Changes in growth, antioxidant, anti-Alzheimer, and antidiabetic potential of lamb’s lettuce Valerianella locusta grown hydroponically and on soil in response to salinity
DOI:
https://doi.org/10.15835/nbha52213481Keywords:
antioxidant activity, hydroponics, phenolics, salinity, soil, Valerianella locustaAbstract
The purpose of this study was to provide new insights into the effects of salinity on growth and nutritional value of lamb’s lettuce Valerianella locusta grown in two different culture systems, hydroponic and soil, and subjected to 0 and 50 mM NaCl for 3 weeks. Salinity treatment reduced shoot dry weight (DW) by 50% in both growing media, root DW by 41% only on hydroponics, relative growth rate (RGR) also decreased, and K+/Na+ ions ratio in Valerianella locusta grown both hydroponically and in soil. Salinity also lowered shoot total phenolic content (TPC), total flavonoids content (TFC), radical scavenging activity (ABTS), anti-amylase, and anti-acetylcholinesterase (AChE) activities. In contrast, it promoted shoot total antioxidant activity (TAA) in both growing systems. When comparing both growing systems, soil-grown Valerianella locusta was found to have significantly higher TPC (41.6 and 28.1 mg GAE g-1 DW) and TFC (39.6 and 35.6 mg CE g-1 DW) for control and salt treated shoots, respectively. Further, it showed a better TAA and ABTS scavenging ability, as well as superior anti-α-amylase (94.3 and 39.5 mg ACE. g-1 DW) and anti-AChE (307.4 and 228.3 μg DE. g-1 DW) activities, under control and salt stress conditions respectively. Additionally, soil-grown Valerianella locusta showed better K+/Na+ ions homoeostasis compared to the hydroponically-grown. This study highlighted two main points: first, it revealed that lamb’s lettuce is a sensitive crop to be grown on saline lands, and second it underlined the distinct differences in growth aspects and nutritional quality between hydroponics and soil cultivation. Additionally, this study is the first to shed some light on the interesting medicinal quality of lamb’s lettuce as a leafy vegetable.
References
Adhikari ND, Simko I, Mou B (2019). Phenomic and physiological analysis of salinity effects on lettuce. Sensors 19(21):4814. https://doi.org/10.3390/s19214814
Ali IBE, Tajini F, Boulila A, Jebri MA, Boussaid M, Messaoud C, Sebaï H (2020). Bioactive compounds from Tunisian Pelargonium graveolens (L’Hér.) essential oils and extracts: α-amylase and acethylcholinesterase inhibitory and antioxidant, antibacterial and phytotoxic activities. Industrial Crops and Products 158:112951. https://doi.org/10.1016/j.indcrop.2020.112951
Ayaz M, Sadiq A, Junaid M, Ullah F, Subhan F, Ahmed J (2017). Neuroprotective and anti-aging potentials of essential oils from aromatic and medicinal plants. Frontiers in Aging Neuroscience 9:168. https://doi.org/10.3389/fnagi.2017.00168
Ben-Abdallah S, Zorrig W, Amyot L, Renaud J, Hannoufa A, Lachâal M, Karray-Bouraoui N (2019). Potential production of polyphenols, carotenoids and glycoalkaloids in Solanum villosum Mill. under salt stress. Biologia 74(3):309-324. https://doi.org/10.2478/s11756-018-00166-y
Berger BA, Ambrose BA, Tong J, Howarth DG (2021). Flower development in Fedia graciliflora and Valerianella locusta (Valerianaceae). Flora 275:151754. https://doi.org/10.1016/j.flora.2020.151754
Chandra S, Khan S, Avula B, Lata H, Yang MH, Elsohly MA, Khan IA (2014). Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evidence-Based Complementary and Alternative Medicine. https://doi.org/10.1155/2014/253875
Dewanto V, Wu X, Adom KK, Liu RH (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. Journal of Agricultural and Food Chemistry 50(10):3010-3014. https://doi.org/10.1021/jf0115589
Djeridane A, Yousfi, M, Nadjemi B, Boutassouna D, Stocker P, Vidal N (2006). Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chemistry 97(4):654-660. https://doi.org/10.1016/j.foodchem.2005.04.028
