The growth rate and genetic variability of Scots pine (Pinus sylvestris L.) half-sibs in test crops of Northern Kazakhstan


  • Yana KREKOVA A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry, Department of Breeding, 58 Kirov Street, Shchuchinsk (KZ)
  • Nadezhda CHEBOTKO A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry, Department of Breeding, 58 Kirov Street, Shchuchinsk (KZ)
  • Dmitry KAGAN Forest Institute of the National Academy of Sciences of Belarus, Research Department of Genetics, Breeding and Biotechnology, 71 Proletarskaya Street, Gomel (BY)
  • Svetlana IVANOVSKAYA Forest Institute of the National Academy of Sciences of Belarus, Research Department of Genetics, Breeding and Biotechnology, 71 Proletarskaya Street, Gomel (BY)
  • Yekaterina VIBE A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry, Department of Breeding, 58 Kirov Street, Shchuchinsk (KZ)
  • Andrey KABANOV A.N. Bukeikhan Kazakh Research Institute of Forestry and Agroforestry, Department of Breeding, 58 Kirov Street, Shchuchinsk (KZ)



genetic diversity, growth rate, isoenzymes, microsatellites, Pinus sylvestris L.


Scots pine (Pinus sylvestris L.) is a valuable tree species, playing an important role in maintaining the ecological and economic balance not only in Kazakhstan, but also in many countries around the world. The purpose of this study was to assess the growth rate and to identify the genotypes of the half-sib progeny of Scotch pine plus trees in order to further obtain high-quality seeds with valuable genetic traits. A molecular genetic analysis was carried out using six microsatellite and 20 isoenzyme loci on 15 Scots pine half-sib families, represented by two samples of seeds collected in the subsequent harvesting periods (planted in 1986 and 1987), that evaluated the taxonomic characteristics such as tree height and trunk diameter (DBH, measured at 1.3 meters). Families with the highest growth rate in both samples were selected as candidates for the elite group. During the SSR analysis, a decrease in the level of expected heterozygosity (0.2377-0.5362 with an average value of 0.4593) was observed in P. sylvestris L. half-sibs compared to the sample of maternal plus trees (0.5444), with similar results to that of the “founder effect”. At the same time, the level of observed heterozygosity remained sufficiently high (0.3333-0.7037 with an average value of 0.4980 and 0.4556, respectively). During the isoenzyme analysis, the level of genetic variability either decreased or was similar to that of the maternal trees. Rare and unique alleles were found in seed samples of the analysed tree families. In general, this research showed that a comprehensive evaluation combining both traditional breeding methods (genetic assessment of progeny in the course of growth) and molecular genetic analysis is required for the selection of elite trees.


Ahn J-Y, Lee J-W, Hong K-N (2021). Genetic diversity and structure of Pinus densiflora Siebold & Zucc. populations in Republic of Korea based on microsatellite markers. Forests 12(6):750.

Auckland LD, Bui T, Zhou Y, Shepherd M, Williams CG (2002) Conifer Microsatellite Handbook; A&M University: College Station, TX, USA

Belletti P, Ferrazzini D, Piotti A, Monteleone I, Ducci F (2012). Genetic variation and divergence in Scots pine (Pinus sylvestris L.) within its natural range in Italy. European Journal of Forest Research 131:1127-1138.

Bessega C, Pometti C, Ewens M, Saidman BO, Vilardi JC (2015). Improving initial trials in tree breeding using kinship and breeding values estimated in the wild: the case of Prosopis alba in Argentina. New Forests 46:427-448.

Bilgen BB, Kaya N (2007). Allozyme variations in six natural populations of Scots pine (Pinus sylvestris) in Turkey. Biologia, Section Botany 62(6):697-703.

Blumenröther M, Bachmann M, Müller-Starck G (2001) Genetic characters and diameter growth of provenances of Scots pine (Pinus sylvestris L.). Silvae Genetica 50(5-6):212-222.

Bradshaw HD, Stettler RF (1994). Molecular genetics of growth and development in Populus. II. Segregation distortion due to genetic load. Theoretical and Applied Genetics 89(5):551-558.

Calleja-Rodriguez A, Li Z, Hallingbäck HR, Sillanpää MJ, Wu HX, Abrahamsson S, Garcia-Gil MR (2019). Analysis of phenotypic- and Estimated Breeding Values (EBV) to dissect the genetic architecture of complex traits in a Scots pine three-generation pedigree design. Journal of Theoretical Biology 462:283-292.

