Green nanotechnology for plant bacterial diseases management in cereal crops: a review on metal-based nanoparticles

Authors

  • Usman SHAFQAT Government College University, Department of Environmental Sciences, Faisalabad, 38040 (PK)
  • Awais MAQSOOD Government College University, Department of Bioinformatics & Biotechnology, Faisalabad, 38040 (PK)
  • Aneeza ISHFAQ Government College University, Department of Environmental Sciences, Faisalabad, 38040 (PK)
  • Sadia MUSTAFA Government College University, Department of Environmental Sciences, Faisalabad, 38040 (PK)
  • Yumna RASHEED The Islamia University of Bahawalpur, Department of Botany, Bahawalpur, 63100 (PK)
  • Faisal MAHMOOD Government College University, Department of Environmental Sciences, Faisalabad, 38040 (PK)
  • Muhammad U. HASSAN Jiangxi Agricultural University, Research Center on Ecological Sciences, Nanchang 330045 (CN)
  • Jameel Mohammed AL-KHAYRI King Faisal University, College of Agriculture and Food Sciences, Department of Agricultural Biotechnology, Al-Ahsa 31982 (SA)
  • Mohammed Ibrahim ALDAEJ King Faisal University, College of Agriculture and Food Sciences, Department of Agricultural Biotechnology, Al-Ahsa 31982 (SA)
  • Muhammad Naeem SATTAR King Faisal University, Central Laboratories, PO Box 420, Al-Ahsa 31982 (SA)
  • Adel Abdel-Sabour REZK King Faisal University, College of Agriculture and Food Sciences, Department of Agricultural Biotechnology, Al-Ahsa 31982; Plant Pathology Institute, Agricultural Research Center, Department of Virus and Phytoplasma, Giza 12619 (SA)
  • Mustafa Ibrahim ALMAGHASLA King Faisal University, College of Agriculture and Food Sciences, Department of Arid Land Agriculture, Al-Ahsa 31982; King Faisal University, College of Agriculture and Food Sciences, Plant Pests, and Diseases Unit, Al-Ahsa 31982 (SA)
  • Wael Fathi SHEHATA King Faisal University, College of Agriculture and Food Sciences, Department of Agricultural Biotechnology, Al-Ahsa 31982; Arish University, College of Environmental Agricultural Science, Plant Production Department, P.O. Box: 45511 North Sinai (SA)
  • Tarek Abdelaziz SHALABY King Faisal University, College of Agriculture and Food Sciences, Department of Arid Land Agriculture, Al-Ahsa 31982; Kafrelsheikh University, Faculty of Agriculture, Horticulture Department, Kafr El-Sheikh 33516 (SA)

DOI:

https://doi.org/10.15835/nbha51313333

Keywords:

cereals, diseases, green technology, nanotechnology, plant pathology

Abstract

Cereals are an important source of nutrients for animals. Several diseases cause severe yield loss in cereal crops. Bacterial diseases result in varying yield losses across cereals: Wheat (5-40%), maize (15-98.9%), rice (20-70%), pearl millet (3-35%), and oats (15-49%). Diseases may be bacterial diseases, fungal or viral. Bacterial diseases are traditionally treated by pesticides. Chemically synthesized pesticides are toxic and hazardous to the environment. Nanotechnology is emerging and novel field for agriculture, especially in plant pathology as a strong antimicrobial agent. Nanoparticles have been synthesized in various ways i.e., biological, physical, and chemical methods. Chemical and physical methods of nanoparticles are costly and toxic to the environment. The biological method for the synthesis of nanoparticles is eco-friendly and economical. Microorganisms or plant extracts are used for metal nanoparticle synthesis. The application of nanoparticles in agriculture has a wide scope and it can bring nano-revolution. This review summarizes the antibacterial activity of biosynthesized metal nanoparticles and their role in bacterial disease management of cereals.

References

Abbott J (2019). Politics and Poverty. Routledge. https://doi.org/10.4324/9780429296703

Abdel-Aziz SM, Prasad R, Hamed AA, Abdelraof M (2018). Fungal Nanoparticles: A Novel Tool for a Green Biotechnology? In: Fungal Nanobionics: Principles and Applications. Springer Singapore. pp 61-87. https://doi.org/10.1007/978-981-10-8666-3_3

Ahmed T, Shahid M, Noman M, Niazi MBK, Mahmood F, Manzoor I, Zhang, … Yan C (2020). Silver nanoparticles synthesized by using Bacillus cereus SZT1 ameliorated the damage of bacterial leaf blight pathogen in rice. Pathogens 9(3):160.

