ZnO nanoparticles improve bioactive compounds, enzymatic activity and zinc concentration in grapevine


  • Reyna R. GUILLÉN-ENRÍQUEZ Tecnologico Nacional de México/Instituto Tecnológico de Torreón, Torreón, Coahuila (MX)
  • Esteban SÁNCHEZ-CHÁVEZ Centro de Investigación en Alimentación y Desarrollo, A.C., Delicias, Chihuahua (MX)
  • Manuel FORTIS-HERNÁNDEZ Tecnologico Nacional de México/Instituto Tecnológico de Torreón, Torreón, Coahuila (MX)
  • Selene Y. MÁRQUEZ-GUERRERO Tecnologico Nacional de México/Instituto Tecnológico de Torreón, Torreón, Coahuila (MX)
  • Bernardo ESPINOSA-PALOMEQUE Universidad Tecnológica de Escuinapa, Escuinapa de Hidalgo, Sinaloa (MX)
  • Pablo PRECIADO-RANGEL Tecnologico Nacional de México/Instituto Tecnológico de Torreón, Torreón, Coahuila (MX) https://orcid.org/0000-0002-3450-4739




agronomic biofortification, bioactive compounds, yield, Vitis vinifera L.


The low availability of micronutrients in the soil leads to a deficit of these micronutrients in crops, causing malnutrition in the population. Approximately 3,000 million people in the world have health problems caused by inadequate Zn intake. Agronomic biofortification is a way to produce crops rich in micronutrients and mitigate malnutrition problems. Nano biofortification with zinc oxide nanoparticles (NPs-ZnO) is a good strategy to mitigate and increase the nutritional content of the edible part of the plant. The aim was to determine the effect of foliar spraying with NPs-ZnO on yield and biosynthesis of enzymatic and non-enzymatic antioxidant compounds and their bioaccumulation. In this study, the effect of foliar fertilization with NPs-ZnO: 0, 25, 50, 75, and 100 mg L-1, on yield, the content of bioactive compounds and their bioaccumulation in grapevine berries was evaluated. The distribution of the treatments was under a completely randomized design, each treatment consisted of 10 plants, each representing one experimental unit. The treatments were applied by foliar sprays at fruit formation, in veraison and 15 days before harvest. Foliar spraying with NPs-ZnO positively modifies yield, the content of bioactive compounds, and their bioaccumulation. Doses of 50-75 mg L-1 of NPs-ZnO increased crop yield, and oenological parameters. In addition, all doses evaluated modified enzymatic and non-enzymatic antioxidants, and improving Zn concentration in grapevine berries. Foliar spraying of NPs-ZnO is an alternative to improve grape quality and yield, in addition to enriching its nutritional and antioxidant content.


Abou El-Nasr MK, El-Hennawy HM, Samaan MSF, Salaheldin TA, Abou El-Yazied A, El-Kereamy A (2021). Using zinc oxide nanoparticles to improve the color and berry quality of table grapes cv. Crimson Seedless. Plants 10(7):1285. https://doi.org/10.3390/plants10071285.

Bana RS, Grover M, Kumar V, Jat GS, Kuri BR, Singh D, Kumar H, Bamboriya SD (2021). Multi-micronutrient foliar fertilization in eggplant under diverse fertility scenarios: effects on productivity, nutrient biofortification, and soil microbial activity. Scientia Horticulturae 294:110781. https://doi.org/10.1016/j.scienta.2021.110781.

Bradford MM (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry 72:248-254. https://doi.org/10.1006/abio.1976.9999

Brand-Williams W, Cuvelier M, Berset C (1995). Use of a free radical method to evaluate antioxidant activity. Food Science 28(1):25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

Cakmak I (2000). Tansley Review No. 111 Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytologist 146:185-205. https://doi.org/10.1046/j.1469-8137.2000.00630.x

Daccak D, Coelho ARF, Pessoa CC, Luís IC, Marques AC, Ramalho JC, … Lidon FC (2022). Fertilization with ZnO and ZnSO4: Mineral analyses in Vitis vinifera grapes cv. Fernão Pires. Biology and Life Sciences Forum 16(1):1-11. https://doi.org/10.3390/iecho2022-12512

David M, Munaswamy V, Halappa R, Marigoudar S (2008). Impact of sodium cyanide on catalase activity in the freshwater exotic carp, Cyprinus carpio (Linnaeus). Pesticide Biochemistry and Physiology 92(1):15-18. https://doi.org/10.1016/j.pestbp.2008.03.013

