Optimizing the potential utilization of bioreactors for the mass propagation of Indonesian Dendrobium varieties

Authors

  • Fitri RACHMAWATI Research Center for Horticultural and Estate Crops, National Research and Innovation Agency, Jl. Raya Jakarta- Bogor, Cibinong, Bogor, 16915, West Java (ID)
  • Dewi PRAMANIK Research Center for Horticultural and Estate Crops, National Research and Innovation Agency, Jl. Raya Jakarta- Bogor, Cibinong, Bogor, 16915, West Java (ID)
  • Herni SHINTIAVIRA Research Center for Horticultural and Estate Crops, National Research and Innovation Agency, Jl. Raya Jakarta- Bogor, Cibinong, Bogor, 16915, West Java (ID)
  • Taufiq HR SIDE Research Center for Horticultural and Estate Crops, National Research and Innovation Agency, Jl. Raya Jakarta- Bogor, Cibinong, Bogor, 16915, West Java (ID)
  • Sri RIANAWATI Research Center for Horticultural and Estate Crops, National Research and Innovation Agency, Jl. Raya Jakarta- Bogor, Cibinong, Bogor, 16915, West Java (ID)
  • Budi WINARTO Research Center for Horticultural and Estate Crops, National Research and Innovation Agency, Jl. Raya Jakarta- Bogor, Cibinong, Bogor, 16915, West Java (ID)

DOI:

https://doi.org/10.15835/nbha52113388

Keywords:

anti-phenol compounds, callus, media, orchid, organic additive, proliferation, temporary immersion system (TIS)

Abstract

The study focuses on two Indonesia Dendrobium varieties, D. Dian Agrihorti (DDA) and D. Syifa Agrihorti (DSA), which have potential to be commercialized, but face limitations on the availability of qualified seedlings sustainably. The research aimed to establish an in vitro propagation protocol using a Temporary Immersion System (TIS) to produce high-quality seedlings efficiently. Various factors, including varieties, media, plant growth regulators, anti-phenol compounds, organic additives, and TIS settings, were investigated using the basal part of the plantlet as the explant source. Key findings revealed that DDA outperformed DSA across all observed variables.  In the initiation phase, basal plantlets cultured in Murashige and Skoog (MS) medium supplemented with 1.0 mg L-1 thidiazuron and 0.5 mg L-1 N-6 benzylaminopurine enhanced embryogenic callus (EC) formation, with a 13.5-day initiation period, 72% potential explant growth, 0.41 cm callus size, and a 3.45 rate of multiplication. During the proliferation stage, the addition of 150 mg  L-1 ascorbic acid (AC) and the application of a TIS with a 30-minute dry period and a 15-minute wet period resulted in a 515.5% increase in EC fresh weight for DDA accompanied by a 6.16 multiplication rate. Regeneration of shoots was achieved using a Vacin and Went medium with 150 g L-1 banana extract, yielding 29.2 shoots per clump. Subsequent rooting of the shoots in 2 g L-1 Hyponex® medium with 20 g L-1 sugar and 2% AC proved successful. Acclimatization of plantlets with Cycas rumpii bulk demonstrated a 100% survivability rate. The established propagation protocol for DDA holds significant potential for application to other Dendrobium varieties, offering a sustainable and efficient method for meeting commercial demands in the Indonesian market.

References

Admojo L, Indrianto A (2016). Pencegahan browning fase inisiasi kalus pada kultur midrin daun klon karet (Hevea brasiliensis Muel.Arg) PB 330 [Prevention of browning in the initiation phase of callus culture in midrib leaves of rubber clone (Hevea brasiliensis Muel.Arg) PB 330]. Indonesian Journal of Natural Rubber Research 34(1):25-34.