Ali SG, Ansari MA, Alzohairy MA, Alomary MN, AlYahya S, Jalal M, … El-Meligy MA (2020). Biogenic gold nanoparticles as potent antibacterial and antibiofilm nano-antibiotics against Pseudomonas aeruginosa. Antibiotics 9(3):100. https://doi.org/10.3390/antibiotics9030100

Alippi AM, López AC (2010). First report of leaf spot disease of maize caused by Pantoea ananatis in Argentina. Plant Disease 94(4):487. https://doi.org/10.1094/pdis-94-4-0487a

Ambika S, Sundrarajan M (2015). Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. Journal of Photochemistry and Photobiology B: Biology 146:52-57. https://doi.org/10.1016/j.jphotobiol.2015.02.020

Ameen F, AlYahya S, Govarthanan M, ALjahdali N, Al-Enazi N, Alsamhary K, … Alharbi SA (2020). Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. Journal of Molecular Structure 1202:127233. https://doi.org/10.1016/j.molstruc.2019.127233

Anbuvannan M, Ramesh M, Viruthagiri G, Shanmugam N, Kannadasan N (2015). Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities. Materials Science in Semiconductor Processing 39:621-628. https://doi.org/10.1016/j.mssp.2015.06.005

Armendariz V, Herrera I, Peralta-Videa JR, Jose-Yacaman M, Troiani H, Santiago P, Gardea-Torresdey JL (2004). Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. Journal of Nanoparticle Research 6(4):377-382. https://doi.org/10.1007/s11051-004-0741-4

Babu MMG, Gunasekaran P (2009). Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids and Surfaces B: Biointerfaces 74(1):191-195. https://doi.org/10.1016/j.colsurfb.2009.07.016

Babu Maddinedi S, Mandal BK, Maddili SK (2017). Biofabrication of size controllable silver nanoparticles {textendash} A green approach. Journal of Photochemistry and Photobiology B: Biology 167:236-241. https://doi.org/10.1016/j.jphotobiol.2017.01.003

Balaji DS, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar BK, Venkataraman A (2009). Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids and Surfaces B: Biointerfaces 68(1):88-92. https://doi.org/10.1016/j.colsurfb.2008.09.022

Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf S, Mohamma, Sanyal M, Sastry M (2006). Extracellular biosynthesis of magnetite using fungi. Small 2(1):135-141. https://doi.org/10.1002/smll.200500180

Brown JKM (2002). Yield penalties of disease resistance in crops. Current Opinion in Plant Biology 5(4):339-344. https://doi.org/10.1016/s1369-5266(02)00270-4

Carlson RR (1982). Bacterial mosaic, a new corynebacterial disease of wheat. Plant Disease 66(1):76. https://doi.org/10.1094/pd-66-76

Chauhan N, Tyagi AK, Kumar P, Malik A (2016). Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Frontiers in Microbiology 7. https://doi.org/10.3389/fmicb.2016.01748

Dehnad A, Hamedi J, Derakhshan-Khadivi F, Abusov R (2015). Green synthesis of gold nanoparticles by a metal resistant Arthrobacter nitroguajacolicus isolated from gold mine. IEEE Transactions on NanoBioscience 14(4):393-396. https://doi.org/10.1109/tnb.2014.2377232

Dimkpa CO, Singh U, Adisa IO, Bindraban PS, Elmer WH, Gardea-Torresdey JL, White JC (2018). Effects of manganese nanoparticle exposure on nutrient acquisition in wheat (Triticum aestivum L.). Agronomy 8(9):158.

Du L, Jiang H, Liu X, Wang E (2007). Biosynthesis of gold nanoparticles assisted by Escherichia coli and its application on direct electrochemistry of hemoglobin. Electrochemistry Communications 9(5):1165-1170. https://doi.org/10.1016/j.elecom.2007.01.007

Duveiller E (1994). A pictorial series of disease assessment keys for bacterial leaf streak of cereals. Plant Disease 78(2):137. https://doi.org/10.1094/pd-78-0137

Elamawi RMA, El-shafey RA (2013). Inhibition effects of silver nanoparticles against rice blast disease caused by Magnaporthe grisea. Egyptian Journal of Agricultural Research 91(4):1271-1283. https://doi.org/10.21608/ejar.2013.165104

Elliott C (1920). Halo-blight of oats. US Government Printing Office. https://doi.org/10.5962/bhl.title.37032

Elmer W, White JC (2018). The future of nanotechnology in plant pathology. Annual Review of Phytopathology 56(1):111-133. https://doi.org/10.1146/annurev-phyto-080417-050108

Elumalai K, Velmurugan S, Ravi S, Kathiravan V, Ashokkumar S (2015). {RETRACTED}: Green synthesis of zinc oxide nanoparticles using Moringa oleifera leaf extract and evaluation of its antimicrobial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 143:158-164. https://doi.org/10.1016/j.saa.2015.02.011

Eren A, Baran MF (2019). Green synthesis, characterization and antimicrobial activity of silver nanoparticles (agnps) from maize (Zea mays l.). Applied Ecology and Environmental Research 17(2):4097-4105. https://doi.org/10.15666/aeer/1702_40974105

Fatima F, Hashim A, Anees S (2021). Efficacy of nanoparticles as nanofertilizer production: a review. Environmental Science and Pollution Research 28(2):1292-1303. https://doi.org/10.1007/s11356-020-11218-9

Felsot AS, Rack KD (2006). Chemical pest control technology: benefits, disadvantages, and continuing roles in crop production systems. In: Crop Protection Products for Organic Agriculture (pp. 1–18). American Chemical Society. https://doi.org/10.1021/bk-2007-0947.ch001

Forster RL (1990). Pink seed of wheat caused by Erwinia rhapontici in Idaho. Plant Disease 74(1):81. https://doi.org/10.1094/pd-74-0081c

Frizzi A, Huang S (2010). Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnology Journal 8(6):655-677. https://doi.org/10.1111/j.1467-7652.2010.00505.x

Gangan MS, Naughton KL, Boedicker JQ (2023). Utilizing a divalent metal ion transporter to control biogenic nanoparticle synthesis. Journal of Industrial Microbiology and Biotechnology.

