Metabolome and transcriptome analyses reveal the colouring mechanism of red honeysuckle (Lonicera japonica Thunb.)

Authors

  • Xiaodong ZHANG Xuchang University, Food and Pharmacy College, 88 Bayi Road, Xuchang 461000, Henan (CN)
  • Caixia LI Xuchang University, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, 88 Bayi Road, Xuchang 461000, Henan (CN)
  • Zhanchao HAO Yuzhou Traditional Chinese Medicine Standardization Center, Yuzhou 461670, Henan (CN)

DOI:

https://doi.org/10.15835/nbha51313150

Keywords:

anthocyanin, colouring mechanism, Lonicera japonica, metabolome, transcriptome

Abstract

Honeysuckle has been widely used as a medicinal herb and food additive in China for a long time. However, little is known about the pigment composition and colouring mechanism of red honeysuckle, which is a rare germplasm resource. This study aims to investigate the anthocyanin components and colouring mechanism of red honeysuckle, and to identify potential regulatory genes in the anthocyanin biosynthesis pathway. ‘Yujin 1’ and ‘Yujin 2’, with yellow-white and red flower buds, respectively, were selected for the study. Using a metabolomics method, we identified the anthocyanin components, while transcriptomics analysis was used to mine the structural and regulatory genes of the anthocyanin biosynthesis pathway. Additionally, protein-protein interaction analysis was employed to predict the regulation mechanism of anthocyanin biosynthesis. The results revealed that cyanidin-3,5-O-diglucoside, peonidin-3,5-O-diglucoside, and cyanidin-3-O-glucoside were the main pigment components of red honeysuckle. We also constructed a possible anthocyanin biosynthetic pathway and identified MYB and bHLH transcription factors that may play regulatory roles in this pathway. Furthermore, our findings suggest that bHLH23 may regulate anthocyanin biosynthesis by binding to the DFR gene promoter. These findings have significant implications for breeding new honeysuckle varieties and developing functional foods and medicines.

References

Albert NW, Davies KM, Lewis DH, Zhang H, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE (2014). A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26(3):962-980. https://doi.org/10.1105/tpc.113.122069

An JP, Zhang XW, Bi SQ, You CX, Wang XF, Hao YJ (2020). The ERF transcription factor MdERF38 promotes drought stress-induced anthocyanin biosynthesis in apple. Plant Journal 101(3):573-589. https://doi.org/10.1111/tpj.14555

An JP, Zhang XW, You CX, Bi SQ, Wang XF, Hao YJ (2019). MdWRKY40 promotes wounding-induced anthocyanin biosynthesis in association with MdMYB1 and undergoes MdBT2-mediated degradation. New Phytologist 224(1):380-395. https://doi.org/10.1111/nph.16008

Araguirang GE, Richter AS (2022). Activation of anthocyanin biosynthesis in high light–what is the initial signal? New Phytologist 236(6):2037-2043. https://doi.org/10.1111/nph.18488

Ben-Simhon Z, Judeinstein S, Trainin T, Harel-Beja R, Bar-Ya'akov I, Borochov-Neori H, Holland D (2015). A "White" anthocyanin-less pomegranate (Punica granatum L.) caused by an insertion in the coding region of the leucoanthocyanidin dioxygenase (LDOX; ANS) gene. PloS One 10(11):e0142777. https://doi.org/10.1371/journal.pone.0142777

Cai Z, Wang C, Chen C, Zou L, Yin S, Liu S, Yuan J, Wu N, Liu X (2022). Comparative transcriptome analysis reveals variations of bioactive constituents in Lonicera japonica flowers under salt stress. Plant Physiology Biochemistry 173:87-96. https://doi.org/10.1016/j.plaphy.2022.01.022

Cao W, Chen J, Li L, Ren G, Duan X, Zhou Q, Zhang M, Gao D, Zhang S, Liu X (2022). Cookies fortified with Lonicera japonica Thunb. extracts: impact on phenolic acid content, antioxidant activity and physical properties. Molecules 27(15):5033. https://doi.org/10.3390/molecules27155033

Chen Z, Yu L, Liu W, Zhang J, Wang N, Chen X (2021). Research progress of fruit color development in apple (Malus domestica Borkh.). Plant Physiology Biochemistry 162:267-279. https://doi.org/10.1016/j.plaphy.2021.02.033