Amente G, Chimdessa E (2021). Control of browning in plant tissue culture: A review. Journal of Scientific Agriculture 5(1):67-71. https://doi.org/10.25081/jsa.2021.v5.7266

Bayraktar M, Hayta S, Parlak S, Gurel A (2015). Micropropagation of centennial tertiary relict trees of Liquidambar orientalis Miller through meristematic nodules produced by cultures of primordial shoots. Trees - Structure and Function 29(4):999-1009. https://doi.org/10.1007/S00468-015-11792/FIGURES/3

Bhat SN, Khalil A, Nazir N, Mir MA, Khan I, Mubashir SS, Dar MS, Wani SH, Hossain MA (2022). In vitro prevention of browning in Persian Walnut (Juglans regia L.) cv. Sulaiman. International Journal of Plant Biology 13(3):330-342. https://doi.org/10.3390/IJPB13030027

Bhowmik TK, Rahman MM (2020). Micropropagation of commercially important orchid Dendrobium palpebrae Lindl through in vitro developed pseudobulb culture. Journal of Advanced Biotechnology and Experimental Therapeutics. 3(3):225-232. https://doi.org/https://doi.org/10.5455/jabet.2020. d128

Celiktas OY, Gurel A, Sukan FV (2010). Large scale cultivation of plant cell and tissue culture in bioreactors. In: Transworld Res Network 1(1).

Daniel MA, David RHA, Caesar SA, Ramakrishnan M, Duraipandiyan V, Ignacimuthu S, Al-Dhabi NA (2018). Effect of L-glutamine and casein hydrolysate in the development of somatic embryos from cotyledonary leaf explants in okra (Abelmoschus esculentus L. monech). South African Journal of Botany 114:223-231. https://doi.org/10.1016/J.SAJB.2017.11.014

De Klerk G (2012). Plant Hormones. In: Kors F (Ed). Duchefa Biochemie BV. Netherland.

De Souza GRB, Lone AB, De Faria RT, De Oliveira KS (2013). Pulp fruit added to culture medium for in vitro orchid development. Semina: Ciencias Agrarias 34(3):1141-1146. https://doi.org/10.5433/1679- 0359.2013v34n3p1141

Ekmekçigil M, Bayraktar M, Akkuş Ö, Gürel A (2019). Correction to: High-frequency protocorm-like bodies and shoot regeneration through a combination of thin cell layer and RITA® temporary immersion bioreactor in Cattleya forbesii Lindl. Plant Cell, Tissue and Organ Culture 136(3):465-466. https://doi.org/10.1007/s11240-018-01540-z

Esyanti RR, Muspiah A (2006). Production pattern of ajmalicine in Catharanthus roseus (L.) G. Don. Cell aggregates culture in the airlift bioreactor. Hayati Journal of Biosciences 13(4):161-165. https://doi.org/10.1016/S1978-3019(16)30312-6

Etienne H, Berthouly M (2002). Temporary immersion systems in plant micropropagation. Plant Cell, Tissue and Organ Culture 69(3):215-231. https://doi.org/10.1023/A:1015668610465

Ganiyyu A (2023). Harga Bunga Anggrek dan Jenisnya. WEEE. https://www.harga.top/harga-bunga-anggrek/

Georgiev V, Schumann A, Pavlov A, Bley T (2014). Temporary immersion systems in plant biotechnology. Engineering in Life Sciences 14(6):607-621. https://doi.org/10.1002/elsc.201300166

Gudeva LK, Trajkova F (2012). In vitro response from different explants at some vegetable species. Scientific Works of Uft 59(10):548-552.

Hapsari L, Lestari DA (2016). Fruit characteristic and nutrient values of four Indonesian banana cultivars (Musa spp.) at different genomic groups. Agrivita 38(3):303-311. https://doi.org/10.17503 /agrivita.v38i3.696

Herawati R, Ganefianti DW, Romeida A, Marlin Rustikawati, Habibi (2021). Addition of coconut water and banana extract on MS media to stimulate PLB (protocorm like bodies) regeneration of Dendrobium gatton sunray. Advances in Biological Sciences Research 13:251-258.

Hesami M, Adamek K, Pepe M, Jones AMP (2023). Effect of explant source on phenotypic changes of in vitro grown cannabis plantlets over multiple subcultures. Biology 12(3):1-13. https://doi.org/10.3390/biology12030443

Humaira M, Thomy Z, Harnelly E (2015). Pengaruh pemberian air kelapa dan bubur pisang pada media MS terhadap pertumbuhan planlet anggrek kelinci (Dendrobium antennatum lindl.) secara in vitro [The effect of coconut water and banana porridge on MS medium on the in vitro growth of Rabbit Orchid]. Seminar Nasional Biotik 326-330.

Ionita E (2013). Plant polyphenol oxidases: isolation and characterization. Innovative Romanian Food Biotechnology 13(9):1-10.