Ghaedi M, Yousefinejad M, Safarpoor M, Khafri HZ, Purkait MK (2015). Rosmarinus officinalis leaf extract mediated green synthesis of silver nanoparticles and investigation of its antimicrobial properties. Journal of Industrial and Engineering Chemistry 31:167-172. https://doi.org/10.1016/j.jiec.2015.06.020

Ghormade V, Deshpande MV, Paknikar KM (2011). Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnology Advances 29(6):792-803. https://doi.org/10.1016/j.biotechadv.2011.06.007

Ghosh S, Rana D, Sarkar P, Roy S, Kumar A, Naskar J, Kole RK (2022). Ecological safety with multifunctional applications of biogenic mono and bimetallic (Au–Ag) alloy nanoparticles. Chemosphere 288:132585. https://doi.org/10.1016/j.chemosphere.2021.132585

Gong J, Song X, Gao Y, Gong S, Wang Y, Han J (2018). Microbiological synthesis of zinc sulfide nanoparticles using Desulfovibrio desulfuricans. Inorganic and Nano-Metal Chemistry 48(2):96-102. https://doi.org/10.1080/15533174.2016.1216451

Goszczynska T, Botha WJ, Venter SN, Coutinho TA (2007). Isolation and identification of the causal agent of brown stalk rot, a new disease of maize in South Africa. Plant Disease 91(6):711-718. https://doi.org/10.1094/pdis-91-6-0711

Gowramma B, Keerthi U, Rafi M, Rao DM (2014). Biogenic silver nanoparticles production and characterization from native stain of Corynebacterium species and its antimicrobial activity. 3 Biotech 5(2):195-201. https://doi.org/10.1007/s13205-014-0210-4

Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Hariharan N, Eom SH (2009). Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces B: Biointerfaces 74(1):328-335. https://doi.org/10.1016/j.colsurfb.2009.07.048

Haidri I, Shahid M, Hussain S, Shahzad T, Mahmood F, Hassan MU, … Rezk AA-S (2023). Efficacy of biogenic zinc oxide nanoparticles in treating wastewater for sustainable wheat cultivation. Plants 12(17):3058.

Harder DE, Harris DC (1973). Halo blight of oats in Kenya. East African Agricultural and Forestry Journal 38(3):241-245. https://doi.org/10.1080/00128325.1973.11662586

Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, … Chen C (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104. https://doi.org/10.1088/0957-4484/18/10/105104

Husseiny SM, Salah TA, Anter HA (2015). Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef University Journal of Basic and Applied Sciences 4(3):225-231. https://doi.org/10.1016/j.bjbas.2015.07.004

Iravani S (2011). Green synthesis of metal nanoparticles using plants. Green Chemistry 13(10):2638. https://doi.org/10.1039/c1gc15386b

Ishida K, Cipriano TF, Rocha GM, Weissmüller G, Gomes F, Miranda K, Rozental S (2013). Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Memórias Do Instituto Oswaldo Cruz 109(2):220-228. https://doi.org/10.1590/0074-0276130269

Jabeen K, Anum F (2020). Myco-nanotechnology in agriculture. In: Nanoagronomy (pp. 53–68). Springer International Publishing. https://doi.org/10.1007/978-3-030-41275-3_4

Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011). Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale 3(2):635-641. https://doi.org/10.1039/c0nr00656d

Jha AK, Prasad K (2010). Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Colloids and Surfaces B: Biointerfaces 75(1):330-334.

Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M (2011). Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Materials Letters 65(6):1014-1017. https://doi.org/10.1016/j.matlet.2010.12.056

Juibari MM, Yeganeh LP, Abbasalizadeh S, Azarbaijani R, Mousavi SH, Tabatabaei M, Jouzani GS, Salekdeh GH (2015). Investigation of a hot-spring extremophilic Ureibacillus thermosphaericus strain Thermo-BF for extracellular biosynthesis of functionalized gold nanoparticles. Bionanoscience 5:233-241.

Jyothi TV, Hebsur NS (2017). Effect of nanofertilizers on growth and yield of selected cereals - A review. Agricultural Reviews 38(02). https://doi.org/10.18805/ag.v38i02.7942

Kalishwaralal K, Deepak V, Pandian SRK, Kottaisamy M, Barath Mani Kanth S, Kartikeyan B, Gurunathan S (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces B: Biointerfaces, 77(2):257-262. https://doi.org/10.1016/j.colsurfb.2010.02.007

Kathiresan K, Manivannan S, Nabeel MA, Dhivya B (2009). Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces B: Biointerfaces, 71(1);133-137. https://doi.org/10.1016/j.colsurfb.2009.01.016

Khan AU, Malik N, Khan M, Cho MH, Khan MM (2017). Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess and Biosystems Engineering 41(1):1-20. https://doi.org/10.1007/s00449-017-1846-3

Khan MM, Kalathil S, Lee J-T, Cho M-H (2012). Synthesis of cysteine capped silver nanoparticles by electrochemically active biofilm and their antibacterial activities. Bulletin of the Korean Chemical Society 33(8):2592-2596. https://doi.org/10.5012/bkcs.2012.33.8.2592

Khan N, Ali S, Latif S, Mehmood A (2022). Biological synthesis of nanoparticles and their applications in sustainable agriculture production. Natural Science 14(6):226-234.

