Assessment of phenolic composition and antioxidant activity of fermented Andean blackberry beverage enriched with medicinal plants of Ecuador

Authors

  • Raluca A. MIHAI Universidad de Las Fuerzas Armadas—ESPE, CICTE, Department of Life Science and Agriculture, Av. General Rumiñahui s/n y, Sangolqui 171103 (EC)
  • Nicolas J. LOPEZ GUERRA Universidad de Las Fuerzas Armadas—ESPE, CICTE, Department of Life Science and Agriculture, Av. General Rumiñahui s/n y, Sangolqui 171103 (EC)
  • Rodica D. CATANA Institute of Biology Bucharest of Romanian Academy, Development Biology Department, 296 Splaiul Independentei, 060031 Bucharest (RO)

DOI:

https://doi.org/10.15835/nbha52313423

Keywords:

antioxidants, Arrayán, DPPH, Ecuador, medicinal plants, Rubus glaucus

Abstract

In recent years there has been a great interest in functional beverages with antioxidant capacity that impart various health implications upon consumption due to the presence of various bioactive components, like phenols. Fruit juices are excellent matrices for the delivery of active components for these functional beverages. This research was focused on developing and testing the biological activity of a new fermented blackberry (Rubus glaucus Benth) beverage enriched with different plants as a new product on the functional food market. Several Ecuadorian species (spices, aromatic, and medicinal) have been tested for the highest antioxidant activity and phenolic content. Methods like Folin Ciocalteu, α-diphenyl-α-picrylhydrazyl free-radical-scavenging method (DPPH), free-radical-scavenging activity (ABTS), and Ferric reducing antioxidant power (FRAP) were used. Among the tested plants, arrayán (Myrcianthes hallii), plantain (Plantago major), ishpingo (Ocotea quixos), and ataco (Amaranthus quitensis) were selected. The study demonstrates the ability of medicinal plants to improve the total phenolic content and antioxidant capacity, but also the sensory properties of the functional drink compared to the blackberry fermented drink. The highest values of the analyzed characteristics (total phenolic content, antioxidant capacity, sensory evaluation), were obtained in the case of the treatment consisting of fermented blackberry beverage enriched with 4 g of medicinal plants.

References

Adeboye PT, Bettiga M, Olsson L (2014). The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. AMB Express 4:46-46. https://doi.org/10.1186/s13568-014-0046-7

Alarcón-Barrera KS, Armijos-Montesinos DS, García-Tenesaca M, Iturralde G, Jaramilo-Vivanco T, Granda-Albuja MG, Giampieri F, Alvarez-Suarez JM (2018). Wild Andean blackberry (Rubus glaucus Benth) and Andean blueberry (Vaccinium floribundum Kunth) from the highlands of Ecuador: Nutritional composition and protective effect on human dermal fibroblasts against cytotoxic oxidative damage. Journal of Berry Research 8(3):223-236.

Almanza-Merchán PJ, Reyes AJ, Ayala ML, Balaguera LW, Serrano-Cely PA (2015). Evaluación sensorial del vino artesanal de uva Isabella (Vitis labrusca L.) [Sensory evaluation of artisanal Isabella grape wine (Vitis labrusca L.)]. Ciencia Y Agricultura 12(2):71.

Benzie I, Strain J (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Analytical Biochemistry 239:70-76. https://doi.org/10.1006/abio.1996.0292

Caridi A, Cufari A, Lovino R, Palumbo R (2004). Influence of yeast on polyphenol composition of wine. Food Technology and Biotechnology 42:37-40.

Carvajal CP, Coppo E, Di Lorenzo A, Gozzini D, Bracco F, Zanoni G, … Daglia M (2016). Chemical characterization and in vitro antibacterial activity of Myrcianthes hallii (O. Berg) McVaugh (Myrtaceae), a traditional plant growing in Ecuador. Materials (Basel) 9(6):454. https://doi.org/10.3390/ma9060454

Cerrato A, Piovesana S, Aita SA, Cavaliere C, Felletti S, lagana A, … Capriotti AL, (2022). Detailed investigation of the composition and transformations of phenolic compounds in fresh and fermented Vaccinium floribundum berry extracts by high-resolution mass spectrometry and bioinformatics. Phytochemical Analysis 33(4):507-516. https://doi.org/10.1002/pca.3105