Cheliak WM, Pitel JA (1984). Techniques for starch gel electrophoresis of enzymes from forest tree species. Petawawa National Forestry Institute.

Cholastova T, Knotova D (2012). Using morphological and microsatellite (SSR) markers to assess the genetic diversity in alfalfa (Medicago sativa L.). World Academy of Science, Engineering and Technology 69:856-862.

Conkle MT, Hodgskiss PO, Nunnally LB, Hunter SC (1982). Starch gel electrophoresis of conifer seeds: A Laboratory Manual. U.S.D.A. Gen. Techn. Rept. PSW-64.

Dar A, Mahajan R, Sharma S (2019). Molecular markers for characterization and conservation of plant genetic resources. Indian Journal of Agricultural Sciences 89(11):1755-1763.

Doyle JJ, Doyle JL (1990). Isolation of plant DNA from fresh tissue. Focus 12(1):13-15.

Dzialuk A, Burczyk J (2002). Comparison of genetic diversity of Scots pine (Pinus sylvestris L.) from qualified seed tree stand and clonal seed orchard. Ecological Questions 2:89-94.

Efimov YP (1981). Rost polusibsovogo potomstva sosny obyknovennoj ih semjan raznyh reprodukcija. Razrabotka osnov sistemy selekcii drevesnyh porod [Growth of the half-sibs progeny of Scots pine, their seeds of different reproduction. Development of the basics of the breeding system of tree species]. Riga 1:73-77.

Efimov YP (1994). Effinence of Scots pine seed orchards in the central part of the forest-steppe of Russia. Scots pine breeding and genetics: Proceedings of the IUFRO S.02.18 Symposium; Lithuania - Kaunas - Girionys pp 130-134.

Efimov YP (2010). Semennye plantacii v selekcii i semenovodstve sosny obyknovennoj [Seed plantations in breeding and seed production of Scots pine]. Voronezh, Istok Publishing House.

Egorov MN (2002). Ispytanie potomstv kak odna iz kljuchevyh problem v genetike i selekcii drevesnyh porod (na primere Pinus sylvestris L.) [The progeny testing as one of the key problems in tree breeding (on the example of Pinus sylvestris L.)]. Forestry Bulletin 5:37-44.

Fischer D, Wimp G, Hersch-Green E, Bangert R, LeRoy C, Bailey J, Schweitzer J, Dirks C, Hart S, Allan G, Whitham T (2017). Tree genetics strongly affect forest productivity, but intraspecific diversity-productivity relationships do not. Functional Ecology 31(2):520-529.

Floran V, Gene S, Sestras R, Rosario M, Gill G (2010) Genetic variability in populations of Scots pine from Romania and Sweden. Bulletin UASVM Horticulture 67(1):481.

Ganopoulos I, Moysiadis T, Aliki Х, Ganopoulou M, Avramidou E, Filippos A, Tani E, Madesis P, Athanasios Т, Kazantzis K (2015). Diversity of morpho-physiological traits in worldwide sweet cherry cultivars of GeneBank collection using multivariate analysis. Scientia Horticulturae 197(14):381-391.

Gargiulo R, Saubin M, Rizzuto G, West B, Fay, MF, Kallow S, Trivedi C (2019). Genetic diversity in British populations of Taxus baccata L.: Is the seedbank collection representative of the genetic variation in the wild? Biological Conservation 233:289-297.

Giertych M (1994). Index selection among full-sib Scots pine progenies affected by year when progeny obtained. Scots pine breeding and genetics: Proceedings of the IUFRO S.02.18 Symposium; Lithuania - Kaunas - Girionys pp 135-139.

Goncharenko GG, Padutov VY, Potenko VV (1989). Rukovodstvo po issledovaniju hvojnyh vidov metodom jelektroforeticheskogo analiza izofermentov [Guidelines for the study of coniferous species by electrophoretic analysis of isoenzymes]. Belarus, Gomel.

Gorchakovsky PL (1987). Lesnye oazisy Kazahskogo melkosopochnika [Forest oases of the Kazakh uplands]. Russia, Moscow pp 157.

Haapanen M, Jansson G, Nielsen UB, Steffenrem A, Stener L-G (2015). The status of tree breeding and its potential for improving biomass production. Skogforsk, Uppsala. Retrieved 2023 June 27 from:

Hanaoka S, Kato K (2022) Estimation of optimal timing of early selection based on time trends of genetic parameters in Abies sachalinensis. Silvae Genetica 71(1):31-38.

