Effect of salinity, nitrogen and phosphorus stresses on growth and photosynthetic activity of the marine microalga Dunaliella parva


  • Mostafa EL-SHEEKH Tanta University, Faculty of Science, Botany Department, Tanta 31527 (EG)
  • Samha DEWIDAR Tanta University, Faculty of Science, Botany Department, Tanta 31527 (EG)
  • Azza HAMAD Tanta University, Faculty of Science, Botany Department, Tanta 31527 (EG)
  • Abdelghafar M. ABU-ELSAOUD Imam Muhammad bin Saud Islamic University (IMSIU), College of Science, Department of Biology, Riyadh 11623; Suez Canal University, Faculty of Science, Department of Botany and Microbiology, Ismailia, 41522 (EG)
  • Maha ALHARBI Princess Nourah bint Abdulrahman University, College of Science, Department of Biology, P.O. Box 84428, Riyadh 11671 (SA)
  • Amr ELKELISH Imam Muhammad bin Saud Islamic University (IMSIU), College of Science, Department of Biology, Riyadh 11623; Suez Canal University, Faculty of Science, Department of Botany and Microbiology, Ismailia, 41522 (EG)




antioxidant enzymes, Dunaliella parva, photosynthesis, salinity


The growth of the marine green alga Dunaliella parva was studied and optimized under different salinity levels of NaCl (0.5, 1, 2, 2.5, and 3.5 M). The growth was monitored by cell number pigment content (Chl. a, Chl. b, and carotenoids). The grown alga, under the optimal conditions, was exposed to different stresses (nitrogen, phosphorus starvation, and salinity either singly or combined. Under nitrogen and phosphorus starvation, either singly or combined, the growth rate and the metabolic activities were decreased. Under salt stress (2.5 M NaCl) combined with N starvation and heavy metals stress, glycerol production increased, while glycerol synthesis decreased under salt stress of 1 M NaCl and P starvation. Also, free radicals (total antioxidant, reducing power, DPPH, and Lipid peroxidation), pigment content, and activity of antioxidant enzymes were recorded. D. parva grown under salinity level (2.5 M NaCl) combined with nutrient starvation correlated with more efficient enzymatic antioxidant activity accumulation. This study strongly suggested that the induction of antioxidant defense was one component of the tolerance mechanism of D. parva to salinity, as evidenced by its growth behavior.


Abd El-Baky HH, El Baz FK, El-Baroty GS (2004). Production of antioxidant by the green alga Dunaliella salina. International Journal of Agriculture and Biology 6(1):49-57.

Annegowda HV, Nee CW, Mordi MN, Ramanathan S, Mansor SM (2010). Evaluation of phenolic content and antioxidant property of hydrolysed extracts of Terminalia catappa L. Leaf. Asian Journal of Plant Sciences 9(8):479-485. https://doi.org/10.3923/ajps.2010.479.485

Anuradha S, Rao SSR (2007). The effect of brassinosteroids on radish (Raphanus sativus L.) seedlings growing under cadmium stress. Plant, Soil and Environment 53(11):465-472. https://doi.org/10.17221/2307-PSE

Bamary Z, Einali A (2022). Changes in carbon partitioning and pattern of antioxidant enzyme activity induced by arginine treatment in the green microalga Dunaliella salina under long-term salinity. Microbial Ecology 84(1):198-212. https://doi.org/10.1007/s00248-021-01843-3

Blois MS (1958). Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199-1200. https://doi.org/10.1038/1811199a0

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Chitlaru E, Pick U (1989). Selection and characterization of Dunaliella salina mutants defective in haloadaptation 1. Plant Physiology 91(2):788-794. https://doi.org/10.1104/pp.91.2.788

Converti A, Scapazzoni S, Lodi A, Carvalho JCM (2006). Ammonium and urea removal by Spirulina platensis. Journal of Industrial Microbiology and Biotechnology 33(1):8-16. https://doi.org/10.1007/s10295-005-0025-8

Cuin TA, Shabala S (2007). Compatible solutes reduce ROS-induced potassium efflux in Arabidopsis roots. Plant, Cell & Environment 30(7):875-885. https://doi.org/10.1111/j.1365-3040.2007.01674.x

Dietz K-J, Heilos L (1990). Carbon metabolism in spinach leaves as affected by leaf age and phosphorus and sulfur nutrition 1. Plant Physiology 93(3):1219-1225. https://doi.org/10.1104/pp.93.3.1219

Eberl L, Givskov M, Sternberg C, Møller S, Christiansen G, Molin S (1996). Physiological responses of Pseudomonas putida KT2442 to phosphate starvation. Microbiology 142(1):155-163. https://doi.org/10.1099/13500872-142-1-155

El-Sheekh M, Rady A (1995). Effect of phosphorus starvation on growth, photosynthesis and some metabolic processes in the unicellular green alga Chlorella kessleri. Phyton 35(1):139-151.