Cevallos L (2020). Manejo agronómico del cultivo de mora de castilla (Rubus glaucus) [Agronomic management of the Castilla blackberry crop (Rubus glaucus)] [Universidad Agraria del Ecuador]. Retrieved 2023 January 20 from http://www.uagraria.edu.ec/carrera_medicina_veterinaria.php

Chen Q, Ding Q, Keller J (2005). The stationary phase model of aging in yeast for the study of oxidative stress and age-related neurodegeneration. Biotechnology 1-13. https://doi.org/10.1007/s10522-004-7379-6

Cordeiro Caillot AR, de Lacerda Bezerra I, Palhares LCGF, Santana-Filho AP, Chavante SF, Sassaki GL (2018). Structural characterization of blackberry wine polysaccharides and immunomodulatory effects on LPS-activated RAW 264.7 macrophages. Food Chemistry 257:143-149. https://doi.org/10.1016/j.foodchem.2018.02.122

Cuellar L, Cuellar N, Galeano P, Suarez J. (2017). Effect of fermentation time on phenolic content and antioxidant potential in Cupuassu (Theobroma grandiflorum (Willd. ex Spreng.) K.Schum.) beans. Agroindustrial Food Science 473-479.

Cuenca M, Quicazán MC, Blanco Paz AJ (2013). Desarrollo de un modelo productivo de bebidas fermentadas de miel para generar valor en la cadena apícola colombiana. Colciencias 1. [Development of a production model for fermented honey drinks to generate value in the Colombian beekeeping chain. Colciencias 1.]

DENAREF (2016). (Departamento Nacional de Recursos Fitogenéticos). Banco Nacional de Germoplasma. Estación Experimental Santa Catalina; [National Germplasm Bank. Santa Catalina Experimental Station] INIAP: Quito, Ecuador, pp 34.

Duarte WF, Dias DR, Oliveira JM, Teixeira JA, de Almeida e Silva JB, Schwan RF (2010). Characterization of different fruit wines made from cacao, cupuassu, gabiroba, jaboticaba, and umbu. LWT— Food Science and Technology 43(10):1564-1572. https://doi.org/10.1016/j.lwt.2010.03.010

Gilardoni G, Montalván M, Vélez M, Malagón O (2021). Chemical and enantioselective analysis of the essential oils from different morphological structures of Ocotea quixos (Lam.) Kosterm. Plants 10:2171. https://doi.org/10.3390/plants10102171

Hammer O (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9.

Idárraga-Piedrahita A, Ortiz RDC, Callejas Posada R, Merello M (2011.) Flora de Antioquia: Catálogo de las Plantas Vasculares, Universidad de Antioquia, Medellín [Flora of Antioquia: Catalog of vascular plants, University of Antioquia, Medellín]. Volume 2, pp 9-939.

Jahidul I, Kabir Y (2019). Effects and mechanisms of antioxidant-rich functional beverages on disease prevention. In: Grumezescu AM, Holban AM (Eds). Functional and Medicinal Beverages. Academic Press, pp 157-198.

Jiménez-López J, Ruiz-Medina A, Ortega-Barrales P, Llorent-Martínez EJ (2018). Phytochemical profile and antioxidant activity of caper berries (Capparis spinosa L.): Evaluation of the influence of the fermentation process. Food Chemistry 250:54-59. https://doi.org/10.1016/j.foodchem.2018.01.010

Johnson MH, Mejia EG, Fan J, Lila MA, Yousef GG (2013). Anthocyanins and proanthocyanidins from blueberry-blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate-utilizing enzymes in vitro. Molecular Nutrition and Food Research 57(7):1182-97. https://doi.org/10.1002/mnfr.201200678

Kaume L, Howard LR, Devareddy L (2012). The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. Journal of Agriculture and Food Chemistry 60(23):5716-27. https://doi.org/10.1021/jf203318p

Khiya Z, Oualcadi Y, Gamar A, Berrekhis F, Zair T, EL Hilali F (2021). Correlation of total polyphenolic content with antioxidant activity of hydromethanolic extract and their fractions of the Salvia officinalis leaves from different regions of Morocco. Journal of Chemistry 8585313:11. https://doi.org/10.1155/2021/8585313

Kumar P, Padi SS, Naidu PS, Kumar A (2006). Effect of resveratrol on 3-nitro propionic acid-induced biochemical and behavioral changes: possible neuroprotective mechanisms. Behavioural Pharmacology 17:485-492. https://doi.org/10.1097/00008877-200609000-00014

