Effect of mycorrhization on growth and physiology performance of Quercus species

Authors

  • Awatef SLAMA University of Carthage, National Research Institute of Rural engineering, Water and Forests INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)
  • Sondes FKIRI University of Carthage, National Research Institute of Rural engineering, Water and Forests INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)
  • Faten MEZNI University of Carthage, National Research Institute of Rural engineering, Water and Forests INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)
  • Boutheina STITI University of Carthage, National Research Institute of Rural engineering, Water and Forests INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)
  • Julio SALCEDO-CASTRO Institute for Marine and Antarctic Studies, University of Tasmania (UTAS) (AU)
  • Issam TOUHAMI University of Carthage, National Research Institute of Rural engineering, Water and Forests INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)
  • Marwa KHAMMASSI University of Carthage, National Research Institute of Rural engineering, Water and Forests INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)
  • Abdelhamid KHALDI University of Carthage, National Research Institute of Rural engineering, Water and Forests INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)
  • Zouheir NASR University of Carthage, National Research Institute of Rural engineering, Water and Forests INRGREF, Laboratory of Management and Valorization of Forest Resources, BP 10 Ariana 2080 (TN)

DOI:

https://doi.org/10.15835/nbha51413290

Keywords:

biomass, carbon assimilation, climate change, inoculation, Mediterranean region, Quercus sp., Terfezia boudieri

Abstract

The development of mycorrhiza could contribute to strengthening the resilience of forest ecosystems to climate change. Several mycorrhizal fungi are known for their valuable effect in increasing plant performances and adaptation to stressful environmental conditions. Thereby, this research aims to investigate how Terfezia boudieri (Chatin) mycorrhizal fungi affects the growth (primary root length, above-ground plant weight) and the physiological behaviour (net photosynthesis, responses to intercellular [CO2] and the intensity of photosyntically active radiation) of Quercus subsp. coccifera  and Q. suber L. Inoculated and non-inoculated seedlings of the two Quercus species were grown in one-liter pots in the greenhouse, with a temperature that ranged from 25 to 30 °C, natural lighting and an irrigation applied twice a week with top water. Results revealed that primary root length and the above-ground biomass increased with mycorrhization. In addition, mycorrhization promoted net photosynthesis (at 400 ppm and at saturation point), the apparent quantum yield, the water use efficiency, and the photosynthetic pigments contents. However, inoculation decreased the light compensation point for both species. Effectiveness of T. boudieri inoculation on Quercus sp. performance, highlights the potential of the mycorrhization process to improve forest management and resilience to climate change.

References

Andersson FA (2005). Coniferous Forests. Elsevier Science press (1st ed), San Diego.

Augé RM, Stodola AJW (1990). An apparent increase in symplastic water contributes to greater turgor in mycorrhizal roots of droughted Rosa plants. New Phytologist 115:285-295. https://doi.org/10.1111/j.1469-8137.1990.tb00454.x

Beltrano J, Ruscitti M, Arango MC, Ronco M (2013). Effects of arbuscular mycorrhiza inoculation on plant growth, biological and physiological parameters and mineral nutrition in pepper grown under different salinity and P levels. Journal of Soil Science and Plant Nutrition 13(1):123-141. http://dx.doi.org/10.4067/S0718-95162013005000012

Bouachir BB, Khorchani A, Guibal F, Aouni MHEl, Khaldi A (2017). Dendroecological study of Pinus halepensis and Pinus pinea in northeast coastal dunes in Tunisia according to distance from the shoreline and dieback intensity. Dendrochronologia 45:62-72. https://doi.org/10.1016/j.dendro.2017.06.008

Bueno CG, Meng Y, Neuenkamp L (2022). How can mycorrhizal symbiosis mediate multiple abiotic stresses in woody plants? Flora 295:152146. https://doi.org/10.1016/j.flora.2022.152146

Bugalho MN, Caldeira MC, Pereira JS, Aronson J, Pausas JG (2011). Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment 9(5):278-286. https://doi.org/10.1890/100084

Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T (2019). Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress-a meta-analysis. Frontiers in Plant Science 10:457. https://doi.org/10.3389/fpls.2019.00457

Chatin AD (1892). La truffe. JB Baillière, Paris.

Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, Jiang Y, Liu A, Zhao P, Wang M, Ahammed GJ (2017). Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology 8:2516. https://doi.org/10.3389/fmicb.2017.02516

Chevalier G, Grente J (1979). Application pratique de la symbiose ectomycorhizienne : production à grande échelle de plants mycorhizés par la truffe [Practical application of ectomycorrhizal symbiosis: large-scale production of mycorrhizal plants by the truffle]. Mushroom Science 10(2):483-505.