Hedrick P (2003). Genetika populjacij [Genetics of populations]. In: Lushnikova AA, Petrova NV (Eds). Moscow. Technosphere.

Ishibashi V, Junior PCF, Martinez DT, Higa AR (2021). Genetic selection of Pinus taeda L. through multi-environment trial. Floresta 51(1):211.

Isik F (2014). Genomic selection in forest tree breeding: the concept and an outlook to the future. New Forests 45:379-401.

Ivetić V, Devetaković J, Nonić M, Stanković D, Šijačić-Nikolić M (2016). Genetic diversity and forest reproductive material - from seed source selection to planting. iForest 9(5):801-812.

Jelinski DE (1993). Associations between environmental heterogeneity, heterozygosity, and growth rates of Populus tremuloides in a Cordilleran landscape. Arctic and Alpine Research 25:183-188.

Kalia RK, Rai M, Kalia S, Singh R, Dhawan AK (2011). Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309-334.

Kavaliauskas D, Danusevičius D, Baliuckas V (2022). New insight into genetic structure and diversity of Scots pine (Pinus sylvestris L.) populations in Lithuania based on nuclear, chloroplast and mitochondrial DNA markers. Forests 13:1179.

Konecka A, Tereba A, Studnicki M, Buraczyk W, Szeligowski H, Brzeziecki B, Bielak K (2021). How the virtual thinning can help to control the changing of genetic structure in Scots pine stands? Environmental Sciences Proceedings 3:31.

Kosinska J, Lewandowski A, Chalupka W (2007). Genetic variability of Scots pine maternal populations and their progenies. Silva Fennica 41(1):5-12.

Kowalczyk J (2005). Comparison of phenotypic and genetic selections in Scots pine (Pinus sylvestris L.) single tree plot half-sibs progeny tests. Dendrobiology 53:45-56.

Krakau UK, Liesebach M, Aronen T, Lelu-Walter MA, Schneck V (2013). Scots pine (Pinus sylvestris L.). In: Forest tree breeding in Europe: Current state-of-the-art and perspectives. Dordrecht: Springer Netherlands, pp 267-323.

Lande R, Thompson R (1990). Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743-756.

Leeuwen M, Hilker T, Coops N, Frazer G, Wulder M, Newnham G, Culvenor D (2011). Assessment of standing wood and fiber quality using ground and airborne laser scanning: A review. Forest Ecology and Management 261(9):1467-1478

Liesebach H, Liepe KJ, Bäucker C (2021). Towards new seed orchard designs in Germany – A review. Silvae Genetica 70:84-98.

Maňka P, Kormuták A, Galgóci M, Gӧmӧry D (2015). Genetic status of the putative hybrid swarms of mountain dwarf pine and Scots pine in contact zones of their distribution in Slovakia. Biologia, Section Botany 70(10):1318-1325.

Mitton JB, Grant MC (1984). Association among protein heterozygosity, growth rate, and developmental homeostasis. Annual Review of Ecology and Systematic 15:479-499.

Müller-Starck G (1995). Protection of genetic variability in forest trees. Forest Genetics 2(3):121-124.

Mullin T, Adams G, Simpson D, Tosh KJ, Greenwood MS (1995). Genetic parameters and correlations in tests of open-pollinated black spruce families in field and retrospective nursery test environments. Canadian Journal of Forest Research 25:270-285.

Nielsen UB, Hansen OK (2012). Genetic worth and diversity across 18 years in a Nordmann fir clonal seed orchard. Annals of Forest Science 69:69-80.

Pakull B, Eusemann P, Wojacki J, Ahnert D, Liesebach H (2021). Genetic diversity of seeds from four German Douglas fir (Pseudotsuga menziesii) seed orchards. European Journal of Forest Research 140:1543-1557.

Peakall R, Smouse PE (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28(19):2537-2539.

Pojasnitelnaja zapiska k materialam gosudarstvennogo lesnogo kadastra i kadastra osobo ohranjaemyh lesnyh territorij lesnogo fonda Respubliki Kazahstan po sostojaniju na 01.01.2021 [Explanatory note to the materials of the state forest cadastre and the cadastre of specially protected forest areas of the forest fund of the Republic of Kazakhstan as of 01/01/2021]. Respublikanskoe gosudarstvennoe kazennoe predprijatie «Kazahskoe lesoustroitelnoe predprijatie». (2021). Kazakhstan, Almaty.