Larsson S, Quintanta A, Reimann A, Nilvebrant N, Jhonson L (2000). Influence of lignocellulose-derived aromatic compounds on oxygen-limited growth and ethanolic fermentation by Saccharomyces cerevisiae. Applied Biochemistry and Biotechnology 617-632. https://doi.org/10.1385/abab:84-86:1-9:617

Llukova P, Karcheva D, Dimirova I, Katsarov P, Mladenov R, Nikolova M (2018). A comparative pharmacognostic study and assessment of the antioxidant capacity of three species from Plantago genus. Farmacia 66:609-614.

Machu L, Misurcova L, Ambrozova J, Orsavova J, Mlcek J, Sochor J, Jurikova T (2015). Phenolic content and antioxidant capacity in algal food products. Molecules 20:1118-1133. https://doi.org/10.3390/molecules20011118

Manousi N, Sarakatsianos I, Samanidou V (2019). Extraction techniques of phenolic compounds and other bioactive compounds from medicinal and aromatic plants. In: Grumezescu AM, Holban AM (Eds). Engineering Tools in the Beverage Industry. Woodhead Publishing, pp 283-314.

Meret M, Brat P, Mertz C, Lebrun M, Günata Z (2011). Contribution to aroma potential of Andean blackberry (Rubus glaucus Benth.). Food Research International 44:5460. https://doi.org/10.1016/j.foodres.2010.11.016

Ministerio de agricultura y desarrollo rural. (2013). El cultivo de la mora de Castilla (Rubus glucus Benth) frutal de clima frío moderado, con propiedades curativas para la salud humana. [The cultivation of the Castilla blackberry (Rubus glucus Benth), a fruit with a moderate cold climate, with curative properties for human health]. Boletín Mensual Insumos y Factores Asociados a la Producción Agropecuaria 17:64.

Mohammed I, Osama M, Fatah A, El-Salam S, Ola Z (2011). Biochemical studies on Plantago major L. and Cyamopsis tetragnoloba L. International Journal of Biodiversity and Conservation 3:83-91.

National Academy of Sciences, Institute of Medicine (2000). Panel on dietary antioxidants and related compounds: Vitamin C, vitamin E, selenium, and α-carotene and other carotenoids: Overview, antioxidant definition, and relationship to chronic disease. In: Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. National Academies Press: Washington, DC, USA, pp 35-57.

Nile SH, Park SW (2014). Edible berries: Bioactive components and their effect on human health. Nutrition 30(2):134-44. https://doi.org/10.1016/j.nut.2013.04.007

Nithiyanantham S, Siddhuraju P, Francis G (2012). Promising approach to. Jatropha curcas L. kernel meal extracts. Industrial Crops and Products 43:261-269. https://doi.org/10.1016/j.indcrop.2012.07.040

Noriega P, Dacarro C (2008). Aceite foliar de Ocotea quixos (Lam.) Kosterm (Lam.) Kosterr.: Actividad antimicrobiana y antifúngica [Ocotea quixos (Lam.) Kosterm (Lam.) Kosterr. leaf oil: Antimicrobial and antifungal activity]. La Granja 3:8.

Ocaña I (2012). Estudio del vino de mora de castilla (Rubus glaucus Benth elaborado a tres proporciones distintas de fruta: agua y tres niveles de dulzor [Study of Castilla blackberry wine (Rubus glaucus Benth made with three different proportions of fruit: water and three levels of sweetness]. PhD Thesis, Universidad Técnica de Ambato. Facultad de ciencia e ingeniería en alimentos. Ecuador.

Petrovska B (2012). Historical review of medicinal plants’ usage. Pharmacognosy Review 1-5. https://doi.org/10.4103/0973-7847.95849

Poveda E (2013). Los granos andinos: chocho (Lupinus mutabilis Sweet), quinua (Chenopodium quinoa Willd), amaranto (Amaranthus caudatus L.) y sangorache (Amaranthus quitensis Kunth. L.), fuente de metabolitos secundarios y fibra dietética [Andean grains: chocho (Lupinus mutabilis Sweet), quinoa (Chenopodium quinoa Willd), amaranth (Amaranthus caudatus L.) and sangorache (Amaranthus quitensis Kunth. L.), source of secondary metabolites and dietary fiber]. INIAP, Boletín técnico 165.