Esaka M, Fujisawa K, Goto M, Kisu Y (1992). Regulation of ascorbate oxidase expression in pumpkin by auxin and copper 1. Plant Physiology 100(1):231-237. https://doi.org/10.1104/pp.100.1.231

Fabregas J, Abalde J, Herrero C (1989). Biochemical composition and growth of the marine microalga Dunaliella tertiolecta (Butcher) with different ammonium nitrogen concentrations as chloride, sulphate, nitrate and carbonate. Aquaculture 83(3-4):289-304. https://doi.org/10.1016/0044-8486(89)90041-0

Fadzilla NM, Finch RP, Burdon RH (1997). Salinity, oxidative stress and antioxidant responses in shoot cultures of rice. Journal of Experimental Botany 48(2):325-331. https://doi.org/10.1093/jxb/48.2.325

Ghoshal D, Mach D, Agarwal M, Goyal A, Goyal A (2002). Osmoregulatory isoform of dihydroxyacetone phosphate reductase from Dunaliella tertiolecta: Purification and characterization. Protein Expression and Purification 24(3):404-411. https://doi.org/10.1006/prep.2001.1588

Gill SS, Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48(12):909-930. https://doi.org/10.1016/j.plaphy.2010.08.016

Guillard RRL (1973). Division Rates. In: Stein JR (Ed). Handbook of Phycological Methods: Culture Methods and Growth Measurements. Cambridge University Press, London, pp 289-311.

Hadi MR, Shariati M, Afsharzadeh S (2008). Microalgal biotechnology: Carotenoid and glycerol production by the green algae Dunaliella isolated from the Gave-Khooni salt marsh, Iran. Biotechnology and Bioprocess Engineering 13(5):540-544. https://doi.org/10.1007/s12257-007-0185-7

Hawk PB (1965). Hawk’s physiological chemistry. 14th ed edn. Blakiston Division, McGraw-Hill New York, New York.

Heath RL, Packer L (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125(1):189-198. https://doi.org/10.1016/0003-9861(68)90654-1

Hosseini Tafreshi A, Shariati M (2009). Dunaliella biotechnology: methods and applications. Journal of Applied Microbiology 107(1):14-35. https://doi.org/10.1111/j.1365-2672.2009.04153.x

Jiménez C, Niell FX (2003). Influence of high salinity and nitrogen limitation on package effect and C/N ratio in Dunaliella viridis. Hydrobiologia 492(1):201-206. https://doi.org/10.1023/A:1024859819172

Kato M, Shimizu S (1987). Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany 65(4):729-735. https://doi.org/10.1139/b87-097

Kochert G (1973). Colony differentiation in green algae. In: Coward SJ (Ed). Developmental regulation: aspects of cell differentiation. Elsevier, pp 155-167. https://doi.org/10.1016/B978-0-12-194050-8.50011-1

Liu X-D, Shen Y-G (2004). NaCl-induced phosphorylation of light harvesting chlorophyll a/b proteins in thylakoid membranes from the halotolerant green alga, Dunaliella salina. FEBS Letters 569(1-3):337-340. https://doi.org/10.1016/j.febslet.2004.05.065

Loeblich LA (1982). Photosynthesis and pigments influenced by light intensity and salinity in the halophilic Dunaliella salina (Chlorophyta). Journal of the Marine Biological Association of the United Kingdom 6 (3):493-508. https://doi.org/10.1017/S0025315400019706

Mackinney G (1941). Absorption of light by chlorophyll solutions. Journal of Biological Chemistry 140(2):315-322. https://doi.org/10.1016/S0021-9258(18)51320-X

Mofeed J (2015). Effects of salinity and light intensity on production of ß-carotene and glycerol from the halotolerant alga Dunaliella salina (Chlorophyta) isolated from Zaranik nature reserve, North Sinai, (Egypt). The Egyptian Society of Experimental Biology 11(1):21-29.

Nakano Y, Asada K (1981). Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22(5):867-880. https://doi.org/10.1093/oxfordjournals.pcp.a076232

Oberbacher MF, Vines HM (1963). Spectrophotometric assay of ascorbic acid oxidase. Nature 197(4873):1203-1204. https://doi.org/10.1038/1971203a0

Oser B (1965). Determination of serum phosphatase activity. In: Hawk PB, Oser BL (Eds). Hawk's Physiological Chemistry. 14th ed. McGraw-Hill. New York, USA, pp 1118.

Payne JK, Stewart JR (1988). The chemical composition of the thallus wall of Characiosiphon rivularis (Characiosiphonaceae, Chlorophyta). Phycologia 27(1):43-49. https://doi.org/10.2216/i0031-8884-27-1-43.1

Pick U (2002). Adaptation of the halotolerant alga Dunaliella to high salinity. In: Läuchli A, Lüttge U (Eds). Salinity: Environment - Plants - Molecules. Springer Netherlands, Dordrecht, pp 97-112. https://doi.org/10.1007/0-306-48155-3_5

Pisal DS, Lele SS (2005). Carotenoid production from microalga, Dunaliella salina. Indian Journal of Biotechnology 4:476-483.