De Groote H, Tessema M, Gameda S, Gunaratna NS (2021). Soil zinc, serum zinc, and the potential for agronomic biofortification to reduce human zinc deficiency in Ethiopia. Scientific Reports 11(1):1-11. https://doi.org/10.1038/s41598-021-88304-6

Dhaliwal SS, Sharma V, Shukla AK, Verma V, Behera SK, Singh P, ... Hossain A (2021). Comparative efficiency of mineral, chelated, and nano forms of zinc and iron for improvement of zinc and iron in chickpea (Cicer arietinum L.) through biofortification. Agronomy 11(12):2436. https://doi.org/10.3390/agronomy11122436

Du W, Yang J, Peng Q, Liang X, Mao H (2019). Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 227:109-116. https://doi.org/10.1016/j.chemosphere.2019.03.168

Estrada-Domínguez V, Sánchez-Chávez E, de la Cruz-Lázaro E, Márquez-Quiroz C, Osorio-Osorio R (2020). Effect of zinc chelate and sulfate on mineral content, antioxidant activity and grain yield of Vigna unguiculata L. The Philippine Agricultural Scientist 103(1):47-54.

Etesami H, Fatemi H, Rizwan M (2021). Interactions of nanoparticles and salinity stress at physiological, biochemical and molecular levels in plants: A review. Ecotoxicology and Environmental Safety 225:112769. https://doi.org/10.1016/j.ecoenv.2021.112769

Faizan M, Bhat JA, Chen C, Alyemeni MN, Wijaya L, Ahmad P, Yu F (2021). Zinc oxide nanoparticles (ZnO-NPs) induce salt tolerance by improving the antioxidant system and photosynthetic machinery in tomato. Plant Physiology and Biochemistry 161:122-130. https://doi.org/10.1016/j.plaphy.2021.02.002

García E (2004). Modificaciones al sistema de clasificación climática de Köppen, para adaptarlo a las condiciones de la República Mexicana. Instituto de Geografía-Universidad Nacional Autónoma de México (UNAM). México. Series libros núm. 6. 90-93.

García-López JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldívar RH, Barriga-Castro ED, Vázquez-Alvarado R, ... Zavala-García F (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8(8):254. https://doi.org/10.3390/plants8080254.

García-Nava M (2009). Cuantificación de fenoles y flavonoides totales en extractos naturales. Universidad Autónoma de Querétaro Revista Académica 1:1-4.

Gomez A, Narayan M, Zhao L, Jia X, Bernal RA, Lopez-Moreno ML, Peralta-Videa JR (2021). Effects of nano-enabled agricultural strategies on food quality: Current knowledge and future research needs. Journal of Hazardous Materials 401:123385. https://doi.org/10.1016/j.jhazmat.2020.123385

Guillén-Enríquez RR, Zuñiga-Estrada L, Ojeda-Barrios DL, Rivas-García T, Trejo-Valencia R, Preciado-Rangel P (2022). Effect of iron nanobiofortification on yield and bioactive compounds in cucumber. Revista Mexicana de Ciencias Agrícolas 13(SPE28):173-184.

Hernández-Hernández H, Quiterio T, Cadenas G, Ortega H, Hernández A, De La Fuente M, Valdés J, Juárez A (2019). Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants. Plants 8(10):355. https://doi.org/10.3390/plants8100355

Hong J, Wang C, Wagner DC, Gardea-Torresdey JL, He F, Rico CM (2021). Foliar application of nanoparticles: mechanisms of absorption, transfer, and multiple impacts. Environmental Science: Nano 8(5):1196-1210. https://doi.org/10.1039/d0en01129k.

Huber K, Fernandez J, Webb C, Rouzard K, Healy J, Tamura M, Perez E (2021). AGSE: A novel grape seed extract enriched for PP2A activating flavonoids that combat oxidative stress and promote sk in health. Molecules 26(21):6351. https://doi.org/10.3390/molecules26216351.

Kaur H, Manna M, Thakur T, Gautam V, Salvi P (2021). Imperative role of sugar signaling and transport during drought stress responses in plants. Physiologia Plantarum 171(4):833-848. https://doi.org/10.1111/ppl.13364

Kaushik D, Kumar M, Kaushik R, Kumar A (2023). Role of bioactive compounds of Bauhinia variegata and their benefits. Harvesting Food from Weeds 217-266. http://dx.doi.org/10.1002/9781119793007.ch7

Krasteva D, Ivanov Y, Chengolova Z, Godjevargova T (2023). Antimicrobial potential, antioxidant activity, and phenolic content of grape seed extracts from four grape varieties. Microorganisms 11(2):395. https://doi.org/10.3390/microorganisms11020395

Kumar UJ, Bairwa M, Rolaniya M (2022). Effect of varying concentrations of iron oxide and zinc oxide nanoparticles on the quality of strawberry (Fragaria x ananassa Dutch) cv. Chandler. Pharmaceutical Innovation Journal 11:1259-1263.