Rodarte Castrejón AD, Eichholz I, Rohn S, Kroh LW, Huyskens-Keil S (2008). Phenolic profile and antioxidant activity of highbush blueberry (Vaccinium corymbosum L.) during fruit maturation and ripening. Food Chemistry 109(3):564-572. https://doi.org/10.1016/j.foodchem.2008.01.007

Rodríguez A, Shimada T, Cervera M, Alquézar B, Gadea J, Gómez-Cadenas A, De Ollas CJ, Rodrigo MJ, Zacarías L, Peňa L (2014). Terpene down-regulation triggers defense responses in transgenic orange leading to resistance against fungal pathogens. Plant Physiology 164:321-339. https://doi.org/10.1104/pp.113.224279

Rohan S, Dukare A, Jawalekar K, Magar P (2014). Fortification of wine with herbal extracts: Production, evaluation and therapeutic applications of such fortified wines. Journal of environmental science, toxicology and food technology 8:9-14. https://doi.org/10.9790/2402-08310914

Salazar R, Espinozam G, Ruiz C, Fernandez M, Rojas R (2011). Compuestos fenólicos, actividad antioxidante, contenido de resveratrol y componentes del aroma de 8 vinos peruanos [Phenolic compounds, antioxidant activity, resveratrol content and aroma components of 8 Peruvian wines]. Revista de la Sociedad Química del Perú 135-143.

Samuelsen AB (2000). The traditional uses, chemical constituents and biological activities of Plantago major L. A review. Journal of Ethnopharmacology 71(1-2):1-21. https://doi.org/10.1016/s0378-8741(00)00212-9

Shikamaru T, Sumikura Y, Yamazaki T, Tada A (2014). Applicability of the DPPH assay for evaluation of the antioxidant capacity of food additives. Annales of Japan Society for Analytical Chemistry 30:717-721. https://doi.org/10.2116/analsci.30.717

Speisky H, Rocco C, Carrasco C, Lissi E, Lopez C (2011). Antioxidant screening of medicinal herbal teas. Universidad de Chile.

Stratil P, Kuban V, Fojtova J (2008). Comparison of the phenolic content and total antioxidant activity in wines as determined by spectrophotometric methods. Food Science 26:242-253.

Temitope P, Bettiga M, Olsson L (2014). The chemical nature of phenolic compounds determines their toxicity and induces distinct physiological responses in Saccharomyces cerevisiae in lignocellulose hydrolysates. AMB Express 4.

Tolun A, Altintas Z (2019). Medicinal properties and functional components of beverages. In: Grumezescu AM, Holban AM (Eds). Functional and Medicinal Beverages. Academic Press, pp 235-284.

Turkben C, Sariburun E, Demir C, Uylaser V (2010). Effect of freezing and frozen storage on phenolic compounds of raspberry and blackberry cultivars. Food Analysis Methods 3(3):144-153. https://doi.org/10.1007/s12161-009-9102-3

Veberic R, Stampar F, Schmitzer V, Cunja V, Zupan A, Koron D, Mikulic-Petkovsek M (2014). Changes in the contents of anthocyanins and other compounds in blackberry fruits due to freezing and long-term frozen storage. Journal of Agricultural and Food Chemistry ASAP A-J.

Wojdyło A, Oszmiański J, Czemerys R (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chemistry 105:940-949. https://doi.org/10.1016/j.foodchem.2007.04.038

Yilmaz-Akyuz E, Ozlem Ustun-Aytekin O, Bayram B, Tutar Y (2019). Nutrients, bioactive compounds, and health benefits of functional and medicinal beverages. In: Grumezescu AM, Holban AM (Eds). Nutrients in Beverages. Academic Press, pp 175-235.

Zhao Y-S, Eweys AS, Zhang J-Y, Zhu Y, Bai J, Darwesh OM, Zhang H-B, Xiao X (2021). Fermentation affects the antioxidant activity of plant-based food material through the release and production of bioactive components. Antioxidants 10: 2004. https://doi.org/10.3390/antiox10122004

Downloads

Published

2024-09-27

How to Cite

MIHAI, R. A., LOPEZ GUERRA, N. J., & CATANA, R. D. (2024). Assessment of phenolic composition and antioxidant activity of fermented Andean blackberry beverage enriched with medicinal plants of Ecuador. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(3), 13423. https://doi.org/10.15835/nbha52313423

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52313423