Induction of organogenesis and callogenesis in Limbarda crithmoïdes L. (Asteraceae) explants cultured on MS media supplemented with various concentrations of Na+ and K+
DOI:
https://doi.org/10.15835/nbha51213147Keywords:
callogenesis, Limbarda crithmoïdes L, organogenesis, potassium, sodiumAbstract
The present work describes an efficient micropropagation and callus induction protocol of Limbarda crithmoïdes L. (Asteraceae), a halophyte species with medicinal and horticultural interests. The objective was to identify the culture media that support the best organogenesis and callogenic expressions of four types of aerial explants; nodal and internodal segments and leaf portions, by varying the mineral composition of twenty culture media by adding increasing concentrations of Na+ (from 0-100 mM) and K+ (from 0-50 mM). After two months of culture, parameters relating to the various expressions of organogenesis and callogenesis were measured. Results showed that the K+ and Na+ interactions affect the explants development. The combination of high concentrations of Na+ (50, 100 mM) and K+ (50 mM) ions allowed the most important regeneration of the axillary shoots (70.6-100%), root neoformation (82.6-96.1%) and callus induction (76.3-100%). Rooted plantlets with well-developed axillary shoots have been successfully acclimatized with a 93% of survival rate. The selected media would allow a large-scale multiplication of this medicinal species, without adding exogenous phytohormones, and could be used for the micropropagation of other threatened halophyte species or for the production of callus; rich in secondary metabolites.
References
Aboul Ela MA, El-Lakany AM, Abdel-Kader MS, Alqasoumi SI, Shams-El-Din SM, Hammoda HM (2012). New quinic acid derivatives from hepatoprotective Inula crithmoides root extract. Helvetica Chimica Acta 95:61-66.
Adorisio S, Giamperi L, Bucchini AEA, Delfino DV, Marcotullio MC (2020). Bioassay-guided isolation of antiproliferative compounds from Limbarda crithmoides (L.) Dumort. Molecules 25(8):1893. https://doi.org/10.3390/molecules25081893
Akin M, Eyduran E, Niedz RP, Reed BM (2017). Developing hazelnut tissue culture medium free of ion confounding. Plant Cell, Tissue and Organ Culture 130:483-494. https://doi.org/10.1007/s11240-017-1238z
Al Hassan M, Chaura J, López-Gresa MP, Borsai O, Daniso E, Donat-Torres MP, Mayoral O, Vicente O, Boscaiu M (2016). Native-invasive plants vs. halophytes in Mediterranean salt marshes: stress tolerance mechanisms in two related species. Frontiers in Plant Science 7:473. https://doi.org/10.3389/fpls.2016.00473
Al Hassan M, Boscaiu M, Mayoral O (2020). Competition between halophytes and invasive species: Dittrichia viscosa and Limbarda crithmoides: A Study Case from the Valencian Salt Marshes. In: Grigore MN (Ed). Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-319-1
Amin S, Kaloo Z A, Singh S (2015). In vitro propagation strategies for ex-situ conservation of Inula royleana DC., a threatened medicinal plant of Kashmir Himalaya. Discovery Biotechnology 6(16):16-29.
Amin S, Kaloo ZA, Singh S (2013). Comparative efficiency of different explants for in vitro callus production in Inula royleana DC., a threatened medicinal plant growing in Kashmir Himalaya. International Journal of Advanced Research 1(7):617-623.
Amin S, Kaloo ZA, Singh S (2017). Effect of cytokinins on multiple shoot regeneration from leaf derived callus of Inula royleana DC. Plant Tissue Culture and Biotechnology 27(2):189-194.
