Climatic projections vs. grapevine phenology: a regional case study
DOI:
https://doi.org/10.15835/nbha52113381Keywords:
climate change, grape vine, phenology, Odobești vineyard, new grape varieties, SSPsAbstract
From the middle of the 20th century, the majority of the world's highest quality wine-producing regions experienced an increase in temperatures during the growing season. Even if, through technological processes, this issue has been seen as an improvement, recent changes of climatic factors (mainly temperature, sunshine duration and rainfall) show a worrying trend. This study reveals the impacts of climate change in one of the oldest and most important vineyards in Eastern Europe (Odobești vineyard in Romania) on the quality of grapes. The varieties taken into study are ‘Șarbă, Băbească gri’ and ‘Fetească regală’, the first two being considered new created cultivars, while the latter is found on the largest areas of viticultural use. Grapevine phenology and composition were analysed according to literature and standard OIV regulations. Climatic data was gathered, throughout 50 years (1971-2021), by using a weather station of the Odobești Viticulture and Wine-making Research Development Station. A climatic assessment using Shared Socioeconomic Pathways (SSPs) was achieved, focusing on two SSPs (SSP1-1.9 and SSP5-8.5). The climatic predictions show that for the analysed region, phenophases will change due to a temperature increase of over 1.5 oC, leading to an acceleration of 15 (SSP1-1.9) or 24 days (SSP5-8.5) in the case of grape maturation. The hastening of the yearly vine life cycle is correlated to a wide range of undesirable effects, among which an unequilibrated physical-chemical composition of fruits for wine production is considered a sore point in wine sector economy.
References
Alcamo J, Doell P, Henrichs T, Kaspar F, Lehner B, Rosch T, Siebert S (2003). Development and testing of the WaterGAP 2 global model of water use and availability. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques 48:317-337. https://doi.org/10.1623/hysj.48.3.317.45290
Beck HE, Zimmermann NE, McVicar TR, Vergopolan N, Berg A, Wood EF (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 5(1):1. https://doi.org/10.1038/s41597-020-00616-w
Biasi R, Brunori E, Ferrara C, Salvati L (2019). Assessing impacts of climate change on phenology and quality traits of Vitis vinifera L.: The contribution of local knowledge. Plants 8:121. https://doi.org/10.3390/plants8050121
Bock A, Sparks T, Estrella N, Menzel A (2011). Changes in the phenology and composition of wine from Franconia, Germany. Climate Research 50:69-81. http://dx.doi.org/10.3354/cr01048
Bosoi I (2023). Cercetări privind potenţialul agrobiologic şi tehnologic al soiurilor de viță-de-vie pentru vinuri albe create la staţiunea de cercetare- dezvoltare pentru viticultură şi vinificaţie Odobeşti (Research on the agrobiological and technological potential of the varieties for white wines created at the research- development station for viticulture and winemaking Odobesti). PhD thesis Ion Ionescu de la Brad Iasi Life Sciences University
Branas J, Bernon G, Levadoox L (1946). Élements de viticulture genéralé. Ed. Déhan, Montpellier, France.
Bucur M, Babeș A (2016). Research on trends in extreme weather conditions and their effects on grapevine in Romanian viticulture. Bulletin UASVM Horticulture 73(2). https://doi.org/10.15835/buasvmcn-hort:12190
Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Le Roy Ladurie E (2004). Historical phenology: grape ripening as a past climate indicator. Nature 432(7015):289-290. https://doi.org/10.1038/432289a
Constantinescu Gh, Alexei O, Anghel Gh, Bulencea A, Boureanu C, Chirilei H, … Ursu T (1970). Ampelografia R.S.R., vol. I - VIII, Editura Academiei R.S.R., Bucureşti, Romania.
Constantinescu Gh, Donaud A, Elena D (1964). Détermination de la valeur de l’indice bioclimatique de la vigne pour les principaux vignobles de la R. P. Roumanie. Revue Roumaine de Biologie Série de Botanique 9(1).