Długosz-Grochowska O, Kołton A, Wojciechowska R (2016). Modifying folate and polyphenol concentrations in Lamb's lettuce by the use of LED supplemental lighting during cultivation in greenhouses. Journal of Functional Foods 26:228-237. https://doi.org/10.1016/j.jff.2016.07.020
El Adib S, Aissi O, Charrouf Z, Ben Jeddi F, Messaoud, C (2015). Argania spinosa var. mutica and var. apiculata: Variation of fatty‐acid composition, phenolic content, and antioxidant and α‐amylase‐inhibitory activities among varieties, organs, and development stages. Chemistry & Biodiversity 12(9):1322-1338. https://doi.org/10.1002/cbdv.201400328
Eldeen IMS, Elgorashi EE, Van Staden J (2005). Antibacterial, anti-inflammatory, anti-cholinesterase and mutagenic effects of extracts obtained from some trees used in South African traditional medicine. Journal of Ethnopharmacology 102(3):457-464. https://doi.org/10.1016/j.jep.2005.08.049
Fernandes I, Leça JM, Aguiar R, Fernandes T, Marques JC, Cordeiro N (2021). Influence of crop system fruit quality, carotenoids, fatty acids and phenolic compounds in cherry tomatoes. Agriculture Research 10(1):56-65. https://doi.org/10.1007/s40003-020-00478-z
Ferrante A, Martinetti L, Maggiore T (2009). Biochemical changes in cut vs. intact lamb’s lettuce (Valerianella olitoria) leaves during storage. International Journal of Food Science & Technology 44(5):1050-1056. https://doi.org/10.1111/j.1365-2621.2008.01891.x
Ferreira JF, Sandhu D, Liu X, Halvorson JJ (2018). Spinach (Spinacea oleracea L.) response to salinity: Nutritional value, physiological parameters, antioxidant capacity, and gene expression. Agriculture 8(10):163. https://doi.org/10.3390/agriculture8100163
Galieni A, Di Mattia C, De Gregorio M, Speca S, Mastrocola D, Pisante M, Stagnari F (2015). Effects of nutrient deficiency and abiotic environmental stresses on yield, phenolic compounds and antiradical activity in lettuce (Lactuca sativa L.). Scientia Horticulturae 187:93-101. https://doi.org/10.1016/j.scienta.2015.02.036
He Y, Wu Z, Wang W, Ye BC, Zhang F, Liu X (2019). Different responses of Capsicum annuum L. root and shoot to salt stress with Pseudomonas putida Rs-198 inoculation. Journal of Plant Growth Regulation 38(3):799-811. https://doi.org/10.1007/s00344-018-9891-y
Hernández V, Botella M, Hellín P, Cava J, Fenoll J, Mestre T, Martínez V, Flores P (2021). Phenolic and carotenoid profile of lamb’s lettuce and improvement of the bioactive content by preharvest conditions. Foods 10(1):188. https://doi.org/10.3390/foods10010188
Hunt R (1978). Plant Growth Analysis. Edward Arnold, London.
Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha MS, Saleem MH, Adil M, Heidari P, Chen JT (2020). An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. International Journal of Molecular Sciences 21(1):148. https://doi.org/10.3390/ijms21010148
Kamtekar S, Keer V, Patil V (2014). Estimation of phenolic content, flavonoid content, antioxidant and alpha amylase inhibitory activity of marketed polyherbal formulation. Journal of Applied Pharmaceutical Science 4(9):61. https://doi.org/10.7324/JAPS.2014.40911
Karray-Bouraoui N, Harbaoui F, Rabhi M, Jallali I, Ksouri R, Attia H, Msilini N, Lachaâl M (2011). Different antioxidant responses to salt stress in two different provenances of Carthamus tinctorius L. Acta Physiologiae Plantarum 33(4):1435-1444. https://doi.org/10.1007/s11738-010-0679-3
Kim JS, Hyun TK, Kim MJ (2011). The inhibitory effects of ethanol extracts from sorghum, foxtail millet and proso millet on α-glucosidase and α-amylase activities. Food Chemistry 124(4):1647-1651. https://doi.org/10.1016/j.foodchem.2010.08.020
Kolton A, Baran A (2008). Effect of different mineral nitrogen and compost nutrition on some compounds of corn salad (Valerianella locusta (L.) Latter.). Sodininkystė ir Daržininkystė 27(2):379-387.
