Arbuscular mycorrhizal fungi promote photosynthesis in Antirrhinum majus L. under low-temperature and weak-light conditions

Authors

  • Wei LI Qingdao Agricultural University, College of Landscape Architecture and Forestry, Qingdao, Shandong, 266109; Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, 266109 (CN)
  • Yan-Lin ZHAI Qingdao Agricultural University, College of Landscape Architecture and Forestry, Qingdao, Shandong, 266109; Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, 266109 (CN)
  • Hong-Shuang XING Qingdao Agricultural University, College of Landscape Architecture and Forestry, Qingdao, Shandong, 266109; Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, 266109 (CN)
  • Li-Jun XING Qingdao Agricultural University, College of Landscape Architecture and Forestry, Qingdao, Shandong, 266109; Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, 266109 (CN)
  • Shao-Xia GUO Qingdao Agricultural University, College of Landscape Architecture and Forestry, Qingdao, Shandong, 266109; Institute of Mycorrhizal Biotechnology, Qingdao Agricultural University, Qingdao, Shandong, 266109 (CN)

DOI:

https://doi.org/10.15835/nbha51113012

Keywords:

arbuscular mycorrhizal fungi, Antirrhinum majus L, chlorophyll fluorescence, low temperature and/or weak light, photosynthesis

Abstract

Low-temperature and weak-light conditions have major effects on the growth and flower quality of horticultural plants. A greenhouse pot experiment was performed to investigate the effects of arbuscular mycorrhizal fungi (AMF) (Funneliformis mosseae and Glomus versiforme) on the growth, photosynthesis, and chlorophyll fluorescence parameters of snapdragon (Antirrhinum majus L.) under low-temperature and weak-light stress. The growth and biomass of snapdragon were higher following inoculation with F. mosseae and G. versiforme compared with control plants. The percentage of mycorrhizal colonization and root activity were high in A. majus plants with AMF. AMF inoculation enhanced the net photosynthetic rate, transpiration rate, stomatal conductance, and water use efficiency of plants under low-temperature and weak-light conditions. Furthermore, the chlorophyll content, potential activity of photosystem II (PSII), effective photochemistry quantum efficiency of PSII, actual photochemical quantum efficiency of PSII, and photochemical quenching coefficient were higher in AMF-inoculated plants than in uninoculated plants. The application of AMF reduced the intercellular CO2 concentration and non-photochemical quenching coefficient. Thus, snapdragon plants treated with F. mosseae and G. versiforme are more resistant to low-temperature and weak-light stress than untreated plants.

References

Abdessamad F, Najat M, Lahcen O, Hafidi M (2019). Contributions of indigenous arbuscular mycorrhizal fungi to growth of Retama monosperma and Acacia gummifera under water stress (case study: Essaouira sand dunes forest). Journal of Sustainable Forestry 38(7):686-696. https://doi.org/10.1080/10549811.2019.1602057

Amaya-Carpio L, Davies JFT, Fox T, He C (2009). Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. fistulosa. Photosynthetica 47(1):1-10. https://doi.org/10.1007/s11099-009-0003-x

Anamika M, Arnd GH, Kumud BM (2014). Chlorophyll fluorescence emission can screen cold tolerance of cold acclimated Arabidopsis thaliana accessions. Plant Methods 10(1):38. https://doi.org/10.1186/1746-4811-10-38

Biermann B, Linderman RG (1981). Quantifying vesicular-arbuscular mycorrhizae: A proposed method towards standardization. New Phytologist 87(1):63-67. https://doi.org/10.1111/j.1469-8137.1981.tb01690.x

Binu NK, Ashokan PK, Balasundaran M (2015). Influence of different arbuscular mycorrhizal fungi and shade on growth of sandal (Santalum album) seedlings. Journal of Tropical Forest Science 27(2):158-165.