Amin S, Wani TA, Kaloo ZA, Singh S, John R, Majeed U, Shapoo GA (2018). Genetic stability using RAPD and ISSR markers in efficiently in vitro regenerated plants of Inula royleana DC. Meta Gene. https://doi.org/10.1016/j.mgene.2018.08.006
Amiri S, Mohammadi R (2021). Establishment of an efficient in vitro propagation protocol for Sumac (Rhus coriaria L.) and confirmation of the genetic homogeneity. Scientific Reports 11:173-180. https://doi.org/10.1038/s41598-020-80550-4
Anderberg AA (2011). Phylogeny and re-classification of the Inuleae (Asteraceae). Canadian Journal of Botany 67(8):2277-2296. https://doi.org/10.1139/b89-292
Aranda-Peres AN, Peres LEP, Higashi EN, Martinelli AP (2009). Adjustment of mineral elements in the culture medium for the micropropagation of three Vriesea (Bromeliads) from the Brazilian Atlantic Forest: The importance of calcium. Society for Horticultural Science 44(1):106-112. https://doi.org/10.21273/HORTSCI.44.1.106
Aronson JA (1989). HALOPH: a database of salt tolerant plants of the world. Office of Arid Lands Studies, University of Arizona, Tucson, Arizona.
Assaha DVM, Ueda A, Saneoka H, Al‐Yahyai R, Yaish MW (2017). Le rôle des transporteurs Na+ et K+ dans l'adaptation au stress salin chez les glycophytes. Frontiers in Physiology 8:509. https://doi.org/10.3389/fphys.2017.00509
Belloum Z, Bouheroum M, BenayacheF, Benayache Samir (2013). Secondary metabolites from the aerial part of Inula crithmoides. Chemistry of Natural Compounds 49(4):763-764. https://doi.org/10.1007/s10600-013-0735-5
Benrebiha F, Pourrat Y, Dutuit P (1992). Induction de la callogenèse chez l’Atriplexhalimussur des milieux de culture dépourvus d’hormones de croissance. Rôle des éléments minéraux. Bulletin de la Société Botaniquede France 139:219-222. https://doi.org/10.1080/01811797.1992.10824959
Bhatia S, Sharma K, Dahiya R, Bera T (2015). Modern applications of plant biotechnology in pharmaceutical sciences. Academic Press (1st ed), London, UK.
Blaha G, Stelzl U, Spahn CM, Agrawal RK, Frank J, Nierhaus KH (2000). Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods in Enzymology 317:292-306. https://doi.org/10.1016/s0076-6879(00)17021-1
Bucchini A, Giamperia L, Riccib D (2013). Total polyphenol content, in vitro antifungal and antioxidant activities of callus cultures from Inula crithmoides. Natural Product Communications 8(11):1587-1590.
Cakmak I (2005). The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science 168:521530. https://doi.org/10.1002/jpln.200420485
Cézar TM, Higa AR, Koehler HS, Ribas LLF (2015). Influence of culture medium, explant length and genotype on micropropagation of Pinus taeda L. Ciência Florestal Santa Maria 25(1):13-22. https://doi.org/10.1590/1980-509820152505013
D’Agostino G, Badalamenti N, Franco P, Bruno M, Gallo G (2021). The chemical composition of the flowers essential oil of Inula crithmoides (Asteraceae) growing in aeolian islands, Sicily (Italy), and its biocide properties on microorganisms affecting historical art crafts. Natural Product Research 36(12):2993-3001. https://doi.org/10.1080/14786419.2021.1938040
Dale PJ, Deambrogio E (1979). A comparison of callus induction and plant regeneration from different explants of Hordeum vulgare. Z. Für Pflanzen physiol. 94:65–77. https://doi.org/10.1016/S0044-328X(79)80249-4
Danova K, Trendafilova A, Todorova M, Rangelov M, Antonova D, Kamelia Gechovska K, Ivanova V (2021). Differential effect of vitamins and plant growth regulators on sesquiterpene lactones and phenolic acids accumulation of Inula britannica L. shoot cultures. Plant Cell, Tissue and Organ Culture 147(1):21-35. https://doi.org/10.1007/s11240-021-02101-7