Cui D, Zhao S, Xu H, Allan AC, Zhang X, Fan L, Chen L, Su J, Shu Q, Li K (2021). The interaction of MYB, bHLH and WD40 transcription factors in red pear (Pyrus pyrifolia) peel. Plant Molecular Biology 106(4-5):407-417. https://doi.org/10.1007/s11103-021-01160-w

da Silva FL, Escribano-Bailón MT, Pérez Alonso JJ, Rivas-Gonzalo JC, Santos-Buelga C (2007). Anthocyanin pigments in strawberry. LWT - Food Science and Technology 40(2):374-382. https://doi.org/10.1016/j.lwt.2005.09.018

Duan Z, Tian S, Yang G, Wei M, Li J, Yang F (2021). The basic Helix-Loop-Helix transcription factor SmbHLH1 represses anthocyanin biosynthesis in eggplant. Frontiers in Plant Science 12:757936. https://doi.org/10.3389/fpls.2021.757936

Editorial Committee of Flora of China (1988). Flora of China [中国植物志]. Science Press, Beijing. Volume 72, pp 236. http://www.iplant.cn/info/Lonicera%20japonica?t=z

Ge L, Xie Q, Jiang Y, Xiao L, Wan H, Zhou B, Wu S, Tian J, Zeng X (2022). Genus Lonicera: New drug discovery from traditional usage to modern chemical and pharmacological research. Phytomedicine 96:153889. https://doi.org/10.1016/j.phymed.2021.153889

Han MH, Lee WS, Nagappan A, Hong SH, Jung JH, Park C, Kim HJ, Kim GY, Kim G, Jung JM (2016). Flavonoids isolated from flowers of Lonicera japonica Thunb. inhibit inflammatory responses in BV2 microglial cells by suppressing TNF‐α and IL‐β through PI3K/Akt/NF‐kb signaling pathways. Phytotherapy Research 30(11):1824-1832. https://doi.org/10.1002/ptr.5688

Han Y, Vimolmangkang S, Soria-Guerra RE, Rosales-Mendoza S, Zheng D, Lygin AV, Korban SS (2010). Ectopic expression of apple F3'H genes contributes to anthocyanin accumulation in the Arabidopsis tt7 mutant grown under nitrogen stress. Plant Physiology 153(2):806-820. https://doi.org/10.1104/pp.109.152801

Johnson ET, Ryu S, Yi H, Shin B, Cheong H, Choi G (2001). Alteration of a single amino acid changes the substrate specificity of dihydroflavonol 4-reductase. Plant Journal 25(3):325-333. https://doi.org/10.1046/j.1365-313x.2001.00962.x

Khan IA, Cao K, Guo J, Li Y, Wang Q, Yang X, Wu J, Fang W, Wang L (2022). Identification of key gene networks controlling anthocyanin biosynthesis in peach flower. Plant Science 316:111151. https://doi.org/10.1016/j.plantsci.2021.111151

Kou Y, Li Z, Yang T, Shen X, Wang X, Li H, Zhou K, Li L, Xia Z, Zheng X, Zhao Y (2022). Therapeutic potential of plant iridoids in depression: a review. Pharmaceutical Biology 60(1):2167-2181. https://doi.org/10.1080/13880209.2022.2136206

LaFountain AM, Yuan YW (2021). Repressors of anthocyanin biosynthesis. New Phytologist 231(3):933-949.

Li J, Lian X, Ye C, Wang L (2019). Analysis of flower color variations at different developmental stages in two honeysuckle (Lonicera Japonica Thunb.) cultivars. HortScience 54(5):779-782. https://doi.org/10.21273/HORTSCI13819-18

Li J, Ma N, An Y, Wang L (2021). FcMADS9 of fig regulates anthocyanin biosynthesis. Scientia Horticulturae 278:109820. https://doi.org/10.1016/j.scienta.2020.109820

Li J, Yu X, Shan Q, Shi Z, Li J, Zhao X, Chang C, Yu J (2022). Integrated volatile metabolomic and transcriptomic analysis provides insights into the regulation of floral scents between two contrasting varieties of Lonicera japonica. Frontiers in Plant Science 13:989036. https://doi.org/10.3389/fpls.2022.989036

Liu M, Ma Z, Zheng T, Sun W, Zhang Y, Jin W, Zhan J, Cai Y, Tang Y, Wu Q, Tang Z, Bu T, Li C, Chen H (2018). Insights into the correlation between physiological changes in and seed development of tartary buckwheat (Fagopyrum tataricum Gaertn.). BMC Genomics 19(1):648. https://doi.org/10.1186/s12864-018-5036-8

