Water ecological requirements of Characeae taxa in eastern Spain


  • Borja SANZ Universitat Politècnica de València, Instituto Agroforestal Mediterráneo, Camino de Vera s/n, 46022, Valencia (ES)
  • María FERRIOL Universitat Politècnica de València, Instituto Agroforestal Mediterráneo, Camino de Vera s/n, 46022, Valencia (ES)
  • Herminio BOIRA Universitat Politècnica de València, Instituto Agroforestal Mediterráneo, Camino de Vera s/n, 46022, Valencia (ES)




biogeography, bioindication, charophyte, ecological gradient, water quality


Presence of Characeae taxa is limited by the existence of clear and oligotrophic waters. Some other chemical water parameters can also influence the distribution of taxa, which can thus be used as ecological bioindicators. The area of eastern Spain contains a high diversity of water basins in both coastal and inland habitats that allow the study of ecological gradients. This work aimed to identify the most relevant and significant water chemical parameters that determine the distribution of Characeae taxa, and establish their optima and tolerance ranges for each parameter in eastern Spain. Ninety-six records corresponding to unpublished old and recent samplings of the presence of 17 taxa belonging to the genera Chara, Nitella, Tolypella and Lamprothamnium were related to water parameters that included salinity, pH, electric conductivity, total water hardness, alkalinity, concentrations of Na+, Mg2+, Ca2+, Cl-, and SO42-, and Mg2+/Ca2+ ratio. Principal Component Analysis showed that salinity was the major factor that determined the distribution of Characeae taxa, followed by concentration of Mg2+, Mg2+/Ca2+ ratio and alkalinity. When previously published records from the same area were added, non-parametric tests showed significant differences among taxa only for salinity, water hardness, and Mg2+/Ca2+ ratio. These statistical analyses, along with optima and tolerance ranges for each parameter showed that Characeae taxa, especially Lamprothamnium papulosum and Tolypella spp., could be used as bioindicators in eastern Spain, although their ecological differentiation is not clear in many cases.


Abdi H, Williams LJ (2010). Principal component analysis. Wiley Interdisciplinary Reviews. Computational Statistics 2:433-459. https://doi.org/10.1002/wics.101

AEMET (2023). Agencia Estatal de Meteorología. Retrieved 2023 November 20 from: https://www.aemet.es

Apolinarska K, Pelechaty M, Pelechaty A (2011). CaCO3 sedimentation by modern charophytes (Characeae): can calcified remains and carbonate δ13C and δ18O record the ecological state of lakes? - a review. Studia Limnologica et Telmatologica 5:55-66.

Asaeda T, Rajapakse L, Sanderson B (2007). Morphological and reproductive acclimations to growth of two charophyte species in shallow and deep water. Aquatic Botany 86:393-401. https://doi.org/10.1016/j.aquabot.2007.01.010

Asaeda T, Senavirathna MDHJ, Kaneko Y, Rashid MH (2014). Effect of calcium and magnesium on the growth and calcite encrustation of Chara fibrosa. Aquatic Botany 113:100-106. https://doi.org/10.1016/j.aquabot.2013.11.002

Baird R, Bridgewater L (2017). Standard methods for the examination of water and wastewater. American Public Health Association (23rd ed), Washington D.C.

Barbosa M, Lefler F, Berthold DE, Laughinghouse HD (2021). The Ecology of Charophyte Algae (Charales): SS-AGR-448, UF/IFAS Extension, University of Florida.

BDBCV (2023). Banc de Dades de Biodiversitat de la Comunitat Valenciana. Retrieved 2023 January 11 from: http://bdb.cth.gva.es

Becker R, Doege A, Schubert H, Van de Weyer K (2016). Bioindikation mit Characeen [Bioindication with Charophytes]. In: Arbeitsgruppe Characeen Deutschlands Lehrstuhl für Ökologie der Universität (Eds). Armleuchteralgen. Springer. Berlin pp 97-137. https://doi.org/10.1007/978-3-662-47797-7_8

Beilby MJ, Bisson MA, Schneider SC (2022). How Characean algae take up needed and excrete unwanted ions – An overview explaining how insights from electrophysiology are useful to understand the ecology of aquatic macrophytes. Aquatic Botany 181:103542. https://doi.org/1016/j.aquabot.2022.103542

Beilby MJ. (2015) Salt tolerance at single cell level in giant-celled Characeae. Frontiers in Plant Science 6:226. https://doi.org/10.3389/fpls.2015.00226

Blindow I (2000). Distribution of charophytes along the Swedish coast in relation to salinity and eutrophication. International Review of Hydrobiology 85:707-717. https://doi.org/10.1002/1522-2632(200011)85:5/6<707::AID-IROH707>3.0.CO;2-W

Blindow I, Dietrich J, Möllmann N, Schubert H (2003). Growth, photosynthesis and fertility of Chara aspera under different light and salinity conditions. Aquatic Botany 76:213-234. https://doi.org/10.1016/S0304-3770(03)00053-6

Boira H, Carretero JL (1985). Las carofíceas de las provincias de Castellón y Valencia [The charophytes from the provinces of Castellón and Valencia]. Collectanea Botanica 16:13-19.