Das A, Shakya A, Ghosh SK, Singh UP, Bhat HR (2020). A review of phytochemical and pharmacological studies of Inula species. Current Bioactive Compounds 16(5):557-567. https://doi.org/10.2174/1573407215666190207093538
Doungous O, Al-Khayri JM, Kouassi MK (2022). Sodium toxicity: should NaOH be substituted by KOH in plant tissue culture? Frontiers in Plant Science 13:1-5. 10.3389/fpls.2022.829768
Dridi N, Bouslimi H, Caçador I, Sleimi N (2022b). Lead tolerance, accumulation and translocation in two Asteraceae plants: Limbarda crithmoïdes and Helianthus annus. South African Journal of Botany 150:986-996. https://doi.org/10.1016/j.sajb.2022.08.047
Dridi N, Bouslimi H, Duarte B, Caçador I, Sleimi N (2022a). Evaluation of physiological and biochemical parameters and some bioindicators of barium tolerance in Limbarda crithmoides and Helianthus annuus. International Journal of Plant Biology 13:115-131. https://doi.org/10.3390/ijpb13020012
Efferth T (2019). Biotechnology applications of plant callus cultures. Engineering 5(1):50-59. https://doi.org/10.1016/j.eng.2018.11.006
El-Lethy SR, Abdelhamid MT, Reda F (2013). Effect of potassium application on wheat (Triticum aestivum L.) cultivars grown under salinity stress. World Applied Sciences Journal 26(7):840-850. https://doi.org/10.5829/idosi.wasj.2013.26.07.13527
El-Sherbeny GA, Dakhil MA, Eid EM, Abdelaal M (2021). Structural and chemical adaptations of Artemisia monosperma Delile and Limbarda crithmoides (L.) Dumort. in response to arid coastal environments along the Mediterranean coast of Egypt. Plants 10(3):481. https://doi.org/10.3390/plants10030481
Elyazid DMA, Salama AM, Zanaty AFME, Abdalla N (2021). In vitro propagation and acclimatization of banana plants: antioxidant enzymes, chemical assessments and genetic stability of regenerates as a response to copper sulphate. Plants 10(9):1853. https://doi.org/10.3390/plants10091853
Facciola S (1990). Cornucopia: a Source book of edible plants. Kampong Publications.
Flowers TJ, Colmer TD (2008). Salinity tolerance in halophytes. New Phytologist 179(4):945-963. https://doi.org/10.1111/j.1469-8137.2008.02531.x
Gerardeaux E, Jordan-Meille L, Constantin J, Pellerin S, Dingkuhn M (2010). Changes in plant morphology and dry matter partitioning caused by potassium deficiency in Gossypium hirsutum (L.). Environmental and Experimental Botany 67:451-459. https://doi.org/10.1016/j.envexpbot.2009.09.008
Ghabriche R, Ghnaya T, Mnasri M, Zaier H, Baioui R, Vromman D, Abdelly C, Lutts S (2017). Polyamine and tyramine involvement in NaCl-induced improvement of Cd resistance in the halophyte Inula chrithmoides L. Journal of Plant Physiology 216:136-144. https://doi.org/10.1016/j.jplph.2017.05.018
Gharred N, Ali LMA, Bettache N, Morere A, Menut C, Dridi-Dhaouadi S (2022). Phytochemical profile and biological effects of essential oils from three Inula species grown in Tunisia. Journal of Essential Oil Research. https://doi.org/10.1080/10412905.2022.2075479
Giberti GC (2018). Ancient and modern concepts about the Asteraceae Taxonomy. In: Sülsen V, Martino V (Eds). Sesquiterpene lactones. Springer Cham, pp 19-29.
Grigore MN, Villanueva M, Boscaiu M, Vicente O. (2012). Do halophytes really require salts for their growth and development? An experimental approach. Notulae Scientia Biologicae 4:23-29. https://doi.org/10.15835/nsb427606
Harzallah-Skhiri F (2003). Le Prosopis en Tunisie : diversité biologique aptitudes, morphogénétiques et adaptations aux conditions édapho-climatiques. Thèse de Doctorat d’État, Faculté des Sciences de Tunis, Tunis.