Irshad M, Rizwan HM, Debnath B, Anwar M, Li M, Liu S, He B, Qiu D (2018). Ascorbic acid controls lethal browning and pluronic F-68 promotes high-frequency multiple shoot regeneration from cotyldonary node explant of Okra (Abelmoschus esculentus L.). Hort Science 53(2):183-190. https://doi.org/10.21273/HORTSCI12315-17

Islam MO, Islam Md S, Saleh MA (2016). Effect of banana extract on growth and development of protocorm like bodies in Dendrobium sp. orchid. The Agriculturists 13(1):101-108. https://doi.org/10.3329/AGRIC.V13I1.26553

Jesionek A, Kokotkiewicz A, Wlodarska P, Zabiegala B, Bucinski A, Luczkiewicz M (2017). Bioreactor shoot cultures of Rhododendron tomentosum (Ledum palustre) for a large-scale production of bioactive volatile compounds. Plant Cell, Tissue and Organ Culture 131(1):51-64. https://doi.org/10.1007/S11240-017-1261-0

Kaewubon P, Hutadilok-Towatana N, Teixeira da Silva JA, Meesawat U (2015). Ultra structural and biochemical alterations during browning of pigeon orchid (Dendrobium crumenatum Swartz) callus. Plant Cell, Tissue and Organ Culture 121(1):53-69. https://doi.org/10.1007/s11240-014-0678-y

Kasutjianingati K, Firgiyanto R, Yeti J (2019). Growth and multiplication of orchid buds in vitro with the addition of corn (Zea mays) and tomato (Lycopersicon esculentum mill) extract. International Joint Conference on Science and Technology 165-170.

Kaur S, Bhutani KK (2012). Organic growth supplement stimulants for in vitro multiplication of Cymbidium pendulum (Roxb.) Sw. Horticultural Plant (Prague) 39(1):47-52. https://doi.org/https://doi.org/10.17221/52/2011-HORTSCI

Kaviani B (2014). Effect of ascorbic acid concentration on structural characteristics of apical meristems on in vitro Aloe barbadensis Mill. Acta Scientiarum Polonorum Hortorum Cultus 13(3):49-56.

Khanza F (2023). Bunga potong anggrek Dendrobium. Tokopedia. https://www.tokopedia.com/

Kilpatrick J (2012). Dendrobium orchid propagation techniques. Home and Garden. https://www.weekand.com/home-garden/article/dendrobium-orchid-propagation-techniques-18024 361.php

Kunakhonnuruk B, Inthima P, Kongbangkerd A (2019). In vitro propagation of rheophytic orchid, Epipactis flava Seidenf.—A Comparison of semi-solid, continuous immersion and temporary immersion systems. Biology 8(4). https://doi.org/10.3390/BIOLOGY8040072

Liu Y, Allingham RR (2011). Molecular genetics in glaucoma. Experimental Eye Research 93(4):339. https://doi.org/10.1016/J.EXER.2011.08.007

Martin KP, Geevarghese J, Joseph D, Madassery J (2005). In vitro propagation of Dendrobium hybrids using flower stalk node explants. Indian Journal of Experimental Biology 43:280-285.

Martin KP, Madassery J (2006). Rapid in vitro propagation of Dendrobium hybrids through direct shoot formation from foliar explants, and protocorm-like bodies. Scientia Horticulturae 108(1):95-99. https://doi.org/10.1016/J.SCIENTA.2005.10.006

Martinez MV, Whitaker JR (1995). The biochemistry and control of enzymatic browning. Trends in Food Science & Technology 6(6):195-200. https://doi.org/10.1016/S0924-2244(00)89054-8

McAlister B, Finnie J, Watt MP, Blakeway F (2005). Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell, Tissue and Organ Culture 81(3):347-358. https://doi.org/10.1007/S11240-004-6658-X/METRICS

Minh T Van (2022). Micropropagation of Mokara orchid by temporary immersion system technique. International Journal of Research and Innovation in Applied Science VII(5):54-58.

Mustika DN, Semiarti E (2021). In vitro culture of Dendrobium lineale Rolfe orchid for plant breeding and propagation. IOP Conference Series: Earth and Environmental Science 913(1):012066. https://doi.org/10.1088/1755-1315/913/1/012066

Nasirudin K. M, Begum R, Yasmin S (2003). Protocorm like bodies and planlet regeneration from Dendrobium formosum leaf callus. Asian Journal of Plant Sciences 2(13):955-957.

