawberries. Uses in the improvement and conservation of fruits). Cultivos Tropicales 39(1):134-142.
Khan N, Ali S, Zandi P, Mehmood A, Ullah S, Ikram M, Babar MA (2020.) Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan Journal of Botany 52(2):355-363. https://doi.org/ 10.30848/PJB2020-2(24)
Knidri HE, Dahmani J, Addaou A, Laajeb A, Lahsini A (2019). Rapid and efficient extraction of chitin and chitosan for scale-up production: Effect of process parameters on deacetylation degree and molecular weight. International Journal of Biological Macromolecules 139:1092-1102. https://doi.org/10.1016/j.ijbiomac.2019.08.079
Kowalski B, Terry FJ, Herrera L, Pen˜alver DA (2007). Application of soluble chitosan in vitro and in the greenhouse to increase yield and seed quality of potato minitubers. Potato Research 49:167-176. https://doi.org/10.1007/s11540-006-9015-0
Lalarukh I, Amjad SF, Mansoora N, Al-Dhumri, SA, Alshahri AH, Almutari MM, … Abdelhafez AA (2022). Integral effects of brassinosteroids and timber waste biochar enhances the drought tolerance capacity of wheat plant. Scientific Reports 12(1):12842 https://doi.org/10.1038/s41598-022-16866-0
Lárez Velásquez C, Rojas Pirela M, Chirinos A, Rojas Avelizapa L (2019). Nuevos retos en agricultura para los biopolímeros de quitina y quitosano (New challenges in agriculture for chitin and chitosan biopolymers). Revista Iberoamericana de Polimeros 20(3):118-136
Laribi‐Habchi H, Biche M, Drouiche N, Boudjemaa N, Khalfi O, Mameri N (2015). Efficacy of crude and purified chitinases (SsChi 50) extracted from offal red scorpion fish in biological control of chickpea weevil (Callosobruchus maculatus L.). Journal of Food Processing and Preservation 39(6):1355-1360. https://doi.org/10.1111/jfpp.12354
Lee J, Han S, Lee HY, Jeong B, Heo TY, Hyun TK, … Ryu H (2019). Brassinosteroids facilitate xylem differentiation and wood formation in tomato. Planta 249:1391-1403. https://doi.org/10.1007/s00425-019-03094-6
Li Y, Hu J, Xiao J, Guo G, Jeong BR (2021). Foliar thidiazuron promotes the growth of axillary buds in strawberry. Agronomy 11(3):594. https://doi.org/10.3390/agronomy11030594
Liu C, Feng B, Zhou Y, Liu C, Gong X (2022). Exogenous brassinosteroids increases tolerance to shading by altering stress responses in mung bean (Vigna radiata L.). Photosynthesis Research 151:279-294. https://doi.org/10.1007/s11120-021-00887-3
Liu H, Zheng Z, Han X, Zhang C, Li H, Wu M (2022). Chitosan soaking improves seed germination of Platycodon grandiflorus and enhances its growth, photosynthesis, resistance, yield, and quality. Horticulturae 8(10):943. https://doi.org/10.3390/horticulturae8100943
Loera-Alvarado M, Calderón Zavala G, Sánchez-García P, Rebollar-Alviter A (2017). Aspersión de thidiazuron y ácido giberélico combinado con poda sobre fenología del arándano (Vaccinium spp.) (Spraying of thidiazuron and gibberellic acid combined with pruning on blueberry (Vaccinium spp.) phenology). Agroproductividad 10(12):121-127
Lopez-Moya F, Escudero N, Zavala-Gonzalez EA, Esteve-Bruna D, Blázquez MA, Alabadí D, Lopez-Llorca LV (2017). Induction of auxin biosynthesis and WOX5 repression mediate changes in root development in Arabidopsis exposed to chitosan. Scientific Reports 7(1):16813. https://doi.org/10.1038/s41598-017-16874-5
Mancini M, Mazzoni L, Leoni E, Tonanni V, Gagliardi F, Qaderi R, … Mezzetti B (2023). Application of near infrared spectroscopy for the rapid assessment of nutritional quality of different strawberry cultivars. Foods 12(17):3253. https://doi.org/10.3390/foods12173253
Mandava NB (1988) Plant growth-promoting brassinosteroids. Annual Review of Plant Physiology and Plant Molecular Biology 39:23-52. https://doi.org/10.1146/annurev.pp.39.060188000323
Martín L, Millán A, Castaño FJ, Fontaine F (2023). Deciphering chitosan–host plant interaction in esca disease. Agronomy 13(5):1290. https://doi.org/10.3390/agronomy13051290
Martínez González L, Reyes Guerrero Y, Falcón Rodríguez A, Nápoles García MC, Núñez Vázquez MC (2016). Efecto de productos bioactivos en plantas de frijol (Phaseolus vulgaris L.) biofertilizadas (Effect of bioactive products on biofertilized bean plants (Phaseolus vulgaris L.). Cultivos Tropicales 37(3):165-171. https://doi.org/10.13140/RG.2.1.1077.0165
Martínez-González L, Maqueira López L, Nápoles García MC, Núñez Vázquez MC (2017). Efecto de bioestimulantes en el rendimiento de dos cultivares de frijol (Phaseolus vulgaris L.) biofertilizados (Effect of biostimulants on the yield of two biofertilized bean (Phaseolus vulgaris L.) cultivars). Cultivos Tropicales 38(2):113-118.