Lai RWS, Yung MMN, Zhou GJ, He YL, Ng AMC, Djurišić AB, Leung KMY (2020). Temperature and salinity jointly drive the toxicity of zinc oxide nanoparticles: A challenge to environmental risk assessment under global climate change. Environmental Science: Nano 7(10):2995-3006. https://doi.org/10.1039/D0EN00467G

Lira de la Mora J, Sierra E, Sánchez M, Meza J, Ramírez J (2017). Effect of high hydrostatic pressures on antioxidant properties of Mexican fig (Ficus carica L.) Paste. MOJ Bioorganic & Organic Chemistry 1(6):234-237. https://doi.org/10.15406/mojboc .2017.01.00040

Liu R, Lal R (2015). Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. The Science of the Total Environment 514:131-139. https://doi.org/10.1016/j.scitotenv.2015.01.104

Martínez-Ballesta M, Gil-Izquierdo Á, García-Viguera C, Domínguez-Perles R (2018). Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new “smart-foods” for health. Foods 7(5):72. https://doi.org/10.3390/foods7050072

Meneghelli CM, Fontes PCR, Milagres CDC, Da Silva JM, Junior EG (2021). Zinc-biofortified lettuce in aeroponic system. Journal of Plant Nutrition 44:2146-2156. https://doi.org/10.1080/01904167.2021.1889587

Nickel K, Cunningham B (1969). Improved peroxidase assay method using leuco 2, 3′, 6-trichloro indophenol and application to comparative measurements of peroxidase catalysis. Analytical Biochemistry 27(2):292-299. https://doi.org/10.1016/0003-2697(69)90035-9

Obrador A, González D, Almendros P, García-Gómez C, Fernández MD (2021). Assessment of phytotoxicity and behavior of 1-year-aged Zn in soil from ZnO nanoparticles, bulk ZnO, and Zn sulfate in different soil-plant cropping systems: from biofortification to toxicity. Journal of Soil Science and Plant Nutrition 1-15. http://dx.doi.org/10.1007/s42729-021-00640-8

Ponce-García CO, Soto-Parra JM, Sánchez E, Muñoz-Márquez E, Piña-Ramírez FJ, Flores-Córdova MA, Pérez-Leal R, Yáñez Muñoz RM (2019). Efficiency of nanoparticle, sulfate, and zinc-chelate use on biomass, yield, and nitrogen assimilation in green beans. Agronomy 9:128. https://doi.org/10.3390/agronomy9030128

Preciado-Rangel P, Campos-Ortiz A, Chávez ES, Reyes-Gonzalez A, Ruiz-Espinoza F, Ojeda-Barrios D, Hernández-Montiel L (2021). Zinc biofortification improves yield, nutraceutical quality, and antioxidant capacity in lettuce. Tropical and Subtropical Agroecosystems 24(3):1-10. http://dx.doi.org/10.56369/tsaes.3844

Rai-Kalal P, Jajoo A (2021). Priming with zinc oxide nanoparticles improve germination and photosynthetic performance in wheat. Plant Physiology and Biochemistry 160:341-351. https://doi.org/10.1016/j.plaphy.2021.01.032

Ram H, Sohu VS, Cakmak I, Singh K, Buttar GS, Sodhi GPS, Gill HS, Bhagat I, Singh P, Dhaliwal SS (2015). Agronomic fortification of rice and wheat grains with zinc for nutritional security. Current Science 129(1):1171-1176. http://dx.doi.org/10.18520/v109/i6/1171-1176

Ramalho JC, Leit E, Jos M, Rodrigues AP, Guerra M, Leit RG, … Reboredo FH (2022). Zinc biofortification in Vitis vinifera: Implications for quality and wine production. Plants 11(18):2442. https://doi.org/10.3390/plants11182442

Rico CM, Peralta-Videla JR, Gardea-Torresdey JL (2015). Chemistry, biochemistry of nanoparticles and their role in antioxidant defense system in plants. In: Siddiqui MH, Al-Whaibi MH, Mohammad F (Eds). Nanotechnology and Plant Sciences. Springer, New York, NY, USA, pp 1-18.

Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry 135:160-166. https://doi.org/10.1016/j.plaphy.2018.12.005.

Saha B, Saha S, Kumar J, Bairwa R (2023). Nutritional enrichment of tomato (Lycopersicon esculentum L.) through Zinc (Zn) and Boron (B) Fertilization. Journal of Plant Nutrition 46(9):2155-2166.

Saleem A, Zulfiqar A, Ali B, Naseeb MA, Almasaudi AS, Harakeh S (2022). Iron sulfate (FeSO4) improved physiological attributes and antioxidant capacity by reducing oxidative stress of Oryza sativa L. cultivars in alkaline soil. Sustainability 14(24):16845. https://doi.org/10.3390/su142416845

Sariñana-Navarrete M de los Á, Hernández L, Sánchez E, Reyes J, Murillo B, Preciado P (2021). Foliar fertilization of sodium selenite and its effects on yield and nutraceutical quality in grapevine. Revista de la Facultad de Agronomía de La Universidad del Zulia 38(4):806-824. https://doi.org/10.47280/RevFacAgron(LUZ).v38.n4

Sariñana-Navarrete MDLÁ, Morelos-Moreno Á, Sánchez E, Cadenas-Pliego G, Benavides-Mendoza A, Preciado-Rangel P (2023). Selenium nanoparticles improve quality, bioactive compounds and enzymatic activity in jalapeño pepper fruits. Agronomy 13(3):652. https://doi.org/10.3390/agronomy13030652

Servin A, Elmer W, Mukherjee A, De la Torre-Roche R, Hamdi H, White JC, Dimkpa C (2015). A review of the use of engineered nanomaterials to suppress plant disease and enhance crop yield. Journal of Nanoparticle Research 17:92. http://dx.doi.org/10.1007/s11051-015-2907-7

Song C-Z, Liu M-Y, Meng J-F, Chi M, Xi Z-M, Zhang Z-W (2015). Promoting effect of foliage sprayed zinc sulfate on accumulation of sugar and phenolics in berries of Vitis vinifera cv. Merlot growing on zinc deficient soil. Molecules, 20:2536-2554. https://doi.org/10.3390/molecules20022536

Sutulienė R, Brazaitytė A, Małek S, Jasik M, Samuolienė G (2023). Response of oxidative stress and antioxidant system in pea plants exposed to drought and boron nanoparticles. Antioxidants 12(2):528. https://doi.org/10.3390/antiox12020528

Tello J, Roux C, Chouiki H, Laucou V, Sarah G, Weber A, ... Doligez A (2019). A novel high-density grapevine (Vitis vinifera L.) integrated linkage map using GBS in a half-diallel population. Theoretical and Applied Genetics 132:2237-2252. https://doi.org/10.1007/s00122-019-03351-y

Tong L, Song K, Wang Y, Yang J, Lu J, Chen Z, Zhang W (2022). Zinc oxide nanoparticles dissolution and toxicity enhancement by polystyrene microplastics under sunlight irradiation. Chemosphere 299:134421. https://doi.org/10.1016/j.chemosphere.2022.134421

Toor MD, Adnan M, Javed MS, Habibah U, Arshad A, Din MM, Ahmad R (2020). Foliar application of Zn: Best way to mitigate drought stress in plants; A review. International Journal of Applied Research 6(8):16-20.

Umair Hassan M, Aamer M, Umer Chattha M, Haiying T, Shahzad B, Barbanti L, ... Guoqin H (2020). The critical role of zinc in plants facing the drought stress. Agriculture 10(9):396. https://doi.org/10.3390/agriculture10090396

Walker RP, Bonghi C, Varotto S, Battistelli A, Burbidge CA, Castellarin SD, Chen ZH, Darriet P, Moscatello S, Rienth M (2021). Sucrose metabolism and transport in grapevines, with emphasis on berries and leaves, and insights gained from a cross-species comparison. International Journal of Molecular Sciences 22:7794. https://doi.org/10.3390/ijms22157794



How to Cite

GUILLÉN-ENRÍQUEZ, R. R., SÁNCHEZ-CHÁVEZ, E., FORTIS-HERNÁNDEZ, M., MÁRQUEZ-GUERRERO, S. Y., ESPINOSA-PALOMEQUE, B., & PRECIADO-RANGEL, P. (2023). ZnO nanoparticles improve bioactive compounds, enzymatic activity and zinc concentration in grapevine. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(4), 13377. https://doi.org/10.15835/nbha51413377



Research Articles
DOI: 10.15835/nbha51413377

Most read articles by the same author(s)

1 2 > >>