Choi D, Watanabe Y, Guy RD, Sugai T, Toda H, Koike T (2017). Photosynthetic characteristics and nitrogen allocation in the black locust (Robinia pseudoacacia L.) grown in a FACE system. Acta Physiologiae Plantarum 39:71. doi:10.1007/s11738-017-2366-0

Comas LH, Bouma TJ, Eissenstat DM (2002). Linking root traits to potential growth rate in six temperate tree species. Oecologia 132:34-43.

Dib S, Fortas Z (2019). Inoculation with desert truffles increases growth of the forest seedlings Quercus ilex L. and Pinus halepensis M. Asian Journal of Microbiology Biotechnology & Environmental Sciences 21:907-914.

Dupuy JL, Boivin T, Duché Y, Martin-Stpaul N, Pimont F, Rigolot E (2015). Impact du changement climatique sur les risques en forêt : le cas de l’incendie et de ses interactions avec la sécheresse et les pullulations d’insectes [Impact of climate change on forest risks: the case of fire and its interactions with drought and insect outbreaks]. Innovations Agronomiques 29-47.

El Abidine AZ (2003). Forest decline in Morocco: causes and control strategy. Science et changements planétaires/ Sécheresse 14(4):209-218.

Ellsworth DS, Thomas R, Crous KY, Palmroth S, Ward E, Maier C, Delucia E, Oren R (2012). Elevated CO2 affects photosynthetic responses in canopy pine and subcanopy deciduous trees over 10 years: a synthesis from Duke Face. Global Change Biology 18:223-242. https://doi.org/10.1111/j.1365-2486.2011.02505.x

Farguell J, Úbeda X, Pacheco E (2022). Shrub removal effects on runoff and sediment transport in a Mediterranean experimental catchment (Vernegà River, NE Spain). Catena 210:105882. https://doi.org/10.1016/j.catena.2021.105882

Fester F, Schmidt D, Lohse S, Walter MH, Giuliano G, Bramley PM, Fraser PD, Hause B, Strack D (2002). Stimulation of carotenoid metabolism in arbuscular mycorrhizal roots. Planta 216:148-154. https://doi.org/10.1007/s00425-002-0917-z

Gaiser T, Perkons U, Küpper PM, Kautz T, Uteau-Puschmann D, Ewert F, Enders A, Krauss G (2013). Modeling biopore effects on root growth and biomass production on soils with pronounced subsoil clay accumulation. Ecological Modelling 256:6-15. https://doi.org/10.1016/j.ecolmodel.2013.02.016

Jia-Dong H, Tao D, Hui-Hui W, Ying-Ning Z, Qiang-Sheng W, Kamil K (2019). Mycorrhizas induce diverse responses of root TIP aquaporin gene expression to drought stress in trifoliate orange. Scientia Horticulturae 243:64-69. https://doi.org/10.1016/j.scienta.2018.08.010

Kagan-Zur V, Roth-Bejerano N, Sitrit Y, Morte A (2013). Desert Truffles: Phylogeny, Physiology, Distribution and Domestication. Soil Biology 38 (Springer Science& Business Media ed), Berlin Heidelberg, Germany

Katanić M, Orlović S, Grebenc T, Bajc M, Pekeč S, Drekić M, Kraigher H (2019). Ectomycorrhizae of Norway spruce from its southernmost natural distribution range in Serbia. iForest 12:43-50. https://iforest.sisef.org/pdf/?id=ifor2729-011

Khrizi A, Zitouni-Haouar FEH, Fortas Z (2022). Growth promotion and mycorrhizal colonization of Argan (Argania spinosa (L.) Skeels) inoculated with the edible desert truffle Tirmania nivea (Desf.) Trappe. PeerJ 10:e13769. https://doi.org/10.7717/peerj.13769

Ksontini M, Louguet P, Laffray D, Rejeb MN (1998). Comparaison des effets de la contrainte hydrique sur la croissance, la conductance stomatique et la photosynthèse de jeunes plants de chênes méditerranéens (Quercus suber, Q. faginea, Q. coccifera) en Tunisie [Comparison of the effects of water stress on growth, stomatic conductance and photosynthesis of young Mediterranean oak plants (Quercus suber, Q. faginea, Q. coccifera) in Tunisia]. Annals of Forest Science 55:477-495.