Liu W, Mei Z, Yu L, Gu T, Li Z, Zou Q, Zhang S, Fang H, Wang Y, Zhang Z, Chen X, Wang N (2023). The ABA-induced NAC transcription factor MdNAC1 interacts with a bZIP-type transcription factor to promote anthocyanin synthesis in red-fleshed apples. Horticulture Research. https://doi.org/10.1093/hr/uhad049

Liu Y, Ma K, Qi Y, Lv G, Ren X, Liu Z, Ma F (2021). Transcriptional regulation of anthocyanin synthesis by MYB-bHLH-WDR complexes in kiwifruit (Actinidia chinensis). Journal of Agricultural and Food Chemistry 69(12):3677-3691. https://doi.org/10.1021/acs.jafc.0c07037

Lloyd A, Brockman A, Aguirre L, Campbell A, Bean A, Cantero A, Gonzalez A (2017). Advances in the MYB-bHLH-WD repeat (MBW) pigment regulatory model: addition of a WRKY factor and co-option of an anthocyanin MYB for betalain regulation. Plant & Cell Physiology 58(9):1431-1441. https://doi.org/10.1093/pcp/pcx075

Lu Z, Cao H, Pan L, Niu L, Wei B, Cui G, Wang L, Yao JL, Zeng W, Wang Z (2021). Two loss-of-function alleles of the glutathione S-transferase (GST) gene cause anthocyanin deficiency in flower and fruit skin of peach (Prunus persica). Plant Journal 107(5):1320-1331. https://doi.org/10.1111/tpj.15312

Mao X, Cai T, Olyarchuk JG, Wei L (2005). Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787-3793. https://doi.org/10.1093/bioinformatics/bti430

Muhammad N, Luo Z, Yang M, Li X, Liu Z, Liu M (2022). The joint role of the late anthocyanin biosynthetic UFGT-encoding genes in the flowers and fruits coloration of horticultural plants. Scientia Horticulturae 301:111110. https://doi.org/10.1016/j.scienta.2022.111110

National Pharmacopoeia Committee (2020). Chinese Pharmacopoeia [中国药典]. China Medical Science and Technology Press, Beijing. Volume 1, pp 201+230-232. https://db.ouryao.com/yd2020/view.php?id=f5ed4097cc; https://db.ouryao.com/yd2020/view.php?id=f5cde5c826

Ni J, Bai S, Zhao Y, Qian M, Tao R, Yin L, Gao L, Teng Y (2019). Ethylene response factors Pp4ERF24 and Pp12ERF96 regulate blue light-induced anthocyanin biosynthesis in 'Red Zaosu' pear fruits by interacting with MYB114. Plant Molecular Biology 99(1-2):67-78. https://doi.org/10.1007/s11103-018-0802-1

Oboh G, Agunloye OM, Akinyemi AJ, Ademiluyi AO, Adefegha SA (2013). Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochemical Research 38:413-419. https://doi.org/10.1007/s11064-012-0935-6

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015). StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology 33(3):290-295. https://doi.org/10.1038/nbt.3122

Petit P, Granier T, d'Estaintot BL, Manigand C, Bathany K, Schmitter JM, Lauvergeat V, Hamdi S, Gallois B (2007). Crystal structure of grape dihydroflavonol 4-reductase, a key enzyme in flavonoid biosynthesis. Journal of Molecular Biology 368(5):1345-1357. https://doi.org/10.1016/j.jmb.2007.02.088

Pu X, Li Z, Tian Y, Gao R, Hao L, Hu Y, He C, Sun W, Xu M, Peters RJ, Van de Peer Y, Xu Z, Song J (2020). The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration. New Phytologist 227(3):930-943. https://doi.org/10.1111/nph.16552

Qi F, Liu Y, Luo Y, Cui Y, Lu C, Li H, Huang H, Dai S (2022). Functional analysis of the ScAG and ScAGL11 MADS-box transcription factors for anthocyanin biosynthesis and bicolour pattern formation in Senecio cruentus ray florets. Horticulture Research 9:uhac071. https://doi.org/10.1093/hr/uhac071

Reis JF, Monteiro VV, de Souza Gomes R, do Carmo MM, da Costa GV, Ribera PC, Monteiro MC (2016). Action mechanism and cardiovascular effect of anthocyanins: a systematic review of animal and human studies. Journal of Translational Medicine 14(1):315. https://doi.org/10.1186/s12967-016-1076-5

Shang X, Pan H, Li M, Miao X, Ding H (2011). Lonicera japonica Thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Journal of Ethnopharmacology 138(1):1-21. https://doi.org/10.1016/j.jep.2011.08.016

