Biocontrol of the root-knot nematode Meloidogyne incognita with Purporeocillum lilacinum and liquid bio-formulates in tomato (Solanum lycopersicum)

Authors

  • Diana M. NIÑO-ARTEAGA Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Km 2.5 Carretera Delicias-Rosales, Delicias, Chihuahua, CP 33000 (MX)
  • Bertha C. MACÍAS-LÓPEZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Km 2.5 Carretera Delicias-Rosales, Delicias, Chihuahua, CP 33000 (MX)
  • Jesús M. OLIVAS-GARCÍA Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Km 2.5 Carretera Delicias-Rosales, Delicias, Chihuahua, CP 33000 (MX)
  • Martín A. ALONSO-GÓMEZ Universidad Autónoma de Chihuahua, Facultad de Ciencias Agrícolas y Forestales, Km 2.5 Carretera Delicias-Rosales, Delicias, Chihuahua, CP 33000 (MX)
  • Esteban SÁNCHEZ Centro de Investigación en Alimentación y Desarrollo A.C., Avenida 4ª sur 3820, Fracc. Vencedores del desierto, Delicias, Chihuahua (MX)
  • Ezequiel MUÑOZ-MÁRQUEZ Centro de Investigación en Alimentación y Desarrollo A.C., Avenida 4ª sur 3820, Fracc. Vencedores del desierto, Delicias, Chihuahua (MX)

DOI:

https://doi.org/10.15835/nbha51113010

Keywords:

biocontrol, biological efficacy, nematophagous fungus, parasitism, Purpureocillium lilacinum, tomatoes

Abstract

Root-knot nematodes (Meloidogyne spp.) cause great losses in tomato crops. An environmentally friendly for its control is the use of predatory fungi such as Purporeocillum lilacinum, which reduces its population in the soil and mitigates yield losses. Therefore, the objective of the present study was to evaluate the biocontrol efficacy of the strains of the nematophagous fungus Purporeocillum lilacinum and liquid bioformulates on the eggs of the root-knot nematode Meloidogyne incognita, and the formation of galls on the tomato root. Two native strains of Purporeocillum lilacinum H2 and H3 combined with the bioformulated Extract of Beneficial Microorganisms (EPMB®) and the root exudate stimulator Exu-Root® were tested on Meloidogyne incognita eggs and tomato plants. The results obtained indicate that the Purporeocillum lilacinum H2 and H3 strains infected the Meloidogyne incognita eggs, interrupted the development of the embryos and caused their death, which significantly reduced the presence of galls in the root of the plants. In short, the maximum biological performance was presented with the treatments H2+Exu-Root® and H3+EPMB®, which had the lowest number of galls with 19.2 and 20.3 galls per plant respectively, compared to the control that presented 88 galls in the root and the treatments where the fungus was not applied (69-85 galls). Finally, it is concluded that the results demonstrate the potential of the Purporeocillum lilacinum H2 and H3 strains as biocontrol agents against the root-knot nematode Meloidogyne incognita, and that, in combination with EPMB® and Exu-Root®, the efficacy can be increased to reduce its population.

References

Ahmad G, Khan A, Khan AA, Ali A, Mohhamad HI (2021). Biological control: a novel strategy for the control of the plant parasitic nematodes. Antonie van Leeuwenhoek 114(7):885-912. https://doi.org/10.1007/s10482-021-01577-9

Ahmad RZ, Sidi BB, Endrawati D, Ekawaski F, Chaerani (2019). Paecilomyces lilacinus and P. variotii as a predator of nematode and trematode eggs. IOS Conf. Series: Earth and Environmental Science 299:012056. https://doi.org/10.1088/1755-1315/299/1/012056

Ahmad S, Al-Hazmia FA, Al-Yahyaa OA, Abdel R, Hamzeh AL (2019). Effects of humic acid, Trichoderma harzianum, and Paecilomyces lilacinus on Meloidogyne javanica. International Journal of Agriculture, Environment and Bioresearch 4(1):61-74.

Ahmed S, Shahjahan MM (2019). Effect of Paecilomyces lilacinus on tomato plants and the management of root knot nematodes. Journal of Bangladesh Agricultural University 17(1):9-13. https://doi.org/10.3329/jbau.v17i1.40657

Álvarez PAM (2006). Evaluación de algunas alternativas de control sobre el nematodo del nódulo de la raíz (Meloidogyne spp.), como opciones de pre plantación en condiciones de replante en vid (Vitis vinifera L.). Facultad de Ciencias Agronómicas, Santiago de Chile, pp 3-21.