Król A, Amarowicz R, Weidner S (2014). Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress. Acta Physiologiae Plantarum 36(6):1491-1499. https://doi.org/10.1007/s11738-014-1526-8
Le TN, Chiu CH, Hsieh PC (2020). Bioactive compounds and bioactivities of Brassica oleracea l. var. italica sprouts and microgreens: An updated overview from a nutraceutical perspective. Plants 9(8):946. https://doi.org/10.3390/plants9080946
Lei C, Engeseth NJ (2021). Comparison of growth characteristics, functional qualities, and texture of hydroponically grown and soil-grown lettuce. LWT 50:111931. https://doi.org/10.1016/j.lwt.2021.111931
Machado RMA, Serralheiro, RP (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3(2):30. https://doi.org/10.3390/horticulturae3020030
Manzocco L, Foschia M, Tomasi N, Maifreni M, Dalla Costa L, Marino M, Cortella G, Cesco S (2011). Influence of hydroponic and soil cultivation on quality and shelf life of ready‐to‐eat lamb's lettuce (Valerianella locusta L. Laterr). Journal of the Science of Food and Agriculture 91(8):1373-1380. https://doi.org/10.1002/jsfa.4313
Martyniak-Przybyszewska B (2005). Yields of leaf beet (Beta vulgaris L. var. cicla L.) and lamb’s lettuce (Valerianella olitoria L.) grown in Olsztyn. Sodininkystė Ir Daržininkystė 24(3):196-200.
Muminovic J, Melchinger AE, Luubberstedt T (2004). Genetic diversity in cornsalad (Valerianella locusta) and related species as determined by AFLP markers. Plant Bree 123:460-466. https://doi.org/10.1111/j.1439-0523.2004.00998.x
Munns R, Tester M (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology 59:651. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Natesh HN, Abbey L, Asiedu SK 2017. An overview of nutritional and antinutritional factors in green leafy vegetables. Horticulture International Journal 1(2):00011. https://doi.org/10.15406/hij.2017.01.00011
Orhan I, Kartal M, Naz Q, Ejaz A, Yilmaz G, Kan Y, Konuklugil B, Şener B, Choudhary MI (2007). Antioxidant and anticholinesterase evaluation of selected Turkish Salvia species. Food Chemistry 103(4):1247-1254. https://doi.org/10.1016/j.foodchem.2006.10.030
Paranychianakis NV, Chartzoulakis KS (2005). Irrigation of Mediterranean crops with saline water: from physiology to management practices. Agriculture Ecosystems & Environment 106(2-3):171-187. https://doi.org/10.1016/j.agee.2004.10.006
Parida AK, Das AB (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety 60(3):324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010
Petropoulos SA, Levizou E, Ntatsi G, Fernandes Â, Petrotos K, Akoumianakis K, Barros L Ferreira IC (2017). Salinity effect on nutritional value, chemical composition and bioactive compounds content of Cichorium spinosum L. Food Chemistry 214:129-136. https://doi.org/10.1016/j.foodchem.2016.07.080
PrietoP, Pineda M, Aguilar M (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry 269(2):337-341. https://doi.org/10.1006/abio.1999.4019
Ramos-Bueno RP, Rincón-Cervera MA, González-Fernández MJ, Guil-Guerrero JL (2016). Phytochemical composition and antitumor activities of new salad greens: Rucola (Diplotaxis tenuifolia) and corn salad (Valerianella locusta). Plant Foods for Human Nutrition 71(2):197-203. https://doi.org/10.1007/s11130-016-0544-7
Rasool S, Hameed A, Azooz MM, Siddiqi TO, Ahmad P (2013). Salt stress: causes, types and responses of plants. Ecophysiology and Responses of Plants under Salt Stress 1-24. https://doi.org/10.1007/978-1-4614-4747-4_1
Ratnam DV, Ankola DD, Bhardwaj V, Sahana DK, Kumar MR (2006). Role of antioxidants in prophylaxis and therapy: A pharmaceutical perspective. Journal of Controlled Release 113(3):189-207. https://doi.org/10.1016/j.jconrel.2006.04.015
Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine 26(9-10):1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
Rezazadeh A, Ghasemnezhad A, Barani M, Telmadarrehei T (2012). Effect of salinity on phenolic composition and antioxidant activity of artichoke (Cynara scolymus L.) leaves. Research Journal of Medicinal Plants 6(3):245-252. https://doi.org/10.3923/rjmp.2012.245.252