Ndakidemi CF, Mneney E, Ndakidemi PA, Ndakidemi CF, Mneney E, Ndakidemi PA (2014). Effects of Ascorbic acid in controlling lethal browning in in vitro culture of Brahylaena huillensis using nodal segments. American Journal of Plant Sciences 5(1):187-191. https://doi.org/10. 4236/AJPS.2014.51024

Ngomuo MS, Mneney E, Ndakidemi P (2014). Control of lethal browning by using ascorbic acid on shoot tip cultures of a local Musa spp. (Banana) cv. Mzuzu in Tanzania. African Journal of Biotechnology 13(16):1721-1725. https://doi.org/10.5897/AJB2013.13251

Nongdam P, Chongtham N (2011). In vitro rapid propagation of Cymbidium aloifolium (L.) Sw.: A medicinally important orchid via seed culture. Journal of Biological Sciences 11(3):254-260. https://doi.org/10.3923/JBS.2011.254.260

Novita A, Prasetya WE, Barus WA (2022). Root induction of Phalaenopsis amabilis with various types and concentration of banana extract by in vitro. Journal Natural 22(3):130-134. https://doi.org/10.24815/jn.v22i3.25261

Nurfadilah, Mukarlina, Rusmiyanto PWE (2018). Multiplikasi anggrek hitam (Coelogyne pandurata Lindl) pada media murashige skoog (Ms) dengan penambahan ekstrak pisang ambon dan benzyl amino purin (BAP) [Multiplication of black orchid (Coelogyne pandurata Lindl) on murashige skoog (MS) media with the addition of ambon banana extract and benzyl amino purin (BAP). Jurnal Protobiont 7(3):47-53. https://doi.org/10.26418/protobiont.v7i3.29078

Nuryadin E, Choeronisa CC, Hernawan E (2020). Pengaruh bahan organik ekstrak pisang pada media vacin and went terhadap pertumbuhan fase embrio Phalaenopsis amabilis [The influence of organic banana extracts in vacin and went media on the embryonic growth phase of Phalaenopsis amabilis]. Bioedukasi: Jurnal Pendidikan Biologi 11(1):27-32.

Pirttilä AM, Podolich O, Koskimäki JJ, Hohtola E, Hohtola A (2008). Role of origin and endophyte infection in browning of bud-derived tissue cultures of Scots pine (Pinus sylvestris L.). Plant Cell, Tissue and Organ Culture 95(1):47-55. https://doi.org/10.1007/S11240-008-9413-X/TABLES/1

Poniewozik M, Parzymies M, Szot P (2022). Effect of activated charcoal and ascorbic acid on in vitro morphogenesis and o-dihydroxyphenols content in Paphiopedilum insigne. Horticultural Science 49(1):48-51. https://doi.org/10.17221/68/2020-HORTSCI

Rachmawati F, Badriah DS, Marwoto B (2021). Pengaruh jenis eksplan dan asam amino pada inisiasi dan proliferasi kalus embriogenik Phalaenopsis Raiza Agrihorti [The Influence of explant type and amino acids on the initiation and proliferation of embryogenic callus in Phalaenopsis Raiza Agrihorti. Jurnal Hortikultura 31(1):11. https://doi.org/10.21082/JHORT.V31N1.2021.P11-20

Rachmawati F, Pramanik D, Mayang RB, Winarto B (2019). In vitro propagation protocol of Dendrobium Balithi CF22-58 via indirect somatic embryogenesis. Journal Hortikultura 29(2):137-146.

Rachmawati F, Purwito A, Wiendi N, Mattjik N, Winarto B (2014). Perbanyakan massa anggrek Dendrobium Gradita 10 secara in vitro melalui embriogenesis somatik [In vitro mass propagation of Dendrobium Gradita 10 orchid through somatic embryogenesis]. Jurnal Hortikultura Indonesia 24(3):196-209.