Bhardwaj A, Sharma A, Goswami BK, Bhardwaj V (2021). Interaction effect of soilless media and organic amendments for eco-friendly root-knot nematode management in Brinjal and tomato nursery. Journal of Pure and Applied Microbiology 15:356-367. https://doi.org/10.22207/JPAM.15.1.30

Camacho JA, Recharte PDC, Yanqui FD, Moreno LLSM, Buendía MMA (2020). Fertilizar con microorganismos eficientes autóctonos tiene efecto positivo en la fenología, biomasa y producción de tomate (Lycopersicum esculentum Mill). Scientia Agropecuaria 11(1):67-73. http://dx.doi.org/10.17268/sci.agropecu.2020.01.08

Cardona BNL, Pavas H, Fernández EP (2014). Efecto del filtrado crudo de Purpureocillium sp. (Cepa UdeA0106), sobre la eclosión de huevos y movilidad de juveniles de Meloidogyne incognita-javanica. Revista Colombiana de Biotecnología 2:37-44. https://doi.org/10.15446/rev.colomb.biote.v16n2.47241

Colome A, Kubinski MR, Cano JD, Grady V (1989). Laboratory Exercises in Microbiology. California Polytechnic State University. By West Publishing company, pp 1-283.

Desaeger J (2021). A root-knot nematode paradise made in plastic: the case of Florida vegetables. In: Integrated Nematode Management: State-of-the-art and visions for the future. Wallingford UK: CABI pp 247-254.

Eder R, Consoli E, Krauss J, Dahlin P (2021). Polysulfides applied as formulated garlic extract to protect tomato plants against the root-knot nematode Meloidogyne incognita. Plants 10:394. https://doi.org/10.3390/plants10020394

El-Deen AN, El-Deeb BA (2018). Effectiveness of silver nanoparticles against root-knot nematode, Meloidogyne incognita infecting tomato under greenhouse conditions. Journal of Agricultural Science 10(2):148-156. https://doi.org/10.5539/jas.v10n2p148

González H, Fuentes N (2017). Mecanismo de acción de cinco microorganismos promotores de crecimiento vegetal. Revista de Ciencias Agrícolas 34(1):17-31. http://dx.doi.org/10.22267/rcia.173401.61

Kaur S, Kang SS, Dhillon NK, Sharma A (2016). Detection and characterization of Meloidogyne species associated with pepper in Indian Punjab. Nematropica 46:209-220.

Kiriga AW, Haukeland S, Kariuki GM, Coyne DL, Beek NV (2018). Effect of Trichoderma spp. and Purpureocillium lilacinum on Meloidogyne javanica in commercial pineapple production in Kenya. Biological Control 119:27-32. https://doi.org/10.1016/j.biocontrol.2018.01.005

Luangsa-Ard J, Houbraken J, Doorn TV, Seung-Beom H, Borman AW, Hywel-Jones NL, Samson RA (2011). Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiology Letters 321:141-149. https://doi.org/10.1111/j.1574-6968.2011.02322.x

Melomey D, Danquah LA, Offei K, Ofori S, Danquah K, Osei, ME (2019). Review on tomato (Solanum lycopersicum, L.) improvement programmes in Ghana. Recent Advances in Tomato Breeding and Production. https://doi.org/10.5772/intechopen.75843

Morales MR (2006). Manejo de nematodos fitoparasitícos utilizando productos naturales y biológicos. Universidad de Puerto Rico. Recinto Universitario de Mayagüez, pp 2-80.

Najafi F, Rezai S, Kia EB, Mahmoudi M, Mohebali M, Gharagozlou MJ, Rokni MB, Gholamreza M (2017). In vitro assay of Paecilomyces lilacinus biocontrol effects on Fasciola hepatica eggs illustrated in scanning electron micrographs. Iranian Journal of Parasitology 12(1):22-28.

Naz I, Asad AKR, Masood T, Baig A, Siddique I, Shamsulhaq (2021). Biological control of Root Knot nematode, Meloidogyne incognita, in vitro, greenhouse and field in cucumber. Biological Control 152:1-12. https://doi.org/10.1016/j.biocontrol.2020.104429

Oclarit EL, Cumagun CJR (2009). Evaluation of efficacy of Paecilomyces lilacinus as biological control agent of Meloidogyne incognita attacking tomato. Journal of Plant Protection Research 49(4):337-340. https://doi.org/10.2478/v10045-009-0053-x

Olusesan AI, Oluwatayo JI, Okrikata E (2022). Potential of some selected fertilizer types in the suppression of root knot nematode (Meloidogyne incognita) infections on eggplant. Asian Journal of Research and Review in Agriculture 4(3):28-34.

Peraza-Padilla W, Orozco-Aceves M, Esquivel-Hernández A (2014). Evaluación in vitro de hongos nematófagos en zonas arroceras de Costa Rica contra el nematodo agallador Meloidogyne javanica. Agronomía Costarricense 38(2):19-32.

Peraza-Padilla W, Rosales-Flores J, Esquivel-Hernández A, Hilje-Rodríguez I, Molina-Bravo R and Castillo-Castillo P (2013). Identificación morfológica, morfométrica y molecular de Meloidogyne incognita en higuera (Ficus carica L.) en Costa Rica. Agronomía Mesoamericana. 24(2):337-346. https://doi.org/10.15517/am.v24i2.12533

Pinto AV (2009). Evaluación de las propiedades nematicidas de residuos foliares de ocho especies leñosas y semi leñosas comunes del sur de Chile. Tesis de licenciatura. Universidad de Austral de Chile. Escuela de Agronomía pp 4-46.

