Agronomic biofortification with magnesium nanofertilizer and its effect on the nutritional quality of beans

Authors

  • Alondra SALCIDO-MARTÍNEZ Centro de Investigación en Alimentación y Desarrollo A. C. Coordinación Delicias, Av. 4º Sur 3820, Fraccionamiento Vencedores del Desierto, Cd. Delicias, Chihuahua, C. P. 33089 (MX)
  • Esteban SÁNCHEZ Centro de Investigación en Alimentación y Desarrollo A. C. Coordinación Delicias, Av. 4º Sur 3820, Fraccionamiento Vencedores del Desierto, Cd. Delicias, Chihuahua, C. P. 33089 (MX)
  • Sandra PÉREZ-ÁLVAREZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Delicias, Km. 2.5 carretera a Rosales, Poniente, 33000, Delicias, Chihuahua, México Chihuahua (MX)
  • Carlos A. RAMÍREZ-ESTRADA Centro de Investigación en Alimentación y Desarrollo A. C. Coordinación Delicias, Av. 4º Sur 3820, Fraccionamiento Vencedores del Desierto, Cd. Delicias, Chihuahua, C. P. 33089 (MX)

DOI:

https://doi.org/10.15835/nbha51413246

Keywords:

biofortification, magnesium, nanofertilizer, nanotechnology, Phaseolus vulgaris L.

Abstract

Crop quality has been compromised due to nutrient deficiencies. The macronutrient magnesium (Mg) is essential; however, it has not been considered in agronomic fertilization programs, affecting human health. The objective of the study was to increase the Mg content in the fruits of green beans cv. ‘Strike’ by applying Mg-nanofertilizer, as well as evaluating its effect on growth, performance and nutritional quality, versus magnesium sulfate (MgSO4). The experiment was carried out under shade mesh conditions in Delicias, Chihuahua, Mexico during the period August-October 2022. A completely randomized experimental design was used, with two Mg sources: Mg nanofertilizer (NanoMg) and MgSO4 at doses of 50, 100 and 200 ppm and a control without application, forming seven treatments with six repetitions each. The results indicate that the maximum yield was provided by NanoMg and MgSO4 at 200 ppm, with values greater than 300%. The Mg distribution pattern for the NanoMg treatments presented the following concentration order: root>leaf>stem>fruit; while, for the MgSO4 treatments it was: leaf>root>stem>fruit. The most efficient treatment in increasing the Mg content in the fruit was NanoMg at 200 ppm, which achieved a biofortification of more than 120% with respect to the control. Therefore, when consuming 100 g of green beans cv. ‘Strike’ biofortified by NanoMg, the recommended daily needs of the human being could be satisfied. Finally, it is concluded that nanofertilizers are the best option for a biofortification program since they offer a sustainable alternative by increasing productivity and quality in green bean fruits.

References

Anaya-López JL, Ibarra-Pérez FJ, Rodríguez-Cota FG, Ortega-Murrieta PF, Acosta-Gallegos JA, Chiquito-Almanza E (2021). Leguminosas De Grano En México: Variedades Mejoradas De Frijol Y Garbanzo Desarrolladas Por El INIFAP (Grain Legumes in Mexico: Improved Bean and Chickpea Varieties Developed by INIFAP). Revista Mexicana De Ciencias Agrícolas 12(25):63-75. https://doi.org/10.29312/remexca.v12i25.2827

Barbagallo M, Veronese N, Dominguez LJ (2021). Magnesium in aging, health and diseases. Nutrients 13(2):463. https://doi.org/10.3390/nu13020463

Blasco B, Graham N S, Broadley MR (2015). Antioxidant response and carboxylate metabolism in Brassica rapa exposed to different external Zn, Ca, and Mg supply. Journal of Plant Physiology 176:16-24. https://doi.org/10.1016/j.jplph.2014.07.029

Buturi CV, Mauro RP, Fogliano V, Leonardi C, Giuffrida F (2021). Mineral biofortification of vegetables as a tool to improve human diet. Foods 10(2):223. https://doi.org/10.3390/foods10020223

Calvo NIR, Echeverría HE, Rozas HS (2008). Comparación de métodos de determinación de nitrógeno y azufre en planta: Implicancia en el diagnóstico de azufre en trigo [Comparison of methods for determining nitrogen and sulfur in plants: Implication in the diagnosis of sulfur in wheat]. Ciencia del Suelo 26(2):161-167.