Jabeen N, Shawl AS, Dar GH, Jan A, Sultan P (2007). Micropropagation of Inula racemose Hook.f. a valuable medicinal plant. International Journal of Botany 3(3):296-301. https://doi.org/10.3923/ijb.2007.296.301
Jákli B, Tränkner M, Senbayram M, Dittert K (2016). Adequate supply of potassium improves plant water-use efficiency but not leaf water-use efficiency of spring wheat. Journal of Soil Science and Plant Nutrition 179:733-745. https://doi.org/10.1002/jpln.201600340
Jallali I, waffoTéguoc P, Smeoui A, Mérillonc J, Abdelly C, Ksouri R (2018). Bio-guided fractionation and characterization of powerful antioxidant compounds from the halophyte Inula crithmoides. Arabian Journal of Chemistry 13(1): 2680-2688. https://doi.org/10.1016/j.arabjc.2018.06.020
Jallali I, Zaouali Y, Missaoui I, Smeoui A, Abdelly C, Ksouri R (2014). Variability of antioxidant and antibacterial effects of essential oils and acetonic extracts of two edible halophytes: Crithmum maritimum L. and Inula crithmoides L. Food Chemistry 145(15):1031-1038. https://doi.org/10.1016/j.foodchem.2013.09.034
Jdey A, Falleh H, Ben Jannet S, Mkadmini Hammi K, Dauvergne X, Ksouri R, Magné C (2017). Phytochemical investigation and antioxidant, antibacterial and anti-tyrosinase performances of six medicinal halophytes. South African Journal of Botany 112:508-514. https://doi.org/10.1016/j.sajb.2017.05.016
Kant S, Kant P, Raveh E, Barak S (2010). Evidence that differential gene expression between the halophyte, Thellungiella halophila and Arabidopsis thaliana is responsible for higher levels of the compatible osmolyte proline and tight control of Na+ uptake in T. halophile. Plant, Cell and Environment 29(7):1220-1234. https://doi.org/10.1111/j.1365-3040.2006.01502.x
Kunkel G (1984). Plants for human consumption. Koeltz Scientific Books, Koenigatein, West Germany.
Le Floc’h E, Boulos L, Véla E (2010). Flore de Tunisie, catalogue synonymique commenté. Banque Nationale de Gènes, Ministère de l'Environnement et du Développement Durable, Tunis.
Lima AR, Gama F, Castañeda-Loaiza V, Costa C, Schüler LM, Santos T, … Barreira L (2021). Nutritional and functional evaluation of Inula crithmoides and Mesembryanthemum nodiflorum grown in different salinities for human consumption. Molecules 26(15):4543. https://doi.org/10.3390/molecules26154543
Manaf HH (2008). The role of potassium nitrate in aleviating deterimental effects of salt stress of soybean roots in vitro. Journal of Biological Chemistry and Environmental Sciences 3(4):363-380.