Cotea VV, Focea MC, Luchian CE, Colibaba LC, Scutarasu EC, Niculaua M, Zamfir CI, Popirda A (2021) Influence of different commercial yeasts on volatile fraction of sparkling wines. Foods 10(2):247. https://doi.org/10.3390/foods10020247
Croitoru AE, Piticar A (2013). Changes in daily extreme temperatures in the extra-Carpathians regions of Romania. International Journal of Climatology 33:1987-2001. https://doi.org/10.1002/joc.3567
Dobrei A, Dobrei A, Nistor E, Iordănescu O, Sala F (2015). Local grapevine germplasm from western of Romania - An alternative to climate change and source of typicity and authenticity. Agriculture and Agricultural Science Procedia 6:124-131. https://doi.org/10.1016/j.aaspro.2015.08.048
Duchene E, Schneider C (2005). Grapevine and climatic changes: a glance at the situation in Alsace. Agronomy for Sustainable Development 25:93-99. http://dx.doi.org/10.1051/agro:2004057
Etminan M, Myhre G, Highwood E.J, Shine KP (2016). Radiative forcing of carbon dioxide, methane, and nitrous oxide: A significant revision of the methane radiative forcing. Geophysical Research Letters 43(24):12614-12623. https://doi.org/10.1002/2016GL071930
Fraga H, Santos JA, Malheiro AC, Oliveira AA, Moutinho-Pereira J, Jones GV (2015). Climatic suitability of Portuguese grapevine varieties and climate change adaptation. International Journal of Climatology. https://doi.org/10.1002/joc.4325
Hidalgo L (1977). Influence des méthodes de culture sur la qualité de la vendange. International Symposium on the quality of the vintage, Cape Town.
Huglin P (1978). Nouveau mode d’évaluation des possibilités héliotermiques d’un milieu viticole. ler Symp. Int. sur l’Écologie de la vigne, Constanţa. pp 89-98.
IPCC (2021). Summary for Policymakers. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, (…) Zhou B (Eds). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Press.
IPCC (2012). Managing the risks of extreme events and disasters to advance climate change Adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, (…) Midgley PM (Eds). A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York: Cambridge University Press.
Irimia LM, Patriche CV, Roşca B, Cotea V (2017). Modifications in climate suitability for wine production of Romanian wine regions as a result of climate change. 40th World Vine and Wine Congress Sofia, Bulgaria, pp 3233.
Jones GV, White MA, Cooper OR, Storchmann K (2005). Climate change and global wine quality. Climate Change 73:319-343. https://doi.org/10.1007/s10584-005-4704-2
Jones CD, Arora V, Friedlingstein P, Bopp L, Brovkin V, Dunne J, … Zaehle S (2016). C4MIP- The coupled climate–carbon cycle model intercomparison project: experimental protocol for CMIP6. Geoscientific Model Development 9(8):2853-2880 https://doi.org/10.5194/gmd-9-2853-2016
Jones GV, Davis RE (2000). Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. American Journal of Enology and Viticulture 51:249-261. http://dx.doi.org/10.5344/ajev.2000.51.3.249
Jones GV, Webb LB (2010). Climate change, viticulture, and wine: Challenges and opportunities. Journal of Wine Research 21:103-106. http://dx.doi.org/10.1080/09571264.2010.530091
Keller M (2010). Managing grapevines to optimise fruit development in a challenging environment: A climate change primer for viticulturists. Australian Journal of Grape Wine Research 16:56-69. https://doi.org/10.1111/j.1755-0238.2009.00077.x
Lawrence DM, Hurtt GC, Arneth A, Brovkin V, Calvin KV, Jones AD, … Shevliakova E (2016). The Land Use Model Intercomparison Project (LUMIP) contribution to CMIP6: Rationale and experimental design. Geoscientific Model Development 9:2973-2998. https://doi.org/10.5194/gmd-9-2973-2016
Mariani L, Parisi S, Cola G, Failla O (2012). Climate change in Europe and effects on thermal resources for crops. International Journal of Biometeorology 56:1123-1134. https://doi.org/10.1007/s00484-012-0528-8
Meinshausen M, Nicholls ZRJ, Lewis J, Gidden MJ, Vogel E, Freund M, Beyerle U, … Wang RHJ (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geo-scientific Model Development 13(8):3571-3605. https://doi.org/10.5194/gmd-13-3571-2020
Moriondo M, Bindi M (2007). Impact of climate change on the phenology of typical Mediterranean crops. Italian Journal of Agrometeorology 5-12.
Nistor E, Dobrei AG, Dobrei A, Camen D (2019). Growing season climate variability and its influence on Sauvignon Blanc and Pinot Gris berries and wine quality: study case in Romania (2005-2015). South African Journal of Enology and Viticulture 39:196- 207. http://dx.doi.org/10.21548/39-2-2730
O’Neill BC, Tebaldi C, van Vuuren DP, Eyring V, Friedlingstein P, Hurtt G, … Sanderson BM (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development 9(9):9. https://doi.org/10.5194/gmd-9-3461-2016
Oşlobeanu M, Macici M, Georgescu M, Stoian V (1991). Zonarea soiurilor de viţă de vie în România [Zoning of grape vines in Romania]. Ed. Ceres, Bucureşti, Romania.