Prikaz Ministra ohrany okruzhajushhej sredy Respubliki Kazahstan ot 27 avgusta 2013 goda № 258-Ө: «Ob utverzhdenii Pravil vyjavlenija, sozdanija i jekspluatacii obektov selekcionno-semenovodcheskogo naznachenija [Order of the Minister of Environmental Protection of the Republic of Kazakhstan of August 27 (2013). No. 258-O About approval of Rules of identification, creation and operation of subjects to selection and seed-growing appointment]. Retrieved: 2023 February 19 from:

Prikaz Ministra sel'skogo hozjajstva Respubliki Kazahstan ot 12 ijulja 2011 goda № 14-1/392: «Ob utverzhdenii vozrasta rubki lesa na territorii gosudarstvennogo lesnogo fonda» [Order of the Minister of Agriculture of the Republic of Kazakhstan of July 12 (2011). No. 14-1/392 About approval of the forest felling age on the territory of the state forest fund]. Retrieved 2023 February 16 from:

Prunier J, Verta JP, MacKay JJ (2016). Conifer genomics and adaptation: at the crossroads of genetic diversity and genome function. New Phytologist 209(1):44-62.

Przybylski P, Masternak K, Jastrzębowski S (2020). Isozyme polymorphism and seed and cone variability of Scots pine (Pinus sylvestris L.) in relation to local environments in Poland. Folia Forestalia Polonica, Series A – Forestry 62(2):88-99.

Przybylski P, Matras J, Sułkowska M (2015). Genetic variability of Scots pine (Pinus sylvestris L.) in maternal regions of provenance. Folia Forestalia Polonica, Series A 57(2):112-119.

Przybylski P, Mohytych V, Rutkowski P, Tereba A, Tyburski Ł, Fyalkowska K (2021). Relationships between some biodiversity indicators and crown damage of Pinus sylvestris L. in natural old growth pine forests. Sustainability 13:1239.

Raevsky BV, Ignatenko RV, Novichonok EV, Prokopiuk VM, Kuklina KK (2022). The current state of conifer species breeding and seed production. News of higher educational institutions. Forestry Journal 6:9-37. (In Russ.)

Rakoczy-Trojanowska M, Bolibok H (2004). Characteristics and a comparison of three classes of microsatellite-based markers and their application in plants. Cellular & Molecular Biology Letters 9(2):221-238.

Rédei K, Keserű Z, Csiha I, Rásó J, Bakti B, Takács M (2018). Improvement of black locust (Robinia pseudoacacia L.) growing under marginal site conditions in Hungary: case studies. Acta Agraria Debreceniensis 129-133.

Rosales-Islas E, Octavio-Aguilar P. (2023). Effect of forest management on the genetic diversity of Abies hidalgensis, a threatened species with restricted distribution. Journal of Forest Science 69(5):193-204.

Rosvall O, Mullin TJ, Lindgren D (2003). Controlling parent contributions during positive assortative mating and selection increases gain in long-term forest tree breeding. Forest Genetics 10(1):35-53.

Savoliainen O, Hedrick P (1995). Heterozygosity and fitness: no association in Scots pine. Genetics 140(2):755-766.

Schaberg PG, Dehayes DH, Hawley GJ, Nijensohn SE (2008). Anthropogenic alterations of genetic diversity within tree populations: implications for forest ecosystem resilience. Forest Ecology Management 256:855-862.

Sebastiani F, Pinzauti F, Kujala S, González-Martínez S, Giovanni Giuseppe V (2012). Novel polymorphic nuclear microsatellite markers for Pinus sylvestris L. Conservation Genetics Resources 4:231-234.

Senan S, Kizhakayil D, Bhas S, Sheeja T.E. (2014). Methods for Development of Microsatellite Markers: An Overview. Notulae Scientia Biologicae 6(1):1-13.

Sheller M, Tóth EG, Ciocîrlan E, Mikhaylov P, Kulakov S, Kulakova N, Melnichenko N, Ibe A, Sukhikh T, Curtu AL (2023). Genetic diversity and population structure of Scots pine (Pinus sylvestris L.) in Middle Siberia. Forests 14:119.