King T, Cole M, Farber JM, Eisenbrand G, Zabaras D, Fox EM, Hill JP (2017). Food safety for food security: Relationship between global megatrends and developments in food safety. Trends in Food Science and Technology 68:160-175. https://doi.org/10.1016/j.tifs.2017.08.014

Kiran GS, Lipton AN, Priyadharshini S, Anitha K, Suárez LEC, Arasu MV, … Al-Dhabi NA (2014). Antiadhesive activity of poly-hydroxy butyrate biopolymer from a marine Brevibacterium casei MSI04 against shrimp pathogenic vibrios. Microbial Cell Factories 13(1). https://doi.org/10.1186/s12934-014-0114-3

Kitching M, Ramani M, Marsili E (2015). Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microbial Biotechnology 8(6):904-917. https://doi.org/10.1111/1751-7915.12151

Kucha H, Schroll E, Raith JG, Halas S (2010). Microbial sphalerite formation in carbonate-hosted Zn-Pb Ores, Bleiberg, Austria: Micro- to nanotextural and sulfur isotope evidence. Economic Geology 105(5):1005-1023. https://doi.org/10.2113/econgeo.105.5.1005

Kulimushi PZ, Basime GC, Nachigera GM, Thonart P, Ongena M (2017). Efficacy of Bacillus amyloliquefaciens as biocontrol agent to fight fungal diseases of maize under tropical climates: from lab to field assays in south Kivu. Environmental Science and Pollution Research 25(30):29808-29821. https://doi.org/10.1007/s11356-017-9314-9

Kumar B, Srivastava JN (2020). Common millet or Proso millet or Cheena millet or French millet (Panicum miliaceum L.) diseases and their management strategies. In: Diseases of Field Crops: Diagnosis and Management. Apple Academic Press, pp 205-217. https://doi.org/10.1201/9780429321849-10

Langemeier CB, Robertson AE, Wang D, Jackson-Ziems TA, Kruger GR (2017). Factors affecting the development and severity of goss’s bacterial wilt and leaf blight of corn, caused by Clavibacter michiganensis subsp. nebraskensis. Plant Disease 101(1):54-61. https://doi.org/10.1094/pdis-01-15-0038-re

Lee KX, Shameli K, Miyake M, Kuwano N, Khairudin NBBA, Mohamad SEB, Yew YP (2016). Green synthesis of gold nanoparticles using aqueous extract of Garcinia mangostana fruit peels. Journal of Nanomaterials 2016:1-7. https://doi.org/10.1155/2016/8489094

Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry 9(8):852. https://doi.org/10.1039/b615357g

Luan H, Shen H, Zhang Y, Zang H, Qiao H, Tao H, Chen J, Chen H (2016). Comparative transcriptome analysis of barley (Hordeum vulgare L.) glossy mutant using RNA-Seq. Brazilian Journal of Botany 40(1):247-256. https://doi.org/10.1007/s40415-016-0328-1

Majeed S, bin Abdullah MS, Nanda A. Ansari MT (2016). In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). Journal of Taibah University for Science 10(4):614-620. https://doi.org/10.1016/j.jtusci.2016.02.010

Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014). “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6(1):35-44. https://doi.org/10.32607/20758251-2014-6-1-35-44

Mali H, Shah C, Raghunandan BH, Prajapati AS, Patel DH, Trivedi U, Subramanian RB (2023). Organophosphate pesticides an emerging environmental contaminant: Pollution, toxicity, bioremediation progress, and remaining challenges. Journal of Environmental Sciences 127:234-250.

Mayedwa N, Mongwaketsi N, Khamlich S, Kaviyarasu K, Matinise N, Maaza M (2018). Green synthesis of nickel oxide, palladium and palladium oxide synthesized via Aspalathus linearis natural extracts: physical properties and mechanism of formation. Applied Surface Science 446:266-272. https://doi.org/10.1016/j.apsusc.2017.12.116

McKevith B (2004). Nutritional aspects of cereals. Nutrition Bulletin 29(2):111-142. https://doi.org/10.1111/j.1467-3010.2004.00418.x

Medda S, Hajra A, Dey U, Bose P, Mondal NK (2014). Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Applied Nanoscience 5(7):875-880. https://doi.org/10.1007/s13204-014-0387-1

Mewada A, Pandey S, Oza G, Shah R, Thakur M, Gupta A, Sharon M (2013). A novel report on assessing pH dependent role of nitrate reductase on green biofabrication of gold nanoplates and nanocubes. Journal of Bionanoscience 7(2):174-180. https://doi.org/10.1166/jbns.2013.1107