Sambo P, Nicoletto C, Giro A, Pii Y, Valentinuzzi F, Mimmo T, Lugli P, Orzes G, Mazzetto F, Astolfi S, Terzano R (2019). Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science 10:923. https://doi.org/10.3389/fpls.2019.00923
Sgherri C, Cecconami S, Pinzino C, Navari Izzo F, Izzo R (2010). Levels of antioxidants and nutraceuticals in basil grown in hydroponics and soil. Food Chemistry 123(2):416-422. https://doi.org/10.1016/j.foodchem.2010.04.058
Shin YK, Bhandari SR, Jo JS, Song JW, Cho MC, Yang EY, Le JG (2020). Response to salt stress in lettuce: Changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. Agronomy 10(11):1627. https://doi.org/10.3390/agronomy10111627
Skrypnik L, Novikova A, Tokupova E (2019). Improvement of phenolic compounds, essential oil content and antioxidant properties of sweet basil (Ocimum basilicum L.) depending on type and concentration of selenium application. Plants 8(11):458. https://doi.org/10.3390/plants8110458
Szwajgier D (2014). Anticholinesterase activities of selected polyphenols–a short report. Polish Journal of Food and Nutrition Sciences 64(1):59-64. https://doi.org/10.2478/v10222–012–0089-x
Tavakkoli E, Fatehi F, Rengasamy P, McDonald GK (2012). A comparison of hydroponic and soil-based screening methods to identify salt tolerance in the field in barley. Journal of Experimental Botany 63(10):3853-3867. https://doi.org/10.1093/jxb/ers085
Tavakkoli E, Rengasamy P, McDonald GK (2010). The response of barley to salinity stress differs between hydroponic and soil systems. Functional Plant Biology 37(7):621-633. https://doi.org/10.1071/FP09202
Teakle NL, Tyerman SD (2010). Mechanisms of Cl‐transport contributing to salt tolerance. Plant, Cell & Environment 33(4):566-589. https://doi.org/10.1111/j.1365-3040.2009.02060.x
Verdin E, Marais A, Wipf Scheibel C, Faure C, Pelletier B, David P, Svanella Dumas L, Poisblaud C, Lecoq H, Candresse T (2018). Biological and genetic characterization of new and known necroviruses causing an emerging systemic necrosis disease of corn salad (Valerianella locusta) in France. Phytopathology 108(8):1002-1010. https://doi.org/10.1094/PHYTO-08-17-0284-R
Xiao J, Ni X, Kai G, Chen X (2015). Advance in dietary polyphenols as aldose reductases inhibitors: structure-activity relationship aspect. Critical Reviews in Food Science and Nutrition 55(1):16-31. https://doi.org/10.1080/10408398.2010.548108
Yan K, Wu C, Zhang L, Chen X (2015). Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Frontiers in Plant Science 6:227. https://doi.org/10.3389/fpls.2015.00227
Yao X, Zhu L, Chen Y, Tian J, Wang Y (2013). In vivo and in vitro antioxidant activity and α-glucosidase, α-amylase inhibitory effects of flavonoids from Cichorium glandulosum seeds. Food Chemistry 139(1-4):59-66. https://doi.org/10.1016/j.foodchem.2012.12.045
Zhang JL, Flowers TJ, Wang SM (2010). Mechanisms of sodium uptake by roots of higher plants. Plant and Soil 326(1):45-60. https://doi.org/10.1007/s11104-009-0076-0
Zheng Y, Dixon M, Saxena PK (2006). Growing environment and nutrient availability affect the content of some phenolic compounds in Echinacea purpurea and Echinacea angustifolia. Planta Medica 72(15):1407-1414. https://doi.org/10.1055/s-2006-951720
Zhuang XP, Lu YY, Yang GS (1992). Extraction and determination of flavonoid in ginkgo. Chinese Herbal Medicine 23:122-124.
Zorrig W., Cornu JY, Maisonneuve B, Rouached A, Sarrobert C, Shahzad Z, Abdelly C, Davidian JC, Berthomieu P (2019). Genetic analysis of cadmium accumulation in lettuce (Lactuca sativa). Plant Physiology and Biochemistry 136:67-75. https://doi.org/10.1016/j.plaphy.2019.01.011
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Farah BOUNAOUARA , Saoussen BEN-ABDALLAH , Mohammed FALOUTI , Imen BEN ELHADJ ALI, Anhar RAADANI, Walid ZORRIG, Najoua KARRAY-BOURAOUIA
This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.