Shulga VV (1974). Vnutrividovaja izmenchivost sosny obyknovennoj na juge ejo areala (v Kazahstane) [Intraspecific variability of Scots pine in the south of its range (in Kazakhstan)]. Lesa i drevesnye porody Severnogo Kazahstana. Russia, Leningrad pp 61-71.

Şofletea N, Mihai M, Ciocîrlan E, Curtu AL (2020). Genetic diversity and spatial genetic structure in isolated Scots pine (Pinus sylvestris L.) populations native to Eastern and Southern Carpathians. Forests 11(10):1047.

Stinchcombe JR, Rutter MT, Burdick DS, Tiffin P, Rausher MD, Mauricio R (2002). Testing for environmentally induced bias in phenotypic estimates of natural selection: theory and practice. The American Naturalist 160(4):511-523.

Sun X, Xie Y, Bi Y, Liu J, Amombo E, Hu T, Fu J (2015). Comparative study of diversity based on heat tolerant-related morpho-physiological traits and molecular markers in tall fescue accessions. Scientific Reports 5(1):18213

Swofford DL, Selander RB (1981). BIOSYS-1: a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematic. Journal of Heredity 72(4):281-283.

Taheri S, Abdullah T, Rafii M, Hanafi M, Sahebi M, Azizi P, Shamshiri R (2018). Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules 23(2):399.

Tikhonova IV (2015) O svjazi geterozigotnosti sosny obyknovennoj (Pinus sylvestris L.) s polovym tipom i chuvstvitelnostju derevev k vozdejstviju faktorov okruzhajushhej sredy [On the connection between the heterozygosity of Scots pine (Pinus sylvestris L.) and the sexual type and sensitivity of trees to environmental factors]. Sibirskij jekologicheskij zhurnal. 4:555-562.

Tikhonova IV, Ekart AK, Kravchenko AN, Tikhonova NA (2021) Genetic variability in Pinus sylvestris, Picea obovata, and Abies sibirica populations and in felling in the Southern Taiga of Central Siberia. Russian Journal of Genetics 57(3):297-310.

Tóth EG, Vendramin GG, Bagnoli F, Cseke K, Höhn M (2017). High genetic diversity and distinct origin of recently fragmented Scots pine (Pinus sylvestris L.) populations along the Carpathians and the Pannonian Basin. Tree Genetics & Genomes 13:47.

Vidyakin AI (2010). Geneticheskaja ocenka pljusovyh derevev sosny obyknovennoj po rostu semennogo potomstva v ispytatelnyh kulturah [Genetic evaluation of plus trees of Scots pine by the growth of seed progeny in test cultures]. Agrarnyj vestnik Urala 8(74):58-60.

Volk GM, Henk AD, Richards CM (2004). Genetic diversity among U.S. garlic clones as detected using AFLP methods. Journal of the American Society for Horticultural Science 129(4).

White TL, Adams WT, Neale DB (2007). Forest Genetics. Oxfordshire: CAB International.

Wojacki J, Eusemann P, Ahnert D, Pakull B, Liesebach H (2019). Genetic diversity in seeds produced in artificial Douglas-fir (Pseudotsuga menziesii) stands of different size. Forest Ecology and Management 438:18-24.

Yan P, Xie Z, Feng K, Qiu X, Zhang L, Zhang H (2023) Genetic diversity analysis and fingerprint construction of Korean pine (Pinus koraiensis) clonal seed orchard. Frontiers in Plant Science 13:1079571.

Yanbaev Y, Sultanova R, Blonskaya L, Bakhtina S, Tagirova A, Tagirov V, Kulagin A (2020). Gene pool of Scots pine (Pinus sylvestris L.) under reforestation in extreme environment. Wood Research 65(3):459-470.

Yeh FC, Yang RC, Boyle T (1999). POPGENE Version 1.32: Microsoft Window-Based Freeware for Population Genetics Analysis. University of Alberta, Edmonton, Canada

Zhelev P, Evtimov I (2017). Diameter growth and survival of local half-sib families of Scots pine (Pinus sylvestris L.) in Yundola, Bulgaria. Genetika 49(3):819-829.

Additional Files



How to Cite

KREKOVA, Y., CHEBOTKO, N., KAGAN, D., IVANOVSKAYA, S., VIBE, Y., & KABANOV, A. (2023). The growth rate and genetic variability of Scots pine (Pinus sylvestris L.) half-sibs in test crops of Northern Kazakhstan. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3), 13261.



Research Articles
DOI: 10.15835/nbha51313261

Most read articles by the same author(s)