Demmig-Adams B, Adams llI WW (1992). Photoprotection and other responses of plants to high light stress. . Annual Review of Plant Biology 43:599-626. https://doi.org/10.1146/annurev.pp.43.060192.003123

Borkowska B. (2006). Chlorophyll a fluorescence method as a physiological marker of plant response to light stress and endo-mycorrhiza (AMF). Acta Horticulturae 711:177-182. https://doi.org/10.17660/ActaHortic.2006.711.21

Chaves MM, Flexas J, Pinheiro C (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany 103:551-560. https://doi.org/10.1093/aob/mcn125

Chen ML, Yang G, Sheng Y, Li PY, Qiu HY, Zhou XT, … Chao Z (2017). Glomus mosseae inoculation improves the root system architecture, photosynthetic efficiency and flavonoids accumulation of liquorice under nutrient stress. Frontiers in Plant Science 8:931. https://doi.org/10.3389/fpls.2017.00931

Chen SC, Jin WJ, Liu AR, Zhang SJ, Liu DL, Wang FH, … He CX (2013). Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Scientia Horticulturae 160:222-229. https://doi.org/10.1016/j.scienta.2013.05.039

Cosme M, Wurst S (2013). Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biology & Biochemistry 57:436-443. https://doi.org/10.1016/j.soilbio.2012.09.024

Dhanushi P, Neelamanie Y (2018). Arbuscular mycorrhizal fungi inoculation enhances drought stress tolerance of plants. Groundwater for Sustainable Development 7:490-494. https://doi.org/10.1016/j.gsd.2018.03.005

Fokom R, Adamou S, Essono D, Ngwasiri DP, Eke P, Mofor TC, …Sharma AK (2019). Growth, essential oil content, chemical composition and antioxidant properties of lemongrass as affected by harvest period and arbuscular mycorrhizal fungi in field conditions. Industrial Crops and Products 138:111477. https://doi.org/10.1016/j.indcrop.2019.111477

Gao SY, William L. P, Richard T. K (1998). Integrated root system age in relation to plant nutrient uptake activity. Agronomy Journal 90(4):505-510. https://doi.org/10.2134/agronj1998.00021962009000040011x

He L, Li CY, Liu RJ (2017). Interactions between arbuscular mycorrhizal fungi and beet armyworm Spodoptera exigua (Hübner) (Lepidoptera:Noctuidae). Mycorrhiza 27:525-535. https://doi.org/10.1007/s00572-017-0771-2

Harley JL, Smith SE (2008). Mycorrhizal symbiosis. Elsevier Ltd:2008-01-01. https://doi.org/10.1097/00010694-198403000-00011

Inaba Z, Ohshiro M (2010). Effects of planting density and methods of raising seedlings on flowering, yield and quality of cut flowers in snapdragons (Antirrhinum majus L.). Environment Control in Biology 43(3):201-210. https://doi.org/10.1016/j.fusengdes.2008.06.053

Lin JX, Peng XY, Hua XY, Sun SN, Wang YN, Yan XF (2018). Effects of arbuscular mycorrhizal fungi on Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition conditions: from osmotic adjustment and ion balance. RSC Advances (26):14500-14509. https://doi.org/10.1039/c8ra00721g

Lin Y, Zhao X, Zhao EC, Cao K, Cao ZR (2019). Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem II activities and stress-response gene expressions under salinity-alkalinity stresses. Frontiers in Plant Science 10:863. https://doi.org/10.3389/fpls.2019.00863

Liu RJ, Chen YL (2007). Mycorrhizology. Science press, Beijing.

Mathur S, Sharma MP, Anjana J (2018). Improved photosynthetic efficacy of maize (Zea mays) plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. Journal of Photochemistry and Photobiology B: Biology 180:149-154. https://doi.org/10.1016/j.jphotobiol.2018.02.002

Murchie EH, Lawson T (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany 64(13):3983-3998. https://doi.org/10.1093/jxb/ert208

Pollastri S, Savvides A, Pesando M, Lumini E,Volpe MG, Ozudogru EA, …Balestrini R (2018). Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta 247:573-585. https://doi.org/10.1007/s00425-017-2808-3

Porcel R, Ricardo A, Juan MR (2012). Salinity stress alleviation using arbuscular mycorrhizal fungi. Agronomy for Sustainable Development 32:181-200. http://dx.doi.org/10.1007/s13593-011-0029-x

Roháček K (2002). Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica 40(1):13-29. https://doi.org/10.1023/A:1020125719386

Parvin S, Maarten VG, Tanzima Y, Erik V, Olivier H (2020). Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a Bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza 30:431-444. https://doi.org/10.1007/s00572-020-00957-9