Bonilla S, Aguilera A, Aubriot L, Huszar V, Almanza V, Haakonsson S, … Antoniades D (2023). Nutrients and not temperature are the key drivers for cyanobacterial biomass in the Americas. Harmful Algae 121:102367. https://doi.org/10.1016/j.hal.2022.102367

Brock MA, Lane JAK (1983). The aquatic macrophyte flora of saline wetlands in Western Australia in relation to salinity and permanence. Hydrobiologia 105:63-76. https://doi.org/10.1007/BF00025177

Calero S, Colom W, Rodrigo MA (2015). The phenology of wetland submerged macrophytes related to environmental factors. Limnetica 34:425-438. https://doi.org/10.23818/limn.34.32

Carretero JL (1993). Aportaciones a la distribución y ecología de las carofíceas de la provincia de Valencia [Contributions to the distribution and ecology of the charophytes from the Valencia province]. Acta Botanica Malacitana 18:31-37. https://doi.org/10.24310/abm.v18i.8959

Cirujano S, Cambra J, Sanchez Castillo PM, Meco A, Flor Arnau N (2008). Flora Ibérica. Algas Continentales. Carófitos. (Characeae). Real Jardín Botánico, Madrid

Cirujano S, Guerrero N, García P (2013). The genus Tolypella (A. Braun) A. Braun in the Iberian Peninsula. Acta Botanica Gallica 160:121-129. https://doi.org/10.1080/12538078.2013.801321

Espinar JL, García LV, García Murillo P, Toja J (2002). Submerged macrophyte zonation in a Mediterranean salt marsh: a facilitation effect from established helophytes? Journal of Vegetation Science 13:831-840. https://doi.org/10.1111/j.1654-1103.2002.tb02112.x

Fox J, Weisberg S (2019). An R Companion to Applied Regression. Sage Publications (3rd ed), Thousand Oaks.

García A, Chivas AR (2004). Quaternary and extant euryhaline Lamprothamnium Groves (Charales) from Australia: Gyrogonite morphology and paleolimnological significance. Journal of Paleolimnology 31:321-341. https://doi.org/10.1023/B:JOPL.0000021725.32489.bd

Gomes PIA, Asaeda T (2010). Impact of calcium and magnesium on growth and morphological acclimations of Nitella: implications for calcification and nutrient dynamics. Chemistry and Ecology 26:479-491. https://doi.org/10.1080/02757540.2010.504667

Grillas P (1990). Distribution of submerged macrophytes in the Camargue in relation to environmental factors. Journal of Vegetation Science 1:393-402. https://doi.org/10.2307/3235716

Grillas P, van Wijck C, Bonis A (1993). The effect of salinity on the dominance-diversity relations of experimental coastal macrophyte communities. Journal of Vegetation Science 4:453-460. https://doi.org/10.2307/3236072

Hart BT, Bailey P, Edwards R, Hortle K, James K, MacMahon A, Meredith C, Swadling K (1991). A review of the salt sensitivity of the Australian freshwater biota. Hydrobiologia 210:105-44. https://doi.org/10.1007/BF00014327

Heise CM, Hagemann M, Schubert H (2023). Photosynthetic response of Chara braunii towards different bicarbonate concentrations. Preprint. https://doi.org/10.1101/2023.02.08.527653

Holzinger A, Pichrtová M (2016). Abiotic stress tolerance of Charophyte green algae: New challenges for Omics techniques. Frontiers in Plant Science 7. https://doi.org/10.3389/fpls.2016.00678

Josse J, Husson F (2016). missMDA: A package for handling missing values in multivariate data analysis. Journal of Statistical Software 70:1-31. https://doi.org/10.18637/jss.v070.i01

Karol KG, McCourt RM, Cimino MT, Delwiche CF (2001). The closest living relatives of land plants. Science 294:2351-2353. https://doi.org/10.1126/science.1065156