Mishra RK, Rayaroth A, Tomar RS (2020). Role of nanoparticles in common cereals. In: Nanobiotechnology. Apple Academic Press, pp 71-85. https://doi.org/10.1201/9780429292750-6

Mishra S, Keswani C, Abhilash PC, Fraceto LF, Singh HB (2017). Integrated approach of agri-nanotechnology: challenges and future trends. Frontiers in Plant Science 8:471. https://doi.org/10.3389/fpls.2017.00471

Monrás JP, Diaz V, Bravo D, Montes RA, Chasteen TG, Osorio-Román IO, Vásquez CC, Pérez-Donoso JM (2012). Enhanced glutathione content allows the in vivo synthesis of fluorescent CdTe nanoparticles by Escherichia coli. PLoS One 7(11):e48657. https://doi.org/10.1371/journal.pone.0048657

Mortazavi SM, Khatami M, Sharifi I, Heli H, Kaykavousi K, Poor MHS, Kharazi S, Nobre MA (2017). Bacterial biosynthesis of gold nanoparticles using Salmonella enterica subsp. enterica serovar typhi isolated from blood and stool specimens of patients. Journal of Cluster Science 28(5):2997-3007. https://doi.org/10.1007/s10876-017-1267-0

Mudingotto PJ, Veena MS, Mortensen CN (2002). First report of bacterial blight caused by Acidovorax avenae ssp. avenae associated with finger millet seeds from Uganda. Plant Pathology 51(3):396. https://doi.org/10.1046/j.1365-3059.2002.00709.x

Mughal SS, Hassan SM (2022). Comparative study of AgO nanoparticles synthesize via biological, chemical and physical methods: A review. American Journal of Materials Synthesis and Processing 7(2):15-28.

Nabikhan A, Kandasamy K, Raj A, Alikunhi NM (2010). Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L. Colloids and Surfaces B: Biointerfaces 79(2):488-493. https://doi.org/10.1016/j.colsurfb.2010.05.018

Nanda A, Saravanan M (2009). Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine: Nanotechnology, Biology and Medicine 5(4):452-456. https://doi.org/10.1016/j.nano.2009.01.012

Ortmann S, Marx J, Lampe C, Handrick V, Ehnert T-M, Zinecker S, Reimers M, Bonas U, Erickson JL (2023). A conserved microtubule-binding region in Xanthomonas XopL is indispensable for induced plant cell death reactions. PLoS Pathogens 19(8):e1011263.

Osagie C, Othmani A, Ghosh S, Malloum A, Kashitarash Esfahani Z, Ahmadi S (2021). Dyes adsorption from aqueous media through the nanotechnology: A review. Journal of Materials Research and Technology 14:2195-2218. https://doi.org/10.1016/j.jmrt.2021.07.085

Pantidos N (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanomedicine and Nanotechnology 05(05). https://doi.org/10.4172/2157-7439.1000233

Parikh RY, Ramanathan R, Coloe PJ, Bhargava SK, Patole MS, Shouche YS, Bansal V (2011). Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS One 6(6):e21401. https://doi.org/10.1371/journal.pone.0021401

Parveen A, Yalagatti MS, Abbaraju V, Deshpande R (2018). Emphasized mechanistic antimicrobial study of biofunctionalized silver nanoparticles on Proteus mirabilis. Journal of Drug Delivery 2018:1-10. https://doi.org/10.1155/2018/3850139

Paruthi IJ, Bajaj HK, Bhatti DS (1989). Further observations on Anguina tritici (Nematoda) and Corynebacterium michiganense Pv. tritici causing earcockle and yellow ear rot in wheat. Nematologica 35(4):491-493. https://doi.org/10.1163/002825989x00241

Pataky JK (2003). Stewart's Wilt of Corn. APSnet Feature Articles. https://doi.org/10.1094/apsnetfeature-2003-0703

Pavani KV, Kumar NS, Sangameswaran BB (2012). Synthesis of lead nanoparticles by Aspergillus species. Polish Journal of Microbiology 61(1):61-63. https://doi.org/10.33073/pjm-2012-008

Prakash S, Soni N (2012). Synthesis of gold nanoparticles by the fungus Aspergillus niger and its efficacy against mosquito larvae. Reports in Parasitology 1. https://doi.org/10.2147/rip.s29033

Premnath N, Mohanrasu K, Guru Raj Rao R, Dinesh GH, Prakash GS, Ananthi V, … Arun A (2021). A crucial review on polycyclic aromatic hydrocarbons - Environmental occurrence and strategies for microbial degradation. Chemosphere 280. https://doi.org/10.1016/J.CHEMOSPHERE.2021.130608

Rafique M, Sadaf I, Rafique MS, Tahir MB (2016). A review on green synthesis of silver nanoparticles and their applications. Artificial Cells, Nanomedicine, and Biotechnology 45(7);1272-1291. https://doi.org/10.1080/21691401.2016.1241792

Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C, Zahir AA, Velayutham K (2012). Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 91:23-29.

