Molecular characterization of guava Psidium guajava in Cereté, Córdoba, Colombia


  • Enrique PARDO Universidad de Córdoba, Facultad de Ciencias Básicas, Carrera 6 No. 77- 305 Montería - Córdoba (CO)
  • Karen HERNÁNDEZ Universidad de Córdoba, Facultad de Ciencias Básicas, Carrera 6 No. 77- 305 Montería - Córdoba (CO)
  • Teodora CAVADÍA Universidad de Córdoba, Facultad de Ciencias Básicas, Carrera 6 No. 77- 305 Montería - Córdoba (CO)



genetic variability, guava, Hardy-Weinberg equilibrium, heterozygosity, SSR


Guava (Psidium guajava L.) is the most cherished cultivated fruit species in the Myrtaceae family, and it is a perennial tree native to tropical America. The objective of this study was to determine the genetic variability of Psidium guajava in Cereté (Colombia) using SSR markers. DNA extraction was performed using the Mini-prep method with modifications. Nine microsatellites were amplified using the PCR Touchdown technique. Genetic-population parameters such as the number of alleles, effective number of alleles, observed heterozygosity, expected heterozygosity, fixation index, Hardy-Weinberg equilibrium, and polymorphic information content were calculated using PopGene 1.31 software. The number of alleles varied between 4 for markers mPgCIR13, mPgCIR20, mPgCIR23, and 8 for marker mPgCIR19, respectively. The average value of effective number of alleles was 3.722, observed heterozygosity was 0.217, and expected heterozygosity was 0.254. The average fixation index was 0.101. Hardy-Weinberg equilibrium tests revealed significant differences in the markers. The FIS coefficient had an average value of 0.385, the FIT coefficient showed an average of 0.490, and the FST coefficient had a value of 0.178. Genetic distance analysis showed that Mateo Gómez was closely related to Retiro de los Indios, while Rabolargo appeared to be the most distant population. The study revealed low genetic variability within and between the populations studied, possibly, reflecting the type of asexual propagation applied in guava crops.


Allendorf F, Luikart G (2007). Conservation and the Genetics of Populations. Blackwell Publishing, Malden, Massachusetts, USA.

Bandera E, Pérez L (2015). Mejoramiento genético de guayabo (Psidium guajava L.). Cultivos Tropicales 36:96-110

Botstein D, White R, Skolnick M, Davis R (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics 32:314-331

Chaithanya MN, Dinesh MR, Vasugi C, Reddy DL, Sailaja D, Aswath C (2014). Assessment of genetic diversity in guava (Psidium guajava) germplasm using microsatellites. Journal of Horticultural Sciences 9(2):117-125.

Chiveu J (2018). Assessment of genetic and nutritional diversity, and salinity tolerance of Kenyan guava (Psidium guajava L.): an underutilized naturalized fruit species. PhD Thesis. University of Göttingen, Germany.

De Oliveira Bernardes C, Tuler AC, Canal D, Carvalho MS, Ferreira A, Da Silva Ferreira MF (2022). Genetic Diversity and Population Structure of Psidium Species from Restinga: A Coastal and Disturbed Ecosystem of the Brazilian Atlantic Forest. Biochemical Genetics 60(6):2503-2514

Díaz-Cruz JA (2016). Diversidade e estrutura genética de populações de Psidium guajava L. (Myrtaceae) oriundas do brasil e do méxico. MSc Dissertation. Universidad Estadual de Ponta Grossa. Paraná, Brazil.

Ellegren H, Galtier N (2016). Determinants of genetic diversity. Nature Reviews Genetics 17:427-433.

Espín A (2018). Diversidad genética de la guayaba (Psidium guajava) en la Isla Isabela. MSc Dissertation. Universidad San Francisco de Quito. Ecuador.

González E (2003). Microsatélites: sus aplicaciones en la conservación de la biodiversidad. Graellsia 59:377-388.7.

Goudet J (2002). FSTAT (Version 1.2): A Computer Program to Calculate F-Statistics. Journal of Heredity 86:485-486.

Kalinowski ST, Taper ML, Marshall TC (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16:1099-1106.

Kanupriya PM, Aswath C, Reddy L, Padmakar B, Vasugi C, Dinesh MR (2011). Cultivar identification and genetic fingerprinting of guava (Psidium guajava) using microsatellite markers. International Journal of Fruit Science 11(2):184-196.

Kherwar D, Usha K, Amitha SV, Singh B (2018). Microsatellite (SSR) marker assisted assessment of population structure and genetic diversity for morpho-physiological traits in guava (Psidium guajava L.). Journal of Plant Biochemistry and Biotechnology 27:284-292.

Kumar C, Kumar R, Singh SK, Goswami AK, Nagaraja A, Paliwal R, Singh R (2020). Development of novel g-SSR markers in guava (Psidium guajava L.) cv. Allahabad Safeda and their application in genetic diversity, population structure and cross species transferability studies. PLoS One 15(8):e0237538.