Mashamaite CV, Ngcobo BL, Manyevere A, Bertling I, Fawole OA (2022). Assessing the usefulness of Moringa oleifera leaf extract as a biostimulant to supplement synthetic fertilizers: A Review. Plants 11(17):2214. https://doi.org/10.3390/plants11172214.
Metwaly ESE., AL-Huqail AA, Farouk S, Omar GF (2023). Effect of chitosan and micro-carbon-based phosphorus fertilizer on strawberry growth and productivity. Horticulturae 9(3):368. https://doi.org/10.3390/horticulturae9030368
Mitcham E (2004). Strawberry. In: Gross KC, Wallace HA, Wang CY, Saltveit M (Eds). The commercial storage of fruits, vegetables, and florist and Nursery Stocks. Agricultural Research Service. United States of America
Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982). Cytokinin activity of N-phenyl-N′-1, 2, 3-thiadiazol-5-ylurea (thidiazuron). Phytochemistry 21(7):1509. https://doi.org/10.1016/S0031-9422(82)85007-3
Mondal MM, Malek MA, Puteh AB, Ismail MR, Ashrafuzzaman M, Naher L (2012). Effect of foliar application of chitosan on growth and yield in okra. Australian Journal of Crop Science 6(5):918-921
Nakaya M, Tsukaya H, Murakami N, Kato M. (2002). Brassinosteroids control the proliferation of leaf cells of Arabidopsis thaliana. Plant Cell Physiology 43:239-244. https://doi.org/10.1093/pcp/pcf024
No HK, Lee KS, Kim ID, Park MJ, Kim SD, Meyers SP (2003). Chitosan treatment affects yield, ascorbic acid content, and hardness of soybean sprouts. Journal of Food Science 68(2):680-685. https://doi.org/10.1111/j.1365-2621.2003.tb05731.x
Nolan TM, Vukašinović NV, Liu D, Russinova E, Yin Y. (2020). Brassinosteroids: Multidimensional regulators of plant growth development, and stress responses. The Plant Cell 32(2):295-318. https://doi.org/10.1105/tpc.19.00335
Official journal of the federation (Diario Oficial de la Federación) (2012). Vigencia de normas Mexicanas. (Validity of Mexican standards) NMX- FF- 062- SCFI- 2002. https://dof.gob.mx/nota_detalle.php?codigo=721615&fecha=09/08/2002#gsc.tab=0
Pasa MS, Silva CP, Carra B, Brighenti AF, Souza ALK, Petri JL (2017). Thidiazuron (TDZ) increases fruit set and yield of ‘Hosui’and ‘Packham’s Triumph’pear trees. Anais da Academia Brasileira de Ciências 89(04):3103-3110. https://doi.org/10.1590/0001-3765201720170644
Pilon-Smits EA, Ebskamp MJ, Paul MJ, Jeuken MJ, Weisbeek PJ., Smeekens SC (1995). Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiology 107(1):125-130. https://doi.org/10.1104/pp.107.1.125
Pipattanawong N, Fujishige N, Yamane K, Ogata R (1996). Effects of brassinosteroid on vegetative and reproductive growth in two day-neutral strawberries. Journal of Japanese Society for Horticultural Science 65(3):651-654. https://doi.org/10.2503/jjshs.65.651
Que F, Wang GL, Xu ZS, Wang F, Xiong AS (2017). Transcriptional regulation of brassinosteroid accumulation during carrot development and the potential role of brassinosteroids in petiole elongation. Frontiers in Plant Science, 8:1356. https://doi.org/10.3389/fpls.2017.01356
Qureshi FF, Rasheed R, Hussain I, Ashraf MA (2023). Signaling crosstalk between brassinosteriods and jasmonates in plant defense, growth, and development. In: Government College University Faisalabad (Eds). Hormonal Cross-Talk, Plant Defense and Development. Academic Press, Punjab, Pakistan pp 123-148. https://doi.org/10.1016/B978-0-323-95375-7.00003-3.