Rana K, Kumari M, Mishra A, Pudake RN (2019). Engineered nanoparticles for increasing micronutrient use efficiency. In: Nanoscience for Sustainable Agriculture. Springer International Publishing, pp 25-49. https://doi.org/10.1007/978-3-319-97852-9_2

Rani S, Kumar P, Dahiya P, Dang AS, Suneja P (2022). Biogenic synthesis of zinc nanoparticles, their applications, and toxicity prospects. Frontiers in Microbiology 13:824427.

Rao M, Jha B, Jha AK, Prasad K (2017). Fungal nanotechnology: a pandora to agricultural science and engineering. In: Fungal Biology. Springer International Publishing, pp 1-33. https://doi.org/10.1007/978-3-319-68424-6_1

Rastogi A, Zivcak M, Sytar O, Kalaji HM, He X, Mbarki S, Brestic M (2017). Impact of metal and metal oxide nanoparticles on plant: a critical review. Frontiers in Chemistry 5:78. https://doi.org/10.3389/fchem.2017.00078

Ruhl G, Wise K, Creswell T, Leonberger A, Speers C (2009). First report of Goss’s bacterial wilt and leaf blight on corn caused by Clavibacter michiganensis subsp. nebraskensis in Indiana. Plant Disease 93(8):841. https://doi.org/10.1094/pdis-93-8-0841b

Sahoo SK, Parveen S, Panda JJ (2007). The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology and Medicine 3(1):20-31.

Sanchez AC, Brar DS, Huang N, Li Z, Khush GS (2000). Sequence tagged site marker-assisted selection for three bacterial blight resistance genes in rice. Crop Science 40(3):792-797. https://doi.org/10.2135/cropsci2000.403792x

Santos AP, Gonçalves MM, Justus B, Fardin DP da S, Toledo ACO, Budel JM, Paula JP de (2022). Calendula officinalis L. flower extract-mediated green synthesis of silver nanoparticles under LED light. Brazilian Journal of Pharmaceutical Sciences 58.

Schabes-Retchkiman PS, Canizal G, Herrera-Becerra R, Zorrilla C, Liu HB, Ascencio JA (2006). Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Optical Materials 29(1):95-99. https://doi.org/10.1016/j.optmat.2006.03.014

Shafqat U, Hussain S, Shahzad T, Shahid M, Mahmood F (2023a). Elucidating the phytotoxicity thresholds of various biosynthesized nanoparticles on physical and biochemical attributes of cotton. Chemical and Biological Technologies in Agriculture 1-15. https://doi.org/10.1186/s40538-023-00402-x

Shafqat U, Hussain S, Shahzad T, Shahid M, Mahmood F (2023b). Elucidating the phytotoxicity thresholds of various biosynthesized nanoparticles on physical and biochemical attributes of cotton. Chemical and Biological Technologies in Agriculture 10(1):1-15.

Shan C, Tong M (2013). Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe–Mn binary oxide. Water Research 47(10):3411-3421. https://doi.org/10.1016/j.watres.2013.03.035

Shankar SS, Rai A, Ahmad A, Sastry M (2004). Rapid synthesis of Au, Ag, and bimetallic Au core - Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science 275(2):496-502. https://doi.org/10.1016/j.jcis.2004.03.003

Shanthi S, Jayaseelan BD, Velusamy P, Vijayakumar S, Chih CT, Vaseeharan B (2016). Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microbial Pathogenesis 93:70-77. https://doi.org/10.1016/j.micpath.2016.01.014

Shekhawat GS, Srivastava DN (1972). Epidemiology of bacterial leaf streak of rice. Japanese Journal of Phytopathology 38(1):7-14. https://doi.org/10.3186/jjphytopath.38.7

Shen YF, Tang J, Nie ZH, Wang YD, Ren Y, Zuo L (2009). Preparation and application of magnetic Fe3O4 nanoparticles for wastewater purification. Separation and Purification Technology 68(3):312-319.

Shukla G, Gaurav SS, Singh A, Rani P (2022). Synthesis of mycogenic silver nanoparticles by Fusarium pallidoroseum and evaluation of its larvicidal effect against white grubs (Holotrichia sp.). Materials Today: Proceedings 49:3517-3527. https://doi.org/10.1016/j.matpr.2021.07.238

Siddiqi KS, Husen A (2016). Engineered gold nanoparticles and plant adaptation potential. Nanoscale Research Letters 11(1):400. https://doi.org/10.1186/s11671-016-1607-2

Siddique K, Shahid M, Shahzad T, Mahmood F, Nadeem H, Saif ur Rehman M, … Kamal T (2021). Comparative efficacy of biogenic zinc oxide nanoparticles synthesized by Pseudochrobactrum sp. C5 and chemically synthesized zinc oxide nanoparticles for catalytic degradation of dyes and wastewater treatment. Environmental Science and Pollution Research 28:28307-28318.

Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology 16(1):1-24. https://doi.org/10.1186/S12951-018-0408-4

Sinha A, Khare SK (2011). Mercury bioaccumulation and simultaneous nanoparticle synthesis by Enterobacter sp. cells. Bioresource Technology 102(5):4281-4284. https://doi.org/10.1016/j.biortech.2010.12.040

Sinha SK, Prasad M (1977). Bacterial stalk rot of maize, its symptoms and host-range. Zentralblatt Für Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene. Zweite Naturwissenschaftliche Abteilung: Allgemeine, Landwirtschaftliche Und Technische Mikrobiologie 132(1):81-88. https://doi.org/10.1016/s0044-4057(77)80037-3

Sintubin L, Windt W De, Dick J, Mast J, van der Ha D, Verstraete W, Boon N (2009). Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Applied Microbiology and Biotechnology 84(4):741-749. https://doi.org/10.1007/s00253-009-2032-6

Slavin YN, Asnis J, Häfeli UO, Bach H (2017). Metal nanoparticles: understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology 15(1):65. https://doi.org/10.1186/s12951-017-0308-z

Sneha K, Sathishkumar M, Mao J, Kwak IS, Yun Y-S (2010). Corynebacterium glutamicum-mediated crystallization of silver ions through sorption and reduction processes. Chemical Engineering Journal 162(3):989-996. https://doi.org/10.1016/j.cej.2010.07.006

Srinath BS, Namratha K, Byrappa K (2018). Eco-friendly synthesis of gold nanoparticles by Bacillus subtilis and their environmental applications. Advanced Science Letters 24(8):5942-5946. https://doi.org/10.1166/asl.2018.12224

Stephens EC, Martin G, van Wijk M, Timsina J, Snow V (2020). Editorial: Impacts of COVID-19 on agricultural and food systems worldwide and on progress to the sustainable development goals. Agricultural Systems 183:102873. https://doi.org/10.1016/j.agsy.2020.102873

Swings J, Van Den Mooter M, Vauterin L, Hoste B, Gillis M, Mew TW, Kersters K (1990). Reclassification of the causal agents of bacterial blight (Xanthomonas campestris pv. oryzae) and bacterial leaf streak (Xanthomonas campestris pv. oryzicola) of rice as pathovars of Xanthomonas oryzae (ex Ishiyama 1922) sp. nov., nom. rev. International Journal of Systematic Bacteriology 40(3):309-311. https://doi.org/10.1099/00207713-40-3-309

Tamez C, Hernandez-Molina M, Hernandez-Viezcas JA, Gardea-Torresdey JL (2019). Uptake, transport, and effects of nano-copper exposure in zucchini (Cucurbita pepo). Science of The Total Environment 665:100-106. https://doi.org/10.1016/j.scitotenv.2019.02.029

Tandon S, Singh A (2014). Green synthesis of cadmium sulfide (CdS) nanoparticles by bacteria and fungus and their characterization. Indo Global Journal of Pharmaceutical Sciences 04(03). https://doi.org/10.35652/igjps.2014.12

Thind BS, Payak MM (1985). A review of bacterial stalk rot of maize in India. Tropical Pest Management 31(4):311-316. https://doi.org/10.1080/09670878509371007

Thovhogi N, Diallo A, Gurib-Fakim A, Maaza M (2015). Nanoparticles green synthesis by Hibiscus sabdariffa flower extract: Main physical properties. Journal of Alloys and Compounds 647:392-396. https://doi.org/10.1016/j.jallcom.2015.06.076

Thrall ES (2012). Spectroscopic studies of abiotic and biological nanomaterials: silver nanoparticles, Rhodamine 6G adsorbed on Graphene, and c-type cytochromes and type IV pili in Geobacter sulfurreducens. Columbia University.

Tillman BL, Kursell WS, Harrison SA, Russin JS (1999). Yield loss caused by bacterial streak in winter wheat. Plant Disease 83(7):609-614. https://doi.org/10.1094/pdis.1999.83.7.609

Tippayawat P, Phromviyo N, Boueroy P, Chompoosor A (2016). Green synthesis of silver nanoparticles in aloe vera plant extract prepared by a hydrothermal method and their synergistic antibacterial activity. PeerJ 4:2589. https://doi.org/10.7717/peerj.2589

Tsiola A, Toncelli C, Fodelianakis S, Michoud G, Bucheli TD, Gavriilidou A, … Pitta P (2018). Low-dose addition of silver nanoparticles stresses marine plankton communities. Environmental Science: Nano 5(8):1965-1980. https://doi.org/10.1039/c8en00195b

Tsushima S, Naito H (1991). Spatial distribution and dissemination of bacterial grain rot of rice caused by Pseudomonas glumae. Japanese Journal of Phytopathology 57(2):180-187. https://doi.org/10.3186/jjphytopath.57.180

Tufail S, Liaqat I, Ali S, Ulfat M, Shafi A, Sadiqa A, Iqbal R, Ahsan F (2022). Bacillus licheniformis (MN900686) mediated synthesis, characterization and antimicrobial potential of silver nanoparticles. Journal of Oleo Science 71(5):701-708.