Li Y, He N, Hou J, Li Xu C, Zhang J, Wang Q, Zhang X, Wu X (2018). Factors influencing leaf chlorophyll content in natural forests at the biome scale. Frontiers in Ecology and Evolution 6(64):1-10. https://doi.org/10.3389/fevo.2018.00064

Lü LH, Wu QS (2017). Mycorrhizas promote plant growth, root morphology and chlorophyll production in white clover. Biotechnology 16:34-39. https://doi.org/10.3923/biotech.2017.34.39

Long SP, Bernacchi CJ (2003). Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. Journal of Experimental Botany 54(392):2393-2401. https://doi.org/10.1093/jxb/erg262

Madouh TA, Quoreshi AM (2023). The function of arbuscular mycorrhizal fungi associated with drought stress resistance in native plants of arid desert ecosystems: A review. Diversity 15(3):391. https://doi.org/10.3390/d15030391

Malençon G (1952). Contribution à l'étude des champignons de la Kroumirie [Contribution to the study of Kroumirie mushrooms]. Bulletin de la Societe Botanique de France 99(10):33-52.

Medrano H, Tomás T, Martorell S, Flexas J, Hernández I, Rosselló J, Pou A, Escalona JM, Bota J (2015). From leaf to whole-plant water use efficiency (WUE) in complex canopies: Limitations of leaf WUE as a selection target. Crop Journal 3 (3):220-228. https://doi.org/10.1016/j.cj.2015.04.002

Meng F, Peng M, Pang H, Huang F (2014). Comparison of photosynthesis and leaf ultrastructure on two black locusts (Robinia pseudoacacia L.). Biochemical Systematics and Ecology 55:170-175. https://doi.org/10.1016/j.bse.2014.03.025

Mikiciuk G, Sas-Paszt L, Mikiciuk M, Derkowska E, Trzciński SP, Głuszek LA, Wera-Bryl L, Rudnicka J (2019). Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza 29:489–501. https://doi.org/10.1007/s00572-019-00905-2

Morte A, Lovisolo C, Schubert A (2000). Effect of drought stress on growth and water relations of the mycorrhizal association Helianthemum almeriense-Terfzia claveryi. Mycorrhiza 10:115-119. https://doi.org/10.1007/s005720000066

Morte A, Zamora M, Gutiérrez A, Honrubia M (2009). Desert Truffle Cultivation in semiarid Mediterranean Areas. In: Azcón-Aguilar et al. (Eds). Mycorrhizas Functional Processes and Ecological Impact. Springer Verlag press, Heidelberg, Berlin pp 221-233.

Orlović S, Drekić M, Matović B, Poljaković-Pajnik L, Stevanov Stojanović M, D, Stojnić S (2014). Serbian Forestry - achievement of millennium goals in the era of climate change and globalization. Bulletin of the Faculty of Forestry - University of Belgrade (suppl):89-112. http://dx.doi.org/ 10.2298/GSF14S1089O

Phillips JM, Hayman DS (1970). Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society 55:158-IN18. https://doi.org/10.1016/S0007-1536(70)80110-3

Porra RJ, Thompson WA, Kriedemann PE (1989). Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics 975(3):384-394. https://doi.org/10.1016/S0005-2728(89)80347-0

Qin J, Feng B (2022). Life cycle and phylogeography of true Truffles. Genes 13(1):145. https://doi.org/10.3390/genes13010145

Sanders TGM, Pitman R, Broadmeadow MSJ (2014). Species-specific climate response of oaks (Quercus spp.) under identical environmental conditions. iForest 7:61-69. https://doi.org/10.3832/ifor0911-007

Savoie J M, Largeteau ML (2011). Production of edible mushrooms in forests: trends in development of a mycosilviculture. Applied Microbiology and Biotechnology 89(4):971-979. https://doi.org/10.1007/s00253-010-3022-4

Selosse MA, Richard F, He X, Simard SW (2006). Mycorrhizal networks: les liaisons dangeureuses? [Mycorrhizal networks: dangerous links?]. Trends in Ecology and Evolution 21:621-628. https://doi.org/10.1016/j.tree.2006.07.003

Shi L, Wang J, Liu B, Nara K, Lian C, Shen Z, Xia Y, Chen Y (2017). Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments. Mycorrhiza 27:823-830. https://doi.org/10.1007/s00572-017-0795-7

Shi S, Luo X, Dong X, Qiu Y, Xu C, He X (2021). Arbuscular mycorrhization enhances nitrogen, phosphorus and potassium accumulation in Vicia faba by modulating soil nutrient balance under elevated CO2. Journal of Fungi 7:361. https://doi.org/10.3390/jof7050361