Reyes-Pérez J, Enríquez-Acosta EA, Ramírez-Arrebato MÁ, Zúñiga Valenzuela E, Lara-Capistrán L, Hernández-Montiel LG (2020). Efecto del quitosano sobre variables del crecimiento, rendimiento y contenido nutricional del tomate (Effect of chitosan on variables of growth, yield and nutritional content of tomato). Revista Mexicana de Ciencias Agrícolas 11(3):457-465. https://doi.org/10.29312/remexca.v11i3.2392
Reynolds AG, Wardle DA, Zurowski C, Looney NE (1992). Phenylureas CPPU and thidiazuron affect yield components, fruit composition, and storage potential of four seedless grape selections. Journal of the American Society for Horticultural Science 117(1):85-89. https://doi.org/10.21273/JASHS.117.1.85
Rizk SM, Mohamed M (2021). Using some natural substrates to enhance the growth, yield and the tolerance of strawberry plants to rhizoctonia root rot disease. Scientific Journal of Agricultural Sciences 3(2):40-57. https://doi.org/10.21608/SJAS.2021.97244.1154
Román-Doval R, Torres-Arellanes SP, Tenorio-Barajas AY, Gómez-Sánchez A, Valencia-Lazcano AA (2023). Chitosan: Properties and its application in agriculture in context of molecular weight. Polymers 15(13):2867. https://doi.org/10.3390/polym15132867
Saad AM, Alabdali AYM, Ebaid M, Salama E, El-Saadony MT, Selim S, ... El-Saadony FM (2022). Impact of green chitosan nanoparticles fabricated from shrimp processing waste as a source of nano nitrogen fertilizers on the yield quantity and quality of wheat (Triticum aestivum L.) cultivars. Molecules 27(17):5640. https://doi.org/10.3390/molecules27175640
Sahu PK, Tilgam J, Mishra S, Hamid S, Gupta AKJ, Jayalakshmik K, … Kharwar RN (2022). Surface sterilization for isolation of endophytes: Ensuring what (not) to grow. Journal of Basic Microbiology 62:647-668. https://doi.org/10.1002/jobm.202100462
Sajid ZA, Aftab F (2009). Effect of thidiazuron (TDZ) on in vitro micropropagation of Solanum tuberosum L. cvs. ‘Desiree’ and ‘Cardinal’. Pakistan Journal of Botany 41(4):1811-1815.
Santo Pereira AE, Silva PM, Oliveira JL, Oliveira HC, Fraceto LF (2017). Chitosan nanoparticles as carrier systems for the plant growth hormone gibberellic acid. Colloids and Surfaces B: Biointerfaces 150:141-52. https://doi.org/10.1016/j.colsurfb.2016.11.027
Sasse JM (2003). Physiological actions of brassinosteroids: an update. Journal of Plant Growth Regulation 22:276-88. https://doi.org/10.1007/s00344-003-0062-3
Shams AS, Abo-Sedera FA, Abo El-Yazied A, El-Nagar MM, EL-Badawy MS (2014). Effect of foliar spray with some safety compounds on growth, productivity and quality of some strawberry cultivars. Journal of Plant Production 5(8):1419-1432. https://doi.org/10.21608/jpp.2014.64666.
Sharma I., Bhardwaj R, Pati PK (2015). Exogenous application of 28-Homobrassinolide modulates the dynamics of salt and pesticides induced stress responses in an Elite Rice Variety Pusa Basmati-1. Journal of Plant Growth Regulation 34:509-518. https://doi.org/10.1007/s00344-015-9486-9.
Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003). Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiology 131(1):287-297. https://doi.org/10.1104/pp.013029
SIAP Y SADER (2019). Servicio de Información Agroalimentaria y Pesquera, Secretaría de Agricultura y Desarrollo Rural.
Singleton VL, Rossi JA (1965). Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. American Journal of Enology and Viticulture 16:144-158.
Sree KP, Sree MS, Samreen PS (2020). Application of chitosan edible coating for preservation of tomato. International Journal of Chemical Studies 8(4):3281-3285. https://doi.org/10.22271/chemi. 2020.v8. i4ao.10157
Suárez-Fernández M, Marhuenda-Egea FC, Lopez-Moya F, Arnao MB, Cabrera-Escribano F, Nueda MJ, … Lopez-Llorca LV (2020). Chitosan induces plant hormones and defenses in tomato root exudates. Frontiers in Plant Science 11:572087. https://doi.org/10.3389/fpls.2020.572087.
Sultana S, Islam M, Khatun A, Huque R (2017). Effect of foliar application of oligo-chitosan on growth, yield and quality of tomato and eggplant. Asian Journal of Agricultural Research 11(2):36-42. https://doi.org/10.3923/ajar.2017.36.42
Symons GM, Davies C, Shavrukov Y, Dry IB, Reid JB, Thomas MR (2006). Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiology 140(1):150-158. https://doi.org/10.1104/pp.105.070706
Taiz L, Zeiger E, Møller IM, Murphy A (2017). Fisiologia e desenvolvimento vegetal. (6th ed) Porto Alegre, Brasil: Artmed Editora.