Shuang F, Yan GY (2015). The analysis and prospect of development of fresh cut flower industry based on the patent analysis. Agricultural Science & Technology 16(9):2064-2069. [in Chinese]. https://doi.org/10.16175/j.cnki.1009-4229.2015.09.050

Sun S, Zhang LT, Wang JX, Wang SM, Gao HJ, Gao HY (2008). Effects of low temperature and weak light on the functions of photosystem in Prunus armeniaca L. leaves in solar greenhouse. Journal of Applied Ecology 19(3):512-516. [in Chinese]. http://dx.doi.org/10.13287/j.1001-9332.2008.0139

Sun ZY, Chen YQ, Valentin S, Liang HM, Li WH, Huang SQ, Peng CL (2015). Responses of the hybrid between Sphagneticola trilobata and Sphagneticola calendulacea to low temperature and weak light characteristic in south China. Scientific Reports 5(1):16906. https://doi.org/10.1038/srep16906

Wang YH, Wang MQ, Li Y, Wu AP, Huang JY (2018). Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PloS One 13(4):e0196408. https://doi.org/10.1371/journal.pone.0196408

Wahid F, Muhammad S, Shah F, Muhammad A, Imtiaz AK, Emre A, … Nisar AK (2019). Arbuscular mycorrhizal fungi improve the growth and phosphorus uptake of mung bean plants fertilized with composted rock phosphate fed dung in alkaline soil environment. Journal of Plant Nutrition 42(15):1760-1769. https://doi.org/10.1080/01904167.2019.1643371

Xu X, Yang F, Xiao XW, Zhang S, Korpelainen H, Li CY (2008). Sex-specific responses of Populus cathayana to drought and elevated temperatures. Plant, Cell & Environment 31:850-860. https://doi.org/10.1111/j.1365-3040.2008.01799.x

Xu XY, Yu JH, Xie JM, Hu LL, Li H (2016). Effects of exogenous salicylic acid and brassinolide on photosynthesis of cucumber seedlings under low temperature stress. The Journal of Applied Ecology 27(9):3009-3015. [in Chinese]. https://doi.org/10.13287/j.1001-9332.201609.020

Yu XN, He J, Li HX (2015). Effects of exogenous melatonin on photosynthetic characteristics of eggplant seedlings under low temperature and weak light stress. Proceedings of the 2015 6th International Conference on Manufacturing Science and Engineering. https://doi.org/10.2991/ICMSE-15.2015.130

Zhang ZG, Shang QM (2010). Photosynthetic characteristics of pepper leaves under low temperature, weak light and salt stress. Scientia Agricultura Sinica 43(1):123-131. https://doi.org/10.3864/j.issn.0578-1752.2010.01.015

Zhang ZF, Azim M, Zhang JC, Huang YQ, Zhou LW (2019). Effects of arbuscular mycorrhizal fungi on inoculated seedling growth and rhizosphere soil aggregates. Soil and Tillage Research 194:104340. https://doi.org/10.1016/j.still.2019.104340

Zhou ZZ, Ma HM, Liang KN, Huang GH, Khongsak P (2012). Improved tolerance of teak (Tectona grandis L.f.) seedlings to low-temperature stress by the combined effect of arbuscular mycorrhiza and paclobutrazol. Journal of Plant Growth Regulation 31(3):427-435. https://doi.org/10.1007/s00344-011-9252-6

Zhu XC, Song FB, Xu HW (2010). Effects of arbuscular mycorrhizal fungi on photosynthetic characteristics of maize under low temperature stress. Chinese Journal of Applied Ecology 21(2):470-475. [in Chinese]. https://doi.org/10.13287/j.1001-9332.2010.0017

Zou CM, Wang YQ, Cao WD, Liu C, Zhang XH, Zhang S (2015). Response of photosynthesis and growth to weak light regime in different Adzuki bean (Vigna angularis) varieties. The Journal of Applied Ecology 26(12):3687-3692. https://doi.org/10.13287/j.1001-9332.20151016.014.

Published

2023-02-14

How to Cite

LI, W., ZHAI, Y.-L., XING, H.-S., XING, L.-J., & GUO, S.-X. (2023). Arbuscular mycorrhizal fungi promote photosynthesis in Antirrhinum majus L. under low-temperature and weak-light conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 13012. https://doi.org/10.15835/nbha51113012

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha51113012