Chaudhry AH, Nayab S, Hussain SB, Ali M, Pan Z (2021). Current understandings on magnesium deficiency and future outlooks for sustainable agriculture. International Journal of Molecular Sciences 22(4):1819. https://doi.org/10.3390/ijms22041819

Chen ZC, Peng WT, Li J, Liao H (2018). Functional dissection and transport mechanism of magnesium in plants. Seminars in Cell & Developmental Biology 74:142-152. https://doi.org/10.1016/j.semcdb.2017.08.005

Ciscomani-Larios JP, Sánchez-Chávez E, Jacobo-Cuellar JL, Sáenz-Hidalgo HK, Orduño-Cruz N, Cruz-Alvarez O, Ávila-Quezada GD (2021). Biofortification efficiency with magnesium salts on the increase of bioactive compounds and antioxidant capacity in snap beans. Ciência Rural 51(6):e20200442. https://doi.org/10.1590/0103-8478cr20200442

Coelho ARF, Luís IC, Marques AC, Pessoa CC, Daccak D, Silva MM, … Lidon F (2022). Mineral Interaction in Biofortified Tomatoes (Lycopersicum esculentum L.) with Magnesium. Biology and life sciences forum MDPI 16(1):16. https://doi.org/10.3390/IECHo2022-12509

de Baaij JH, Hoenderop JG, Bindels RJ (2015). Magnesium in man: implications for health and disease. Physiological Reviews 95(1):1-46. https://doi.org/10.1152/physrev.00012.2014

Delfani M, Baradaran-Firouzabadi M, Farrokhi N, Makarian H (2014). Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in Soil Science and Plant Analysis 45:530-540. https://doi.org/10.1080/00103624.2013.863911

DiNicolantonio JJ, O’Keefe JH, Wilson W (2018). Subclinical magnesium deficiency: a principal driver of cardiovascular disease and a public health crisis. Open Heart 5(1):e000668. https://doi.org/10.1136/openhrt-2017-000668

Echeverría-Machado I (2019). El tamaño sí importa: Los nanofertilizantes en la era de la agricultura de precisión [Size Does Matter: Nanofertilizers in the Age of Precision Agriculture]. Desde el Herbario CICY 11:69-75.

Elemike E, Uzoh I, Onwudiwe D, Babalola O (2019). The Role of Nanotechnology in the Fortification of Plant Nutrients and Improvement of Crop Production. Applied Sciences 9(3):499. https://doi.org/10.3390/app9030499

Espinoza-García N, Martínez-Martínez R, Chávez-Servia JL, Vera-Guzmán AM, Carrillo-Rodríguez JC, Heredia-García E, Velasco-Velasco VA (2016). Contenido de minerales en semilla de poblaciones nativas de frijol común (Phaseolus vulgaris L.) [Mineral content in seeds of native populations of common bean (Phaseolus vulgaris L.)]. Revista fitotecnia mexicana 39(3):215-223. https://www.redalyc.org/pdf/610/61046936005.pdf

Fiorentini D, Cappadone C, Farruggia G, Prata C (2021). Magnesium: biochemistry, nutrition, detection, and social impact of diseases linked to its deficiency. Nutrients 13(4):1136. https://doi.org/10.3390/nu13041136

Gutiérrez Ruelas NJ, Sánchez Chávez E, Ojeda Barrios DL, Hernández Rodríguez OA (2018). Cap. 1 Caracterización nutricional de la biodiversidad de frijol en México con potencial a Biofortificar con micronutrientes [Nutritional characterization of bean biodiversity in Mexico with potential to Biofortify with micronutrients]. In: Sánchez Chávez E, Romero Monreal LR, Hernandez Figueroa KI (Eds). Biofortificación con micronutrientes en frijol. Plácio Cuadros, Granada, España, pp 1-38.

Hauer-Jákli M, Tränkner M (2019). Critical Leaf magnesium thresholds and the impact of magnesium on plant growth and photo-oxidative defense: a systematic review and meta-analysis from 70 years of research. Frontiers in Plant Science 776 (10):1-15. https://doi.org/10.3389/fpls.2019.00766

Hawkesford M, Horst W, Kichey T, Lamber H, Schjoerring J, Moller IS, White P (2012). Functions of macronutrients. In: Marschner P (Ed). Marschner's Mineral Nutrition of Higher Plants. 3rd Edn, London: Academic Press, pp 135-189. https://doi.org/10.1016/B978-0-12-384905-2.00006-6

Hermosillo MA (2012). Biofortificación con selenio: influencia en la capacidad antioxidante y calidad nutricional del frijol [Biofortification with selenium: influence on the antioxidant capacity and nutritional quality of beans]. Doctoral thesis. Centro de Investigación en Alimentación y Desarrollo, A.C.