Kassambara A, Mundt F (2020). Factoextra. Extract and visualize the results of multivariate data analysis. R package 505 Version 1.0.7. https://CRAN.R-project.org/package=factoextra

Khuram I, Ahmad N, Barinova S (2021). Effect of water quality on the spatial distribution of charophytes in the Peshawar Valley, Khyber Pakhtunkhwa, Pakistan. Oceanological and Hydrobiological Studies 50:359-372. https://doi.org/10.2478/oandhs-2021-0031

Lê S, Josse J, Husson F (2008) FactoMineR. A package for multivariate analysis. Journal of Statistical software 25:1-18. https://doi.org/10.18637/jss.v025.i01

Leibold MA, Economo EP, Peres-Neto P (2010). Metacommunity phylogenetics: Separating the roles of environmental filters and historical biogeography. Ecology Letters 10:1290-1299. https://doi.org/10.1111/j.1461-0248.2010.01523.x

MAPA (1984). Métodos oficiales de análisis [Official analytic methods]. Ministerio de Agricultura, Pesca y Alimentación, Secretaría General Técnica, Madrid.

Mayoral O, Mascia F, Podda L, Laguna E, Fraga P, Rita J, Frigau L, Bacchetta G (2018). Alien plant diversity in Mediterranean wetlands: A comparative study within Valencian, Balearic and Sardinian floras. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46:317-326. https://doi.org/10.15835/nbha46210470

Merino FF, Donat PM (2011). Invasive Plants in the Coastal Vegetal Communities in Valencia (Spain). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39:9-17. https://doi.org/10.15835/nbha3915712

Moreno JL, Aboal M, Vidal-Abarca MR, Suárez ML (2001). Macroalgae and submerged macrophytes from fresh and saline waterbodies of ephemeral streams (“ramblas”) in semiarid south-eastern Spain. Marine and Freshwater Research 52:891-905. https://doi.org/10.1071/MF00008

Noedoost F, Sheidai M, Riahi H, Ahmadi A (2015). Genetic and morphological diversity in Chara vulgaris L. (Characeae). Acta Biologica Szegediensis 59:127-137. http://www2.sci.u-szeged.hu/ABS

Potapova M, Charles DF (2003). Distribution of benthic diatoms in U.S. rivers in relation to conductivity and ionic composition. Freshwater Biology 48:1311. https://doi.org/10.1046/j.1365-2427.2003.0108.x

Puche E, Rodrigo MA (2015). Increased water salinity negatively affects charophytes from a spring created within the Albufera de València Natural Park. Limnetica 34:349-364. https://doi.org/10.23818/limn.34.2

Puche E, Sanchez-Carrillo S, Alvarez-Cobelas M, Pukacz A, Rodrigo MA, Rojo C (2018). Effects of overabundant nitrate and warmer temperatures on charophytes: the roles of plasticity and local adaptation. Aquatic Botany 146:15-22. https://doi.org/10.1016/j.aquabot.2018.01.003

Pukacz A, Pełechaty M, Frankowski M, Kowalski, A, Zwijacz-Koszałka K, (2014). Seasonality of water chemistry, carbonate production, and biometric features of two species of Chara in a shallow clear water lake. The Scientific World Journal 2014:167631. https://doi.org/10.1155/2014/167631

Rey-Boissezon A, Auderset-Joye, D (2015). Habitat requirements of charophytes—Evidence of species discrimination through distribution analysis. Aquatic Botany 120:84-91. https://doi.org/10.1016/j.aquabot.2014.05.007

Rodrigo MA, Alonso- Guillén JL (2016). The charophyte flora in a Ramsar Mediterranean wetland (Albufera de València Natural Park, Spain) during the period 2007-2010. Botanica Serbica 40:205-215.

Rodrigo MA, Alonso- Guillén JL, Cirujano S, Soulié-Märsche I (2009). Aproximación a las comunidades de carófitos que existieron en la Albufera de Valencia a partir del estudio de las oosporas del sedimento [Aproximation to the charophyte communities that existed in the Albufera of Valencia through the study of the oospores in the sediment]. Anales del Jardín Botánico de Madrid 66:195-208. http://dx.doi.org/10.3989/ajbm.2214

Romo S, Villena MJ, García-Murcia A (2007). Epiphyton, phytoplankton and macrophyte ecology in a shallow lake under in situ experimental conditions. Fundamental and Applied Limnology 170:197-209. https://doi.org/10.1127/1863-9135/2007/0170-0197