Mandel JR, Dikow RB, Siniscalchi CM, Thapa R, Watson LE, Funk VA (2019). A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proceedings of the National Academy of Sciences 116(28):14083-14088. https://doi.org/10.1073/pnas.1903871116
Mitrofanova I, Ivanova N, Kuzmina T, Mitrofanova O, Zubkova N (2021). In vitro regeneration of Clematis plants in the Nikita Botanical Gardenvia somatic embryogenesis and organogenesis. Frontiers in Plant Science 12:541171. https://doi.org/10.3389/fpls.2021.541171
Murashige T, Skoog F (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15:473-497. https://doi.org/10.1111/j.13993054.1962.tb08052.x
Murthy HN, Lee EJ, Paek KY (2014). Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell, Tissue and Organ Culture 118:1-16. https://doi.org/10.1007/s11240-014-0467-7
Mzoughi Z, Majdoub H (2021). Pectic polysaccharides from edible halophytes: insight on extraction processes, structural characterizations and immunomodulatory potentials. International Journal of Biological Macromolecules 173:554-579. https://doi.org/10.1016/j.ijbiomac.2021.01.144
Niedz RP, Evens TJ (2007). Regulating plant tissue growth by mineral nutrition. In Vitro Cellular and Developmental Biology - Plant 43(4):370-381. https://doi.org/10.1007/s11627-007-9062-5
Oliveira M, João Rodrigues M, Pereira C, Neto RLDM, Junior PAS, Neng NDR, (…) Custódio L (2018). First report of the in vitro antileishmanial properties of extremophile plants from the Algarve Coast. Natural Product Research 32(5):600-604. https://doi.org/10.1080/14786419.2017.1326489
Omezzine F, Daami-Remadi M, Rinez A, Ladhari A, HaoualaR (2019). In vitro assessment of Inula spp. organic extracts for their antifungal activity against some pathogenic and antagonistic fungi. Advanced Journal of Microbiology Research 13(5):001-005.
Omezzine F, Ladhari A, Rinez A, HaoualaR (2011). Potent herbicidal activity of Inula crithmoïdes L. Scientia Horticulturae 130(4):853-861. https://doi.org/10.1016/j.scienta.2011.08.013
Perica MĆ, Vršek I, Mitić B (2008). In vitro propagation of Inula verbascifolia (Willd.) Hausskn. subsp. verbascifolia. Plant Biosystems 142(1):1-4. https://doi.org/10.1080/11263500701872119
Philips J (1957). Lebanese folk cures. PhD Thesis, Columbia University, New York.
Poothong S, Reed BM (2014). Modeling the effects of mineral nutrition for improving growth and development of micropropagated red raspberries. Scientia Horticulturae 165:132-141.
Ramage CM, Williams RR (2002). Mineral nutrition and plant morphogenesis. In Vitro Cellular and Developmental Biology -Plant38:116-124. https://doi.org/10.1079/IVP2001269
Reed BM, DeNoma J, Wada S, Niedz R (2016). Determining optimum in vitro mineral nutrition for diverse pear germplasm using response surface methodology. Acta Horticulturae 1113:79-84. https://doi.org/10.17660/ActaHortic.2016.1113.11
Roux D, Alnaser O, Garayev E, Baghdikian B, Elias R, Chiffolleau P, (…) Sallanona H (2017). Ecophysiological and phytochemical characterization of wild populations of Inula montana L. (Asteraceae) in Southeastern France. Flora 236-237:67-75. http://dx.doi.org/10.1016/j.flora.2017.09.012
Salem S, Nasri S, Abidi S, Smaoui A, Nasri N, Mutjé P, Ben Hamed K (2019). Lignocellulosic biomass from Sabkha native vegetation: a new potential source for fiber-based bioenergy and bio-materials. In: Gul et al. (Eds.). Sabkha ecosystems, tasks for vegetation science. Springer Nature, Switzerland pp 407-412. https://www.researchgate.net/publication/334966313
Seca AML, Grigore A, Pinto DC, Silva AMS (2014). The genus Inula and their metabolites: from ethnopharmacological to medicinal uses. Journal of Ethnopharmacology 154(2):286-310. https://doi.org/10.1016/j.jep.2014.04.010