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Research 13(11):2498-2504. https://doi.org/10.1101/gr.1239303

Sun Q, Jiang S, Zhang T, Xu H, Fang H, Zhang J, Su M, Wang Y, Zhang Z, Wang N, Chen X (2019). Apple NAC transcription factor MdNAC52 regulates biosynthesis of anthocyanin and proanthocyanidin through MdMYB9 and MdMYB11. Plant Science 289:110286. https://doi.org/10.1016/j.plantsci.2019.110286

Wang H, Fan W, Li H, Yang J, Huang J, Zhang P (2013). Functional characterization of dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PloS One 8(11):e78484. https://doi.org/10.1371/journal.pone.0078484

Wang H, Li Y, Wang S, Kong D, Sahu SK, Bai M, Li H, Li L, Xu Y, Liang H (2020). Comparative transcriptomic analyses of chlorogenic acid and luteolosides biosynthesis pathways at different flowering stages of diploid and tetraploid Lonicera japonica. PeerJ 8:e8690. https://doi.org/10.7717/peerj.8690

Wang S, Zhang X, Li B, Zhao X, Shen Y, Yuan Z (2022). Genome-wide identification and characterization of bZIP gene family and cloning of candidate genes for anthocyanin biosynthesis in pomegranate (Punica granatum). BMC Plant Biology 22(1):170. https://doi.org/10.1186/s12870-022-03560-6

Wang X, Chen X, Luo S, Ma W, Li N, Zhang W, Tikunov Y, Xuan S, Zhao J, Wang Y, Zheng G, Yu P, Bai Y, Bovy A, Shen S (2022). Discovery of a DFR gene that controls anthocyanin accumulation in the spiny Solanum group: roles of a natural promoter variant and alternative splicing. Plant Journal 111(4):1096-1109. https://doi.org/10.1111/tpj.15877

Wang Y, Li L, Ji W, Liu S, Fan J, Lu H, Wang X (2023) Metabolomics analysis of different tissues of Lonicera japonica Thunb. based on liquid chromatography with mass spectrometry. Metabolites 13(2):186 https://doi.org/10.3390/metabo13020186

Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G (2021). clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb) 2(3):100141. https://doi.org/10.1016/j.xinn.2021.100141

Wu X, Gong Q, Ni X, Zhou Y, Gao Z (2017). UFGT: the key enzyme associated with the petals variegation in Japanese apricot. Frontiers in Plant Science 8:108. https://doi.org/10.3389/fpls.2017.00108

Wu Y, Zhang C, Huang Z, Lyu L, Li W, Wu W (2022). Integrative analysis of the metabolome and transcriptome provides insights into the mechanisms of flavonoid biosynthesis in blackberry. Food Research International 153:110948. https://doi.org/10.1016/j.foodres.2022.110948

Xia Y, Chen W, Xiang W, Wang D, Xue B, Liu X, Xing L, Wu D, Wang S, Guo Q, Liang G (2021). Integrated metabolic profiling and transcriptome analysis of pigment accumulation in Lonicera japonica flower petals during colour-transition. BMC Plant Biology 21(1):98. https://doi.org/10.1186/s12870-021-02877-y

Xiao Q, Li Z, Qu M, Xu W, Su Z, Yang J (2021). LjaFGD: Lonicera japonica functional genomics database. Journal of Integrative Plant Biology 63(8):1422-1436. https://doi.org/10.1111/jipb.13112

Xu Y, Zhao G, Ji X, Liu J, Zhao T, Gao Y, Gao S, Hao Y, Gao Y, Wang L, Weng X, Chen Z, Jia L (2022). Metabolome and transcriptome analysis reveals the transcriptional regulatory mechanism of triterpenoid saponin biosynthesis in soapberry (Sapindus mukorossi Gaertn.). Journal of Agricultural and Food Chemistry 70(23):7095-7109. https://doi.org/10.1021/acs.jafc.2c01672

Yan H, Pei X, Zhang H, Li X, Zhang X, Zhao M, Chiang VL, Sederoff RR, Zhao X (2021). MYB-mediated regulation of anthocyanin biosynthesis. International Journal of Molecular Sciences 22(6):3103. https://doi.org/10.3390/ijms22063103

Yang B, Zhong Z, Wang T, Ou Y, Tian J, Komatsu S, Zhang L (2019). Integrative omics of Lonicera japonica Thunb. Flower development unravels molecular changes regulating secondary metabolites. Journal of Proteomics 208:103470. https://doi.org/10.1016/j.jprot.2019.103470