Kumar S, Singh A, Yadav A, Bajpai A, Singh NK, Rajan S, Mala T, Muthukumar M (2023). Identification and validation of novel genomic SSR markers for molecular characterization of guava (Psidium guajava L.). South African Journal of Botany 155:79-89.

Kumari S, Arumugam N, Singh R, Srivastav M, Banoth S, Mithra AC, Arun M, Kumar G, Khan Y (2018). Diversity analysis of guava (Psidium guajava) germplasm collection. Indian Journal of Agricultural Sciences 88:489-497.

Martin CA, Sheppard EC, Illera JC, Suh A, Nadachowska-Brzyska K, Spurgin LG, Richardson DS. (2023). Runs of homozygosity reveal past bottlenecks and contemporary inbreeding across diverging populations of an island-colonizing bird. Molecular Ecology 32(8):1972-1989.

Martín D. (2017). Somatic embryogenesis: a biotechnological tool for the in vitro propagation of guava. Biotecnología Vegetal 17(4):209-220.

Ma Z, Liu S, Liang Z, Xu S, Hu W (2020). Analysis of genetic diversity of 45 guava germplasm evaluated using SSR markers. International Journal of Fruit Science 20(3):385-393.

Mehmood A, Luo S, Ahmad NM, Dong C, Mahmood T, Sajjad Y, Jaskani MJ, Sharp P (2016). Molecular variability and phylogenetic relationships of guava (Psidium guajava L.) cultivars using inter-primer binding site (iPBS) and microsatellite (SSR) markers. Genetic Resources and Crop Evolution 63:1345-1361.

Ministry of Agriculture and Rural Development (2021). Cadena de la guayaba. Retrieved 2023 February 22 from:

Morton JF (1987). Guava (Psidium guajava L.). In: Julia F (Ed). Morton Publisher. Fruits of Warm Climates. Miami, FL, USA pp 356-363.

Naga MV, Sailaja D, Dinesh MR, Vasugi C, Lakshmana DC, Aswath C. (2015). Microsatellite-based DNA fingerprinting of guava (Psidium guajava) genotypes. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 87:859-867.

Nei, M. (1972). Genetic distance between populations. American Naturalist 106:283-292.

Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583-90.

Oliveira JAVS, Santos EA, Viana AP, Walter FHB, Ribeiro RM (2022). Genetic molecular characterization in guava full-sib progeny. Bragantia 81:e3322.

Postma E, AJ Van Noordwijk (2005). Genetic variation for clutch size in natural populations of birds from a reaction norm perspective. Ecology 86(9):2344-2357.

Pritchard JK, Stephens M, Donnelly P (2000). Inference of population structure using multilocus genotype data. Genetics 155(2):945-959.

Rai MK, Asthana P, Jaiswal VS, Jaiswal U (2010). Biotechnological advances in guava (Psidium guajava L.): recent developments and prospects for further research. Trees 24:1-12.

Rajan S, Hudedamani U (2019). Genetic Resources of Guava: Importance, Uses and Prospects. In: Rajasekharan P, Rao V (Eds). Conservation and Utilization of Horticultural Genetic Resources. Springer, Singapore.

Risterucci AM, Duval MF, Rohde W, Billotte N (2005). Isolation and characterization of microsatellite loci from Psidium guajava L. Molecular Ecology Notes 5:745-748.

Robitzch V, Saenz‐Agudelo P, Alpermann TJ, Frédérich B, Berumen ML (2023). Contrasting genetic diversity and structure between endemic and widespread damselfishes are related to differing adaptive strategies. Journal of Biogeography 50(2):380-392.

Sitther V, Zhang D, Harris DL, Yadav AK, Zee FT, Meinhardt LW, Dhekney S (2014). Genetic characterization of guava (Psidium guajava L.) germplasm in the United States using microsatellite markers. Genetic Resources and Crop Evolution 61:829-839.

Tamura K, Stecher G, Kumar S (2021). MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology Evolution 38:3022-3027.

Tapia D, Legaria J.P. (2007). Variabilidad genética en cultivares de guayabo (Psidium guajava L.). Revista Fitotecnia Mexicana 30(4):391-401.

Vázquez A, Molina F., J Farfán, Figueroa M 2012. Potencial de los marcadores moleculares para el rescate de individuos de Theobroma cacao L. de alta calidad. Biotecnología 16:36-56.

Viji G, Harris DL, Yadav AK (2010). Use of Microsatellite Markers to Characterize genetic diversity of selected accessions of guava (Psidium guajava) in the United States. Acta Horticulturae 859:169-176.

Yeh FC, Yang RC, Mao J, Ye Z, Boyle TJB (1999). POPGENE, the Microsoft Windows-based user-friendly software for population genetic analysis of co-dominant and dominant markers and quantitative traits. Department of Renewable Resources, University of Alberta, Edmonton, Alta.



How to Cite

PARDO, E., HERNÁNDEZ, K., & CAVADÍA, T. (2023). Molecular characterization of guava Psidium guajava in Cereté, Córdoba, Colombia . Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3), 13305.



Research Articles
DOI: 10.15835/nbha51313305