Seleiman MF (2019). Use of plant nutrients in improving abiotic stress tolerance in wheat. In: Hasanuzzaman M, Nahar K, Hossain A (Eds). Wheat production in changing environments: Management, adaptation and tolerance. Springer Nature, Singapore. https://doi.org/10.1007/978-981-13-6883-7
Stambouli S, Bouzid S, Dutuit P, Harzallah-Skhiri F (2011). Organogenèse induite chez des plants de Prosopis farcta (Fabaceae, Mimosoideae) développés in vitro par apport de diverses concentrations en ions Na+ et SO4-. Acta Botanica Gallica 158(3):435-443. https://doi.org/10.1080/12538078.2011.10516285
Stambouli S, Bouzid S, Dutuit P, Harzallah-Skhiri F (2012). In vitro growth and organogenesis of Prosopis farcta plantlets (Fabaceae, Mimosoideae) in culture medium supplemented with various concentrations of Ca++ and Na+. Acta Biologica Hungarica 63(1):117-131. https://doi.org/10.1556/ABiol.63.2012.1.9
Stojakowska A, Malarz J (2004). In vitro propagation of Inula royleana DC. Acta Societatis Botanicorum Poloniae 73(1):5-8. https://doi.org/10.5586/asbp.2004.001
Stojakowska A, Malarz J, Kiss AK (2016). Hydroxycinnamates from elecampane (Inula helenium L.) callus culture. Acta Physiologiae Plantarum38(2):41. https://doi.org/10.1007/s11738-016-2069-y
Taha RS, Seleiman MF, Alotaibi M, Alhammad BA, Rady MM, Mahdi A (2020). Exogenous potassium treatments elevate salt tolerance and performances of Glycine max L. by boosting antioxidant defense system under actual saline field conditions. Agronomy 10(11):1741. https://doi.org/10.3390/agronomy10111741
Tardío J, Pardo-de-Santayana M, Morales R (2006). Ethnobotanical review of wild edible plants in Spain. Botanical Journal of the Linnean Society 152(1):27-71. https://doi.org/10.1111/j.1095-8339.2006.00549.x
Teixeira da Silva JA, Nezami-Alanagh E, Barreal ME, Kher MM, Wicaksono A, Gulyás A, … Dobránszki J (2020). Shoot tip necrosis of in vitro plant cultures: a reappraisal of possible causes and solutions. Planta 252:47. https://doi.org/10.1007/s00425-020-03449-4
Thiem B, Wesolowska M, Cis J (2003). In vitro culture of Inula verbascifolia ssp. aschersoniana and production of parthenolide. Herba Polonica 49(1-2):37-43.
Trejgell A, Kamińska M, Lisowska K, Tretyn A (2018). Micropropagation of Inula germanica L. from the seedling’s explants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 46(1):52-57. https://doi.org/10.15835/nbha46110810
Vicente O, Boscaiu M (2020). Will halophytes in Mediterranean salt marshes be able to adapt to climate change? AgroLife Scientific Journal 9(2):369-376.
Xu X, Du X, Wang F, Sha J, Chen Q, Tian G, Zhu Z, Ge S, Jiang Y (2020). Effects of potassium levels on plant growth, accumulation and distribution of carbon, and nitrate metabolism in apple dwarf rootstock seedlings. Frontiers in Plant Science 11:904. https://doi.org/10.3389/fpls.2020.00904
Yong-Mei B, Sen L, Meng-Ying L, Tie-Song L, Chang-Yang J (2008). The study of tissue cultures and establishment of asexual system of Inula japonica. Journal of Agriculture and Technology 567:239.
Yuan F, Guo J, Shabala S, Wang B (2019). Reproductive physiology of halophytes: current standing. Frontiers in Plant Science 9:1954. https://doi.org/10.3389/fpls.2018.01954
Zhou HJ (2010). Influence of different concentrations of TDZ on callus induction of Inula britannica. Hubei Agricultural Sciences 4014.
Zurayk RA, Baalbaki R (1996). Inula crithmoïdes: a candidate plant for saline agriculture. Arid Land Research and Management 10(3):213-223. https://doi.org/10.1080/15324989609381436
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Hana BOKRI, Samiha KAHLAOUI, Kheiria HCINI, Manel DHOUEIBI, Fethia HARZALLAH-SKHIRI, Sondes STAMBOULI-ESSASSI
This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.