Regmi H, Desaeger J (2020). Integrated management of root-knot nematode (Meloidogyne spp.) in Florida tomatoes combining host resistance and nematicides. Crop Protection 134:105170. https://doi.org/10.1016/j.cropro.2020.105170

Rojas T (1996). Consideraciones sobre control biológico de nematodos fitoparasíticos. Departamento de Fitoprotección. X Congreso Nacional Agronómico. III Congreso de Fitopatología. Ministerio de Agricultura y Ganadería, pp 69-72.

SAGARPA (2021). Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (disponible en línea, consultado el 23 de octubre de 2021).

Saikia SK, Tiwari S, Pandey R (2013). Rhizospheric biological weapons for growth enhancement and Meloidogyne incognita management in Withania somnifera cv. Poshita. Biologycal Control 65:225-234. https://doi.org/10.1016/j.biocontrol.2013.01.014

Sánchez E (2006). Caracterización de estado nutricional y fisiológico en plantas de Judía (Phaseolus vulgaris L. cv. Strike) sometidas a un estrés por nitrógeno. Primera edición, Editorial de la Universidad de Granada. Granada, España. Pp 41.

SAS, Institute (2007). SAS/STAT user´s guide. Release 6.03 ed. SAS Insitute, Cry, N. C.

Sharma M, Saini I, Kaushik P, Aldawsari MM, Al Balawi T, Alam P (2021). Mycorrhizal fungi and Pseudomonas fluorescens application reduces root-knot nematode (Meloidogyne javanica) infestation in eggplant. Saudi Journal of Biological Sciences 28(7):3685-3691.

SIAP (2021). Servicios de Información Agricola y Pesquera (disponible en línea, consultado el 23 de octubre de 2021).

Sujatha R, Vethamoni NP, Manivannan N, Sivakumar M (2017). Screening of tomato genotypes for root knot nematode (Meloidogyne incognita Kofoid and White Chitwood). International Journal of Current Microbiology and Applied Sciences 6(3):1525-1533. https://doi.org/10.20546/ijcmas.2017.603.175

Tapia-Velázquez I, Montoya-Martínez AC, De los Santos-Villalobos S, Ek-Ramos MJ, Montesinos-Matías R, Martínez-Anaya, C (2022). Root-knot nematodes (Meloidogyne spp.) a threat to agriculture in Mexico: Biology, current control strategies, and perspectives. World Journal of Microbiology and Biotechnology 38:26. https://doi.org/10.1007/s11274-021-03211-2

Taylor AL, Sasser JN (1983). Biología, identificación y control de los nematodos en nódulo de la raíz (especies de Meloidogyne). Universidad del Estado de Carolina del Norte. Agencia de Estados Unidos para el Desarrollo Internacional. Impreso por artes gráficas de la Universidad del Estado de Carolina del Norte, pp 111.

Vestergård M (2019). Trap crops for Meloidogyne hapla management and its integration with supplementary strategies. Applied Soil Ecology 134:105-110. https://doi.org/10.1016/j.apsoil.2018.10.012

Viljoen, JJF, Labuschagne N, Fourie H, Sikora RA (2019). Biological control of the root-knot nematode Meloidogyne incognita on tomatoes and carrots by plant growth-promoting rhizobacteria. Tropical Plant Pathology 44:284-291. https://doi.org/10.1007/s40858-019-00283-2

Yánez LEO (2021). Plantas y microorganismos rizosféricos: Una vía sostenible para generar crecimiento vegetal. Revista Científica Interdisciplinaria Investigación y Saberes 11(3):102-122.

Yigezu WG (2021). Biology, taxonomy, and management of the root-knot nematode (Meloidogyne incognita) in sweet potato. Advances in Agriculture 2021:8820211. https://doi.org/10.1155/2021/8820211

Youssef M, El-Nagdi W, Lotfy DE (2020). Evaluation of the fungal activity of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces lilacinus as biocontrol agents against root-knot nematode, Meloidogyne incognita on cowpea. Bulletin of the National Research Centre 44(1):1-11. https://doi.org/10.1186/s42269-020-00367-z

Published

2023-02-14

How to Cite

NIÑO-ARTEAGA, D. M., MACÍAS-LÓPEZ, B. C., OLIVAS-GARCÍA, J. M., ALONSO-GÓMEZ, M. A., SÁNCHEZ, E., & MUÑOZ-MÁRQUEZ, E. (2023). Biocontrol of the root-knot nematode Meloidogyne incognita with Purporeocillum lilacinum and liquid bio-formulates in tomato (Solanum lycopersicum). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 13010. https://doi.org/10.15835/nbha51113010

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha51113010

Most read articles by the same author(s)

<< < 1 2