Jaghdani SJ, Jahns P, Tränkner M (2021). The impact of magnesium deficiency on photosynthesis and photoprotection in Spinacia oleracea. Plant Stress 2:1040. https://doi.org/10.1016/j.stress.2021.100040

Karooki A, Yavarzadeh M, Akbarian MM, Askari AA (2021). Effects of Nanofertilizers (Mg and Fe) and Planting Data on Productivity and Quality of Potato Tubers in Cold Desert Climate. Revista Agrogeoambiental 13(1):107-116. https://doi.org/10.18406/2316-1817v13n120211580

Kleiber T, Golcz A, Krzesiński W (2012). Effect of magnesium nutrition of onion (Allium cepa L.). Part I. yielding and nutrient status. Ecological Chemistry and Engineering S 19(1):97-105. https://doi.org/10.2478/v10216-011-0010-2

Kumssa DB, Lovatt JA, Graham NS, Palmer S, Hayden R, Wilson L, Broadley MR (2019). Magnesium biofortification of Italian ryegrass (Lolium multiflorum L.) via agronomy and breeding as a potential way to reduce grass tetany in grazing ruminants. Plant and Soil 457(1-2):25-41. https://doi.org/10.1007/s11104-019-04337-x

Lu M, Liu D, Shi Z, Gao X, Liang Y, Yao Z, Chen X (2020). Nutritional quality and health risk of pepper fruit as affected by magnesium fertilization. Journal of the Science of Food and Agriculture 101(2):582-592. https://doi.org/10.1002/jsfa.10670

Majumdar S, Keller AA (2021). Omics to address the opportunities and challenges of nanotechnology in agriculture. Critical Reviews in Environmental Science and Technology 51(22):2595-2636. https://doi.org/10.1080/10643389.2020.1785264

Marschner P. (Ed.) (2012). Marschner's mineral nutrition of higher plants. San Diego, California, United Sates de America: Academic Press.

Mitra GN (2015). Magnesium (Mg) Uptake. In: Regulation of Nutrient Uptake by Plants. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2334-4_6

Neuhaus C, Geilfus CM, Mühling KH (2014). Increasing root and leaf growth and yield in Mg-deficient faba beans (Vicia faba) by MgSO4 foliar fertilization. Journal of Plant Nutrition and Soil Science 177(5):741-747. https://doi.org/10.1002/jpln.201300127

Rathore I, Tarafdar JC (2015). Perspectives of biosynthesized magnesium nanoparticles in foliar application of wheat plant. Journal of Bionanoscience 9(3):209-214. https://doi.org/10.1166/jbns.2015.1296

SAS (2004). The SAS® System for Windows® (Ver. 9.0).

Setareh JJ, Peter J, Tränkner M (2021). The impact of magnesium deficiency on photosynthesis and photoprotection in Spinacia oleracea. Plant Stress 2:100040. https://doi.org/10.1016/j.stress.2021.100040

Shaul O (2002). Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:307-321. https://doi.org/10.1023/A:1016091118585

Shinde S, Paralikar P, Ingle AP, Rai M (2018). Promotion of seed germination and seedling growth of Zea mays by magnesium hydroxide nanoparticles synthesized by the filtrate from Aspergillus niger. Arabian Journal of Chemistry 13(1):3172-3182. https://doi.org/10.1016/j.arabjc.2018.10.001

Teixeira-Guedes, CI, Oppolzer D, Barros, AI, Pereira-Wilson C (2019). Impact of cooking method on phenolic composition and antioxidant potential of four varieties of Phaseolus vulgaris L. and Glycine max L. LWT Food Science and Technology 103:238-246. https://doi.org/10.1016/j.lwt.2019.01.010

Wang Z, Hassan MU, Nadeem F, Wu L, Zhang F, Li X (2020). Magnesium fertilization improves crop yield in most production systems: a meta-analysis. Frontiers in Plant Science 24(10):1727. https://doi.org/10.3389/fpls.2019.01727

Wolf B (1982). A comprehensive system of leaf analyses and its use for diagnosing crop nutrient status. Communications in Soil Science and Plant Analysis 13(12):1035-1059. https://doi.org/10.1080/00103628209367332

Yamaji N, Ma, JF (2014). The node, a hub for mineral nutrient distribution in graminaceous plants. Trends in Plant Science 19(9):556-563. https://doi.org/10.1016/j.tplants.2014.05.007

Yan B, Hou Y (2018). Effect of Soil Magnesium on Plants: a Review. IOP Conference Series: Earth and Environmental Science 170:022168. https://doi.org/10.1088/1755-1315/170/2/022168

Zlámalová T, Elbl J, Baroň M, Bělíková H, Lampíř L, Hlušek J, Lošák, T (2016). Using foliar applications of magnesium and potassium to improve yields and some qualitative parameters of vine grapes (Vitis vinifera L.). Plant, Soil and Environment 61(10):451-457. https://doi.org/10.17221/437/2015-PSE

Published

2023-11-16

How to Cite

SALCIDO-MARTÍNEZ, A., SÁNCHEZ, E., PÉREZ-ÁLVAREZ, S., & RAMÍREZ-ESTRADA, C. A. (2023). Agronomic biofortification with magnesium nanofertilizer and its effect on the nutritional quality of beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(4), 13246. https://doi.org/10.15835/nbha51413246

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha51413246

Most read articles by the same author(s)

1 2 > >>