Talamini do Amarante CV, Ernani PR, Bassay Blum LE, Megguer CA (2002). Thidiazuron effects on shoot growth, return bloom, fruit set and nutrition of apples. Pesquisa Agropecuária Brasileira 37:1365-1372. https://doi.org/10.1590/S0100-204X2002001000003
Terrones Rodríguez AI, Caamal Cauich I, Pat Fernández VG, Ávila Dorantes JA, Martínez Luis D, Caamal Pat ZH (2022). Análisis de las variables económicas que determinan las exportaciones de fresa de México a Estados Unidos de América (Analysis of the economic variables that determine strawberry exports from Mexico to the United States of America). Revista Mexicana de Ciencias Agrícolas 13(4):631-640. https://doi.org/10.29312/remexca. v13i4.2532
Unterholzner SJ, Rozhon W, Papacek M, Ciomas J, Lange T, Kugler KG, … Poppenberger B (2015). Brassinosteroids are master regulators of gibberellin biosynthesis in Arabidopsis. The Plant Cell 27(8):2261-2272. https://doi.org/10.1105/tpc.15.00433
Valle-Romero P, García-López JV, Redondo-Gómez S, Flores-Duarte NJ, Rodríguez- Llorente ID, Idaszkin YL, Mateos-Naranjo E (2023). Biofertilization with PGP bacteria improve strawberry plant performance under sub-optimum phosphorus fertilization. Agronomy 13(2):335. https://doi.org/10.3390/agronomy13020335
Van SN, Minh HD, Anh DN (2013). Study on chitosan nanoparticles on biophysical characteristics and growth of Robusta coffee in greenhouse. Biocatalysis and Agricultural Biotechnology 2(4):289-294. https://doi.org/ 10.1016/j.bcab.2013.06.001
Wei Z, Li J (2016). Brassinosteroids regulate root growth, development, and symbiosis. Molecular Plant 9(1):86-100. https://doi.org/10.1016/j.molp.2015.12003
Wellburn AR (1994). The spectral determination of chlorophylls a and b as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144:307-313.
Yadav RK, Analin B, Panda MK, Ranjan A, Singh AP (2023). Brassinosteroids-regulated nitrogen metabolism fine-tunes growth physiology and low nitrogen response in tomato. Environmental and Experimental Botany 216:105528. https://doi.org/10.1016/j.envexpbot.2023.105528
Yang Z, Liu Z, Ge X, Lu L, Qin W, Qanmber G, … Li F (2023). Brassinosteroids regulate cotton fiber elongation by modulating very-long-chain fatty acid biosynthesis. The Plant Cell 35(6):2114-2131. https://doi.org/10.1093/plcell/koad060
Zhang C, Whiting MD (2011). Improving ‘Bing’ sweet cherry fruit quality with plant growth regulators. Scientia Horticulturae 127(3):341-346. https://doi.org/10.1016/j.scienta.2010.11.006
Zhang D, Liao Y, Lu S, Li C, Shen Z, Yang G, Yin J (2019). Effect of thidiazuron on morphological and flowering characteristics of Dendrobium ‘Sunya Sunshine’ potted plants. New Zealand Journal of Crop and Horticultural Science 47(3):170-181. https://doi.org/10.1080/01140671.2019.157644
Zheng L, Ma J, Song C, Zhang L, Gao C, Zhang D, … Han M (2018). Genome-wide identification and expression analysis of GRF genes regulating apple tree architecture. Tree Genetics & Genomes 14(54):1-17 https://doi.org/10.1007/s11295-018-1267-8
Zheng L, Gao C, Zhao C, Zhang L, Han M, An N, Ren X (2019). Effects of brassinosteroid associated with auxin and gibberellin on apple tree growth and gene expression patterns. Horticultural plant journal, 5(3):93-108. https://doi.org/10.1016/j.hpj.2019.04.006
Zhu T, Tan WR., Deng XG, Zheng T, Zhang DW, Lin HH (2015). Effects of brassinosteroids on quality attributes and ethylene synthesis in postharvest tomato fruit. Postharvest Biology and Technology 100:196-204. https://doi.org/10.1016/j.postharvbio.2014.09.016
Zurek DM, Rayle DL, Mcmorris TC, Clouse SD (1994). Investigation of gene expression, growth kinetics, and wall extensibility during brassinosteroid-regulated stem elongation, Plant Physiology 104:505-513. https://doi.org/10.1104/pp.104.2.505
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Miriam Elizabeth MARTÍNEZ-PÉREZ, Teresita de Jesus RUIZ-ANCHONDO, Juan Luis JACOBO-CUÉLLAR , Guillermo CALDERÓN-ZAVALA
This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.