Yi D, Zhang H, Lai B, Liu L, Pan X, Ma Z, Wang Y, Xie J, Shi S, Wei Y (2021). Integrative analysis of the coloring mechanism of red longan pericarp through metabolome and transcriptome analyses. Journal of Agricultural and Food Chemistry 69(6):1806-1815. https://doi.org/10.1021/acs.jafc.0c05023

Young MD, Wakefield MJ, Smyth GK, Oshlack A (2010). Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biology 11(2):R14. https://doi.org/10.1186/gb-2010-11-2-r14

Yu H, Cui N, Guo K, Xu W, Wang H (2022). Epigenetic changes in the regulation of carotenoid metabolism during honeysuckle flower development. Horticultural Plant Journal. https://doi.org/10.1016/j.hpj.2022.11.003

Yuan Y, Song L, Li M, Liu G, Chu Y, Ma L, Zhou Y, Wang X, Gao W, Qin S, Yu J, Wang X, Huang L (2012). Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thunb. BMC Genomics 13(1):195. https://doi.org/10.1186/1471-2164-13-195

Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, … Zhang CY (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Research 22(1):107-126. https://doi.org/10.1038/cr.2011.158

Zhang S, Chen Y, Zhao L, Li C, Yu J, Li T, Yang W, Zhang S, Su H, Wang L (2020). A novel NAC transcription factor, MdNAC42, regulates anthocyanin accumulation in red-fleshed apple by interacting with MdMYB10. Tree Physiology 40(3):413-423. https://doi.org/10.1093/treephys/tpaa004

Zhang X, Allan A, Chen X, Fan L, Chen L, Shu Q, Su J, Li K (2012). Coloration, anthocyanin profile and metal element content of Yunnan Red Pear (Pyrus pyrifolia). Horticultural Science 39(4):164-171. https://doi.org/10.17221/265/2011-HORTSCI

Zhang Y, Cheng Y, Xu S, Ma H, Han J, Zhang Y (2020). Tree peony variegated flowers show a small insertion in the F3'H gene of the acyanic flower parts. BMC Plant Biology 20(1):211. https://doi.org/10.1186/s12870-020-02428-x

Zhao D, Tao J (2015). Recent advances on the development and regulation of flower color in ornamental plants. Frontiers in Plant Science 6: 261. https://doi.org/10.3389/fpls.2015.00261

Zhao P, Li X, Jia J, Yuan G, Chen S, Qi D, Cheng L, Liu G (2019). bHLH92 from sheepgrass acts as a negative regulator of anthocyanin/proanthocyandin accumulation and influences seed dormancy. Journal of Experimental Botany 70(1):269-284. https://doi.org/10.1093/jxb/ery335

Zhao R, Song X, Yang N, Chen L, Xiang L, Liu XQ, Zhao K (2020). Expression of the subgroup IIIf bHLH transcription factor CpbHLH1 from Chimonanthus praecox (L.) in transgenic model plants inhibits anthocyanin accumulation. Plant Cell Reports 39(7):891-907. https://doi.org/10.1007/s00299-020-02537-9

Zhao ZC, Hu GB, Hu FC, Wang HC, Yang ZY, Lai B (2012). The UDP glucose: flavonoid-3-O-glucosyltransferase (UFGT) gene regulates anthocyanin biosynthesis in litchi (Litchi chinesis Sonn.) during fruit coloration. Molecular Biology Reports 39(6):6409-6415. https://doi.org/10.1007/s11033-011-1303-3

Zheng Y, Jiao C, Sun H, Rosli Hernan G, Pombo Marina A, Zhang P, … Fei Z (2016). iTAK: A Program for genome-wide prediction and classification of plant transcription factors, transcriptional regulators, and protein kinases. Molecular Plant 9(12):1667-1670. https://doi.org/10.1016/j.molp.2016.09.014

Zhou H, Wang LK, Wang H, Gu C, Dare AP, Espley RV, He H, Allan AC, Han Y (2015). Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant Journal 82(1):105-121. https://doi.org/10.1111/tpj.12792

Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, … Zhang CY (2015). Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Research 25(1):39-49. https://doi.org/10.1038/cr.2014.130

Published

2023-09-21

How to Cite

ZHANG, X., LI, C., & HAO, Z. (2023). Metabolome and transcriptome analyses reveal the colouring mechanism of red honeysuckle (Lonicera japonica Thunb.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(3), 13150. https://doi.org/10.15835/nbha51313150

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha51313150