Saalidong BM, Aram SA, Out S, Lartey PO (2022). Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems. PLoS ONE 17:e0262117. https://doi.org/10.1371/journal.pone.0262117

Sand-Jensen K, Jensen RS, Gomes M, Kristensen E, Martinsen KT, Kragh T, Baastrup-Spohr L, Borum J (2018). Photosynthesis and calcification of charophytes. Aquatic Botany 149:46-51. https://doi.org/10.1016/j.aquabot.2018.05.005

Sathicq MB, Nicolosi Gelis MM, Cochero J (2020). Calculating autoecological data (optima and tolerance range) for multiple species with the optimos prime R package. Austral Ecology 45:845-850. https://doi.org/10.1111/aec.12868

Schneider SC, García A, Martín-Closas C, Chivas AR (2015). The role of charophytes (Charales) in past and present environments: An overview. Aquatic Botany 120:2-6. https://doi.org/10.1016/j.aquabot.2014.10.001

Schneider SC, Nowak P, Von Ammon U, Ballot A (2016). Species differentiation in the genus Chara (Charophyceae): considerable phenotypic plasticity occurs within homogenous genetic groups. European Journal of Phycology 51:282-293. https://doi.org/10.1080/09670262.2016.1147085

Schubert H, Blindow I (Eds.) (2003). Charophytes of the Baltic Sea. The Baltic Marine Biologists Publication 19. Koeltz Botanical Books. Oberreifenberg.

Schubert H, Blindow I, Schories D, Mages M, Von Tümpling W, Woelfl S (2018). Biogeography of Chilean Charophytes – determined by climate or by water chemistry? Botany Letters 165:129-145. https://doi.org/10.1080/23818107.2017.1370612

Sleith RS, Wehr JD, Karol KG (2018). Untangling climate and water chemistry to predict changes in freshwater macrophyte distributions. Ecology and Evolution 8:2802-2811. https://doi.org/10.1002/ece3.3847

Steinhardt T, Selig U (2011). Influence of salinity and sediment resuspension on macrophyte germination in coastal lakes. Journal of Limnology 70:11-20. https://doi.org/10.4081/jlimnol.2011.11

Torn K, Kovtun-Kante A, Herkül K, Martin G, Mäemets H (2015). Distribution and predictive occurrence model of charophytes in Estonian waters. Aquatic Botany 120:142-149. https://doi.org/10.1016/j.aquabot.2014.05.005

Wichmann F, Kirst GO (1989). Adaptation of the euryhaline eharophyte Lamprothamnium papulosum to brackish and freshwater: Turgor pressure and vacuolar solute concentrations during steady-state culture and after hypo-osmotic treatment. Journal of Experimental Botany 40:135-141. https://doi.org/10.1093/jxb/40.1.135

Wickham H, François R, Henry L, Müller K, Vaughan D (2023). dplyr: a Grammar of Data Manipulation. https://dplyr.tidyverse.org

Winter U, Kirst GO (1990). Salinity response of a freshwater charophyte, Chara vulgaris. Plant, Cell and Environment 13:123-134. https://doi.org/10.1111/j.1365-3040.1990.tb01284.x

Winter U, Kirst GO (1991). Partial turgor pressure regulation in Chara canescens and its implications for a generalized hypothesis of salinity response in charophytes. Botanica Acta 104:37-46. https://doi.org/10.1111/j.1438-8677.1991.tb00191.x

Winter U, Kirst GO (1992). Turgor pressure regulation in Chara aspera: the role of sucrose accumulation in fertile and sterile plants. Phycologia 31:240-245. https://doi.org/10.2216/i0031-8884-31-3-4-240.1

Winter U, Soulie-Mansche I, Kirst GO (1996). Effects of salinity on turgor pressure and fertility in Tolypella (Charace). Plant, Cell and Environment 19:869-879. https://doi.org/10.1111/j.1365-3040.1996.tb00423.x

Wood RD (1952). An analysis of ecological factors in the occurrence of Characeae of the Woods Hole region, Massachusetts. Ecology 33:104-109. https://doi.org/10.2307/1931256

Zittis G, Hadjinicolaou P, Klangidou M, Proestos Y, Lelieveld J (2019). A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Regional Environment Change 19:2621-2635. https://doi.org/10.1007/s10113-019-01565-w

Additional Files



How to Cite

SANZ, B., FERRIOL, M., & BOIRA, H. (2023). Water ecological requirements of Characeae taxa in eastern Spain. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(4), 13483. https://doi.org/10.15835/nbha51413483



Research Articles
DOI: 10.15835/nbha51413483