Simard S, Austin M (2010). The role of mycorrhizas in forest soil stability with climate change, climate change and variability. IntechOpen 275-302. https://doi.org/10.5772/9813

Singsaas EL, Ort DR, DeLucia EH (2001). Variation in measured values of photosynthetic quantum yield in ecophysiological studies. Oecologia 128(1):15-23. https://doi.org/10.1007/s004420000624

Sisti D, DonatiZeppa S, Amicucci A, VittoriAntisari L, Vianello G, Puliga F, Zambonelli A (2022). The bianchetto truffle (Tuber borchii) a lead resistant ectomycorrhizal fungus increases Quercus cerris phytoremediation potential. Environmental Microbiology 24(12):6439-6452. https://doi.org/10.1111/1462-2920.16273

Slama A, Fkiri S, Fortas Z, Nasr Z, Khaldi A (2021). Morphological responses of Quercus suber L. and Q. coccifera L. seedlings to mycorrhization with desert truffle Terfezia boudieri Chatin. Journal of Material Environmental Science 12(9):1165-1175.

Slama A, Fortas Z, Boudabous A, Neffati M (2010). Cultivation of an edible desert truffle (Terfezia boudieri Chatin). African Journal of Microbiology Research 4:2350-2356.

Slama A, Gorai M, Fortas Z, Boudabous A, Neffati M (2012). Growth, root colonization and nutrient status of Helianthemum sessiliflorum Desf. inoculated with a desert truffle Terfezia boudieri Chatin. Saudi Journal of Biological Sciences 9(1):25-29. https://doi.org/10.1016/j.sjbs.2011.04.003

Smith SE, Read DJ (2008). Mycorrhizal Symbiosis. Academic Press (3rd ed), New York.

Southworth D, Carrington EM, Frank JL, Gould P, Harrington CA, Devine WD (2009). Mycorrhizas on nursery and field seedlings of Quercus garryana. Mycorrhiza 19:149-158. https://doi.org/10.1007/s00572-008-0222-1

Taylor BN, Strand AE, Cooper ER, Beidler KV, Schönholz M, Pritchard SG (2014). Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest. Tree Physiology 34(9):955-965. https://doi.org/10.1093/treephys/tpu058

Touhami I, Chirino E, Aouinti H, Khorchani A, Elaib MT, Khaldi A, Nasr A (2020). Decline and dieback of cork oak (Quercus suber L.) forests in the Mediterranean basin: a case study of Kroumirie, Northwest Tunisia. Journal of Forestry Research 31:1461-1477. https://doi.org/10.1007/s11676-019-00974-1

Touhami I, Rzigui T, Zribi L, Ennajah A, Dhahri S, Aouinti H… Khouja ML (2023). Climate change-induced ecosystem disturbance: a review on sclerophyllous and semi-deciduous forests in Tunisia. Plant Biology 25:481-497. https://doi.org/10.1111/plb.13524

Trouvelot E, Kough JL, Gianinazzi VP (1986). Mesure du taux de mycorhization VA d’un système radiculaire. Recherche et méthodes d’estimation ayant une signification fonctionnelle. Gianinazzi-Pearson V, Gianinazzi S, INRA Press (Eds). The Mycorrhizae: Physiology and Genetic. Paris.

Vignes D (1988). Les échanges gazeux et leur régulation chez deux espèces de Chênes à feuilles persistantes (Quercus ilex et Quercus suber) [Gas exchanges and their regulation in two Evergreen Oak species (Quercus ilex and Quercus suber)]. Bulletin de la Société Botanique de France 135(1):99-108. https://doi.org/10.1080/01811789.1988.10826890

Wang Y, Zou YN, Shu B, Wu QS (2023). Deciphering molecular mechanisms regarding enhanced drought tolerance in plants by arbuscular mycorrhizal fungi. Scientia Horticulturae 308:111591. https://doi.org/10.3389/fmicb.2021.809473

Published

2023-11-16

How to Cite

SLAMA, A., FKIRI, S., MEZNI, F., STITI, B., SALCEDO-CASTRO, J., TOUHAMI, I., KHAMMASSI, M., KHALDI, A., & NASR, Z. (2023). Effect of mycorrhization on growth and physiology performance of Quercus species. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(4), 13290. https://doi.org/10.15835/nbha51413290

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha51413290

Most read articles by the same author(s)