Prieto P, Pineda M, Aguilar M (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of Vitamin E. Analytical Biochemistry 269(2):337-341. https://doi.org/10.1006/abio.1999.4019

Rabbani S, Beyer P, Lintig JV, Hugueney P, Kleinig H (1998). Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawill. Plant Physiology 116(4):1239-1248. https://doi.org/10.1104/pp.116.4.1239

Rad F, Aksoz N, Hejazi M (2015). Effect of saltiness on the growth and production of β-carotene in isolated Dunaliella sp. microalga from Qom Salt Lake of Iran. International Journal of Bioscience 6(2):164-171. https://doi.org/10.12692/ijb%2F6.2.164-171

Rao AR, Dayananda C, Sarada R, Shamala TR, Ravishankar GA (2007). Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technology 98(3):560-564. https://doi.org/10.1016/j.biortech.2006.02.007

Reshma R, Chitra Devi K, Dinesh Kumar S, Santhanam P, Perumal P, Krishnaveni N, Begum A, Pragnya M, Arthikha R, Dhanalakshmi B, Kim M-K (2021). Enhancement of pigments production in the green microalga Dunaliella salina (PSBDU05) under optimized culture condition. Bioresource Technology Reports 14:100672. https://doi.org/10.1016/j.biteb.2021.100672

Riahi H (2022). Optimization of β-carotene production by an indigenous isolate of Dunaliella salina under salinity-gradient stress. Iranian Journal of Fisheries Sciences 21(1):235-246. https://doi.org/10.22092/ijfs.2022.125929

Said HA (2009). Changes in levels of cellular constituents of Dunaliella parva associated with inorganic phosphate depletion. Middle-East Journal of Scientific Research 4 (2):94-99.

Shalata A, Mittova V, Volokita M, Guy M, Tal M (2001). Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiologia Plantarum 112(4):487-494. https://doi.org/10.1034/j.1399-3054.2001.1120405.x

Shariati M, Hadi MR (2011). Microalgal biotechnology and bioenergy in Dunaliella. In: Carpi A (Ed). Progress in Molecular and Environmental Bioengineering - From Analysis and Modeling to Technology Applications. InTech. https://doi.org/10.5772/19046

Shariati M, Lilley RMcC (1994). Loss of intracellular glycerol from Dunaliella by electroporation at constant osmotic pressure: subsequent restoration of glycerol content and associated volume changes. Plant, Cell & Environment 17(12):1295-1304. https://doi.org/10.1111/j.1365-3040.1994.tb00531.x

Smirnoff N (2000). Ascorbic acid: metabolism and functions of a multi-facetted molecule. Current Opinion in Plant Biology 3(3):229-235. https://doi.org/10.1016/S1369-5266(00)80070-9

Taha O, Abo El-Kheir W, Hammouda F, Abd El-Hady H (2012). Production of ß-carotene and glycerol from Dunaliella bardawil and D. salina isolated from the Egyptian wet-lands Qarun and Bardawil. In: International Conference on Ecological, Environmental and Biological Sciences (ICEEBS’2012). pp 369-373.

Tammam AA, Fakhry EM, El-Sheekh M (2011). Effect of salt stress on antioxidant system and the metabolism of the reactive oxygen species in Dunaliella salina and Dunaliella tertiolecta. African Journal of Biotechnology 10(19):3795-3808. https://doi.org/10.4314/ajb.v10i19

Tillberg J-E, Rowley JR (1989). Physiological and structural effects of phosphorus starvation on the unicellular green alga Scenedesmus. Physiologia Plantarum 75(3):315-324. https://doi.org/10.1111/j.1399-3054.1989.tb04633.x

Tsai S-Y, Huang S-J, Mau J-L (2006). Antioxidant properties of hot water extracts from Agrocybe cylindracea. Food Chemistry 98(4):670-677. https://doi.org/10.1016/j.foodchem.2005.07.003

Walter A, de Carvalho JC, Soccol VT, de Faria ABB, Ghiggi V, SoccolCR (2011) Study of phycocyanin production from Spirulina platensis under different light spectra. Brazilian Archives of Biology and Technology 54:675-682. https://doi.org/10.1590/S1516-89132011000400005




How to Cite

EL-SHEEKH, M., DEWIDAR, S., HAMAD, A., ABU-ELSAOUD, A. M., ALHARBI, M., & ELKELISH, A. (2024). Effect of salinity, nitrogen and phosphorus stresses on growth and photosynthetic activity of the marine microalga Dunaliella parva. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), 13426. https://doi.org/10.15835/nbha52113426



Research Articles
DOI: 10.15835/nbha52113426