Rachmawati F, Thamrin M, Soehendi R, Winarto B (2022). Callus proliferation of Dendrobium in liquid culture system using airlift bioreactor. Acta Horticulturae 1334:249-256. https://doi.org/10.17660/ActaHortic.2022.1334.30

Rachmawati F, Wiendi NMA, Mattjik NA, Purwito A, Winarto DB (2016b). Perbanyakan in vitro Dendrobium Indonesia Raya Ina melalui embriogenesis somatik berbasis sistem bioreaktor [In vitro propagation of Dendrobium Indonesia Raya Ina through bioreactor-based somatic embryogenesis]. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy) 44(3):306. https://doi.org/10.24831/jai.v44i3.12816

Rachmawati F, Winarto B, Mattjik NA, Wiendi NMA, Purwito A (2015). Shoot tips derived-somatic embryogenesis in mass propagation of Dendrobium Indonesia Raya Ina. Emirates Journal of Food and Agriculture 27(10):1-10. https://doi.org/10.9755/ejfa.2015.05.212

Rachmawati F, Winarto B, Santi A, Soedardjo M (2010). Pengembangan teknologi somatik embryogenesis pada dendrobium [Development of somatic embryogenesis technology in dendrobium]. In: Utama IMS (Ed). Seminar Nasional Hortikultura Indonesia. Perhimpunan Hortikultura Indonesia, pp 910-918.

Rachmawati F, Purwito A, Wiendi NMA, Mattjik NA, Winarto B (2016a). Perbanyakan in vitro Dendrobium Indonesia Raya Ina melalui embriogenesis somatik berbasis sistem bioreaktor. Jurnal Agronomi Indonesia 44(3):306-314.

Rittirat S, Kongruk S, Te-chato S (2012). Induction of protocorm-like bodies (PLBs) and plantlet regeneration from wounded protocorms of Phalaenopsis cornucervi (Breda) Blume & Rchb.f. Journal of Agricultural Technology 8(7):2397-2407.

Ru Z, Lai Y, Xu C, Li L (2013). Polyphenol oxidase (PPO) in early stage of browning of Phalaenopsis leaf explants. Journal of Agricultural Science 5(9):57-64. https://doi.org/10.5539/jas.v5n9p57

Ruta C, Mastro G De, Ancona S, Tagarelli A, Cillis F De, Benelli C, Lambardi M (2020). Large-scale plant production of Lycium barbarum L. by liquid culture in temporary immersion system and possible application to the synthesis of bioactive substance. Plants 9(84):1-10.

SAS (2023). SAS 9.4 on Windows. SAS Institute Inc. https://support.sas.com/en/documentation/install-center/94/installation-guide-for-windows.html

Sasmita HD, Dewanti P, Alfian FN (2022). Somatic embryogenesis of Dendrobium lasianthera X Dendrobium antennatum with the addition of BA and NAA. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy) 50(2):201-207. https://doi.org/10.24831/jai.v50i2.39715

Setiawati R (2022). Statistik Hortikultura 2022. https://www.bps.go.id/publication/2023/06/09/03847c5743d8b6cd3f08ab76/statistik-hortikultura-2022.html

Shimelis D, Bantte K, Feyissa T (2015). Effects of polyvinyl pyrrolidone and activated charcoal to control effect of phenolic oxidation on in vitro culture establishment stage of micropropagation of sugarcane (Saccharum officinarum L.). Advances in Crop Science and Technology 3(4):184. https://doi.org/10.4172/2329-8863.1000184

Sianipar NF, Assidqi K, Purnamaningsih R, Herlina T (2019). In vitro cytotoxic activity of Rodent tuber mutant plant (Typhonium flagelliforme LODD.) against to MCF-7 breast cancer cell line. Asian Journal of Pharmaceutical and Clinical Research 12:185-189. https://doi.org/10.22159 /AJPCR.2019.V12I3.29651

Sidhu JS, Zafar TA (2018). Bioactive compounds in banana fruits and their health benefits. Food Quality and Safety 2(4):183-188. https://doi.org/10.1093/FQSAFE/FYY019

Subki A, Abidin AAZ, Yusof ZNB (2010). The role of thiamine in plants and current perspectives in crop improvement. Intechopen 34(8):57-67. https://doi.org/10.5772/intechopen.79350

Teixeira da Silva JA, Hossain MM, Sharma M, Dobránszki J, Cardoso JC, Zeng S (2017). Acclimatization of in vitro-derived Dendrobium. Horticultural Plant Journal 3(3):110-124. https://doi.org/10.1016/J.HPJ.2017.07.009