Vankova R, Landa P, Podlipna R, Dobrev PI, Prerostova S, Langhansova L, Gaudinova A, Motkova K, Knirsch V, Vanek T (2017). ZnO nanoparticle effects on hormonal pools in Arabidopsis thaliana. Science of The Total Environment 593-594, 535-542. https://doi.org/10.1016/j.scitotenv.2017.03.160

Velu M, Lee J-H, Chang W-S, Lovanh N, Park Y-J, Jayanthi P, Palanivel V, Oh B-T (2017). Fabrication, optimization, and characterization of noble silver nanoparticles from sugarcane leaf (Saccharum officinarum) extract for antifungal application. 3 Biotech 7(2):147. https://doi.org/10.1007/s13205-017-0749-y

Verma VC, Kharwar RN, Gange AC (2010). Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine 5(1):33-40. https://doi.org/10.2217/nnm.09.77

Verma VC, Singh SK, Solanki R, Prakash S (2011). Biofabrication of anisotropic gold nanotriangles using extract of endophytic Aspergillus clavatus as a dual functional reductant and stabilizer. Nanoscale Research Letters 6(1):16. https://doi.org/10.1007/s11671-010-9743-6

Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006). Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids and Surfaces B: Biointerfaces 53(1):55-59. https://doi.org/10.1016/j.colsurfb.2006.07.014

Vijayaraghavan K, Ashokkumar T (2017). Plant-mediated biosynthesis of metallic nanoparticles: a review of literature, factors affecting synthesis, characterization techniques and applications. Journal of Environmental Chemical Engineering 5(5):4866-4883.

Wally O, Punja ZK (2010). Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. {GM} Crops 1(4):199-206. https://doi.org/10.4161/gmcr.1.4.13225

Weston JNJ, Jensen EL, Hasoon MSR, Kitson JJN, Stewart HA, Jamieson AJ (2022). Barriers to gene flow in the deepest ocean ecosystems: Evidence from global population genomics of a cosmopolitan amphipod. Science Advances 8(43):eabo6672.

Wilkie JP (1973). Basal glume rot of wheat in New Zealand. New Zealand Journal of Agricultural Research 16(1):155-160. https://doi.org/10.1080/00288233.1973.10421176

Yaashikaa PR, Kumar PS, Jeevanantham S, Saravanan R (2022). A review on bioremediation approach for heavy metal detoxification and accumulation in plants. Environmental Pollution 119035.

Yamaguchi T, Tsuruda Y, Furukawa T, Negishi L, Imura Y, Sakuda S, Yoshimura E, Suzuki M (2016). Synthesis of {CdSe} quantum dots using Fusarium oxysporum. Materials 9(10):855. https://doi.org/10.3390/ma9100855

Yang B, Sugio A, White FF (2006). Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proceedings of the National Academy of Sciences 103(27):10503-10508. https://doi.org/10.1073/pnas.0604088103

Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M, Iqbal M (2017). Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa {BRp}3. Frontiers in Microbiology 8. https://doi.org/10.3389/fmicb.2017.01895

Zakharova OV, Gusev AA, Zherebin PM, Skripnikova EV, Skripnikova MK, … Krutyakov YA (2017). Sodium tallow amphopolycarboxyglycinate-stabilized silver nanoparticles suppress early and late blight of Solanum lycopersicum and stimulate the growth of tomato plants. BioNanoScience 7(4):692-702. https://doi.org/10.1007/s12668-017-0406-2

Zarinkoob A, Esmaeilzadeh Bahabadi S, Rahdar A, Hasanein P, Sharifan H (2021). Ce-Mn ferrite nanocomposite promoted the photosynthesis, fortification of total yield, and elongation of wheat (Triticum aestivum L.). Environmental Monitoring and Assessment 193:1-12.

Zeigler RS (1987). Bacterial sheath brown rot of rice caused by Pseudomonas fuscovaginae in Latin America. Plant Disease 71(7):592. https://doi.org/10.1094/pd-71-0592

Zhang X, Yan S, Tyagi RD, Surampalli RY (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82(4):489-494. https://doi.org/10.1016/j.chemosphere.2010.10.023

Zhao B, Lin X, Poland J, Trick H, Leach J, Hulbert S (2005). A maize resistance gene functions against bacterial streak disease in rice. Proceedings of the National Academy of Sciences 102(43):15383-15388. https://doi.org/10.1073/pnas.0503023102

Zheng Y, Huang Y, Shi H, Fu L (2019). Green biosynthesis of ZnO nanoparticles by leaf extract and their application for electrochemical determination of norfloxacin. Inorganic and Nano-Metal Chemistry 49(9):277-282. https://doi.org/10.1080/24701556.2019.1661441

Published

2023-09-27

How to Cite

SHAFQAT, U., MAQSOOD, A., ISHFAQ, A., MUSTAFA, S., RASHEED, Y., MAHMOOD, F., HASSAN, M. U., AL-KHAYRI, J. M., ALDAEJ, M. I., SATTAR, M. N., Abdel-Sabour REZK, A., ALMAGHASLA, M. I., SHEHATA, W. F., & SHALABY, T. A. (2023). Green nanotechnology for plant bacterial diseases management in cereal crops: a review on metal-based nanoparticles. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3), 13333. https://doi.org/10.15835/nbha51313333

Issue

Section

Review Articles
CITATION
DOI: 10.15835/nbha51313333

Most read articles by the same author(s)

1 2 > >>