Petrie PR, Sadras VO (2008). Advancement of grape vine maturity in Australia between 1993 and 2006: putative causes, magnitude of trends and viticultural consequences. Australian Journal of Grape and Wine Research 14:33-45. https://doi.org/10.1111/j.1755-0238.2008.00005.x
Phillips NA (1956). The general circulation of the atmosphere: A numerical experiment. Quarterly Journal of the Royal Meteorological Society 82(352):123-164. https://doi.org/10.1002/qj.49708235202
Pozzer A, Jöckel P, Kern B, Haak H (2011). The atmosphere-ocean general circulation model EMAC-MPIOM. Geoscientific Model Development 4(3):771-784. https://doi.org/10.5194/gmd-4-771-2011
Ribéreau-Gayon P, Dubourdieu D, Donèche B, Lonvaud A (2006). Handbook of enology. Volume 1: The microbiology of wine and vinifications. John Wiley & Sons.
Rotaru L (2009). Soiuri de viţă de vie pentru struguri de vin [Grape varieties for wine making]. Ed. Ion Ionescu de la Brad, Iaşi, Romania.
Sanderson EW, Jaiteh M, Levy MA, Redford KH, Wannebo AV, Woolmer G (2002). The human footprint and the last of the wild: the human footprint is a global map of human influence on the land surface, which suggests that human beings are stewards of nature, whether we like it or not. BioScience 52(10):891-904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
Santos J, Corte-Real J (2006). Temperature extremes in Europe and wintertime large-scale atmospheric circulation: HadCM3 future scenarios. Climate Research 31:3-18. http://dx.doi.org/10.3354/cr031003
Santos J.A, Corte-Real J, Ulbrich U, Palutikof J (2007). European winter precipitation extremes and large-scale circulation: a coupled model and its scenarios. Theoretical and Applied Climatology 87:85-102. https://doi.org/10.1007/s00704-005-0224-2
Scutarașu EC, Luchian CE, Vlase L, Colibaba LC, Gheldiu AM, Cotea VV (2021). Evolution of phenolic profile of white wines treated with enzymes. Food Chemistry 340. https://doi.org/10.1016/j.foodchem.2020.127910
Seleaninov GT (1936). Metodika selskohoteaistvenoi oţenki klima v subtropikah, Izd. Argrohidromet, Inst. R., Leningrad, Russia.
Ţârdea C, Rotaru L (2003). Ampelografie. Volumul I. Ed. Ion Ionescu de la Brad, Iaşi, Romania.
Taylor KE, Stouffer J, Meehl GA (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorology Society 93(4):485-498. https://doi.org/10.1175/BAMS-D-11-00094.1
Teodorescu Şt, Popa A, Sandu Gh (1987). Oenoclimatul Romaniei [The oenoclimat of Romania]. Ed. Ştiinţifică şi Enciclopedică, București, Romania
Tomasi D, Jones GV, Giust M, Lovat L, Gaiotti F (2011). Grapevine phenology and climate change: Relationships and trends in the Veneto region of Italy for 1964–2009. American Journal of Enology and Viticulture 62:329-339. https://doi.org/10.5344/ajev.2011.10108
Tonietto J (1999). Les macroclimats viticoles mondiaux et l'influence du mésoclimat sur la typicité de la Syrah et du Muscat de Hambourg dans le sud de la France: methodologie de carácterisation. Ecole Nationale Supérieure Agronomique, Montpellier, [thesis].
Tonietto J, Carbonneau A (2000). Le climat mondial de la viticulture et la liste des cépages associés. Système de Classification Climatique Multicritère (CCM) DES Régions á l’Échelle Géoviticole, Session du Grupe d’experts de l’OIV –Zonage Vitivinicole, Paris.
Webb LB, Whetton PH, Barlow EWR (2007). Modelled impact of future climate change on the phenology of winegrapes in Australia. Australian Journal of Grape Wine Research 13:165-175. https://doi.org/10.1111/j.1755-0238.2007.tb00247.x
The Intergovernmental Panel on Climate Change (2023). Retrieved November 10th 2023 from: www.ipcc.ch
***(2023). Compendium of International Methods of Wine and Must Analysis, International Organisation of Vine and Wine, Dijon, France.

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Lucia C. COLIBABA, Ionica BOSOI, Mărioara PUȘCALĂU, Ilie BODALE, Camelia LUCHIAN, Liliana ROTARU, Valeriu V. COTEA

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.