Teixeira da Silva JA, Tsavkelova EA, Zeng S, Ng TB, Parthibhan S, Dobránszki J, Cardoso JC, Rao MV (2015). Symbiotic in vitro seed propagation of Dendrobium: fungal and bacterial partners and their influence on plant growth and development. Planta 242(1):1-22. https://doi.org/10.1007/s00425-015-2301-9

Titov S, Bhowmik SK, Mandal A, Alam MdS, Uddin SN (2006). Control of phenolic compound secretion and effect of growth regulators for organ formation from Musa spp. cv. Kanthali floral bud explants. American Journal of Biochemistry and Biotechnology 2(3):97-104. https://doi.org/10.3844/ajbbsp.2006.97.104

Utami ESW, Hariyanto S, Manuhara YSW (2016). Pengaruh pemberian ekstrak pisang pada media VW terhadap induksi akar dan pertumbuhan tunas Dendrobium lasianthera J. J. Sm [The effect of banana extract addition to VW medium on root induction and shoot growth of Dendrobium lasianthera J. J. Sm]. Agrotrop 6(1):35-42.

Veltman RH, Peppelenbos HW (2003). A proposed mechanism behind the development of internal browning in pears (Pyrus communis cv conference). Acta Horticulturae 600:247-255. https://doi.org/10.17660/ACTAHORTIC.2003.600.32

Vijayakumar S, Rajalkshmi G, Kalimuthu K (2013). Propagation of Dendrobium aggregatum by green capsule culture. Lankesteriana 12(2):131-135. https://doi.org/10.15517/lank.v0i0.11763

Vilcherrez-Atoche J A, Rojas-Idrogo C, Delgado-Paredes G E (2020). Micropropagation of Cattleya maxima J. Lindley in culture medium with banana flour and coconut water. International Journal of Plant, Animal and Environmental Sciences 10(4):179-193.

Winarto B (2012). In vitro proliferation study of three Indonesian Dendrobium’s protocorm-like bodies (PLBs) on different fertilizer media. Proceedings of National Orchid 1-8.

Winarto B (2016). Teknologi perbanyakan Phalaenopsis secara in vitro menggunakan rachis bunga sebagai sumber eksplan [In vitro propagation technology of Phalaenopsis using flower rachis as the source of explants]. Iptek Hortikultura 1-6.

Winarto B, Rachmawati F (2013). In vitro propagation protocol of Dendrobium Gradita 31 via protocorm like bodies. Thammasat International Journal of Science and Technology 18(2):54-68.

Winarto B, Rachmawati F, Anggraeni S, Teixeira da Silva JA (2013). Mass propagation of Dendrobium Zahra FR 62: A new hybrid used for cut flowers, using bioreactor culture. Scientia Horticulturae 161(19):170-180. https://doi.org/10.1016/j.scienta.2013.06.014

Zhang B, Niu Z, Li C, Hou Z, Xue Q, Liu W, Ding X (2022). Improving large-scale biomass and total alkaloid production of Dendrobium nobile Lindl. using a temporary immersion bioreactor system and MeJA elicitation. Plant Methods 18(1):1-10. https://doi.org/10.1186/S13007-022-00843-9/FIGURES/7

Zhang S, Tu H, Zhu J, Liang A, Huo P, Shan K, He J, Zhao M, Chen X, Lei X (2020). Dendrobium nobile Lindl. polysaccharides improve follicular development in PCOS rats. International Journal of Biological Macromolecules 149:826-834. https://doi.org/10.1016/J.IJBIOMAC.2020.01.196

Ziv M (2005). Simple bioreactors for mass propagation of plants. Plant Cell, Tissue and Organ Culture 81(3): 277-285. https://doi.org/10.1007/S11240-004-6649-Y/METRICS

Downloads

Published

2024-02-12

How to Cite

RACHMAWATI, F., PRAMANIK, D., SHINTIAVIRA, H., HR SIDE, T., RIANAWATI, S., & WINARTO, B. (2024). Optimizing the potential utilization of bioreactors for the mass propagation of Indonesian Dendrobium varieties. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 52(1), 13388. https://doi.org/10.15835/nbha52113388

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha52113388

Most read articles by the same author(s)