Commercial and phytochemical quality in biofortified ‘Orejona’ lettuce with zinc oxide nanoparticles

Authors

  • Manuel FORTIS-HERNÁNDEZ Tecnológico Nacional de México, Campus Instituto Tecnológico de Torreón, División de Estudios de Postgrados e Investigación; Carretera Torreón – San Pedro, km 7.5, Ejido Ana, 27170 Torreón, Coahuila (MX)
  • José D. GARCÍA-DELGADO Tecnológico Nacional de México, Campus Instituto Tecnológico de Torreón, División de Estudios de Postgrados e Investigación; Carretera Torreón – San Pedro, km 7.5, Ejido Ana, 27170 Torreón, Coahuila (MX)
  • Pablo PRECIADO-RANGEL Tecnológico Nacional de México, Campus Instituto Tecnológico de Torreón, División de Estudios de Postgrados e Investigación; Carretera Torreón – San Pedro, km 7.5, Ejido Ana, 27170 Torreón, Coahuila (MX)
  • Radames TREJO-VALENCIA Tecnológico Nacional de México,Instituto Tecnológico de Minatitlán, Blvd. Institutos Tecnológicos S/N, Col. Buena Vista Norte, Minatitlán, Veracruz 96848 (MD)
  • Alberto SÁNCHEZ-ESTRADA Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304 (MX)
  • Judith FORTIZ-HERNÁNDEZ Coordinación de Tecnología de Alimentos de Origen Vegetal, Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD, A.C.), Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304 (MX)

DOI:

https://doi.org/10.15835/nbha50312969

Keywords:

foliar application, Lactuca sativa L, phenolics compounds, flavonoids, zinc

Abstract

Crop biofortification is a recent strategy based on the production of plants rich in micronutrients for human consumption. The biofortification of plants with minerals is considered one of the least expensive and most efficient ways to improve the commercial and nutritional quality of horticultural products, in addition to improving crop yields. The objective of the research was to evaluate commercial and phytochemical quality, physiological parameters, and zinc concentration in lettuce leaves (Lactuca sativa L.) after foliar application of zinc oxide nanoparticles (NPsZnO) produced under a hydroponic system. The experiment was carried out with six treatments (0, 5, 10, 15, 20, and 25 mg.L-1 NPsZnO) of five replicates each, under a completely randomized design. Five applications every 15 days of each concentration of NPsZnO were made through the crop cycle. The results show no statistical differences in physiological parameters (height, number of leaves, leaf size, crown perimeter, fresh and dry weight), but that do show a slight tendency to increase on the treated lettuce mainly at concentrations of 20 and 25 mg.L-1. A positive correlation was found between the phytochemical variables (phenolics and total flavonols) and the concentration of NPsZnO. Even though there was not a clear correlation between NPsZnO concentration and the variables of commercial quality; Zn content in the plant tissue was improved, thereby obtaining a biofortified product for the final consumer.

Metrics

Metrics Loading ...

References

Awan S, Shahzadi K, Javad S, Tariq A, Ahmad A, Ilyas S (2021). A preliminary study of influence of zinc oxide nanoparticles on growth parameters of Brassica oleracea var italic. Journal of the Saudi Society of Agricultural Sciences 20(1):18-24. https://doi.org/10.1016/j.jssas.2020.10.003

Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72(1-2):248-254. https://doi.org/10.1016/0003-2697(76)90527-3

Castillo-González J, Ojeda-Barrios D, Hernández-Rodríguez A, González-Franco AC, Robles-Hernández L, López-Ochoa GR (2018). Zinc metalloenzymes in plants. Interciencia 43(4):242-248. https://www.redalyc.org/articulo.oa?id=33957240004

Chen J, Dou R, Yang Z, You T, Gao X, Wang L (2018). Phytotoxicity and bioaccumulation of zinc oxide nanoparticles in rice (Oryza sativa L.). Plant Physiology and Biochemistry 130:604-612. https://doi.org/10.1016/j.plaphy.2018.08.019

Dávila-Rangel IE, Trejo-Téllez LI, Ortega-Ortiz H, Juárez-Maldonado A, González-Morales S, Companioni-González B, … Benavides-Mendoza A (2020). Comparison of iodide, iodate, and iodine-chitosan complexes for the biofortification of lettuce. Applied Sciences 10(7):2378. https://doi.org/10.3390/app10072378

Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013). Fate of CuO and ZnO nano- and microparticles in the plant environment. Environmental Science & Technology 47(9):4734-4742. https://doi.org/10.1021/es304736y

Flurkey WH, Jen JJ (1978). Peroxidase and polyphenol oxidase activities in developing peaches. Journal of Food Science 43(6):1826-1828. https://doi.org/10.1111/j.1365-2621.1978.tb07424.x

García-López JI, Niño-Medina G, Olivares-Sáenz E, Lira-Saldivar RH, Barriga-Castro ED, Vázquez-Alvarado R, … Zavala-García, F (2019). Foliar application of zinc oxide nanoparticles and zinc sulfate boosts the content of bioactive compounds in habanero peppers. Plants 8(8):254. https://doi.org/10.3390/plants8080254

García-López JI, Zavala-García F, Olivares-Sáenz E, Lira-Saldívar RH, Díaz Barriga-Castro E, Ruiz-Torres, NA, Ramos-Cortez E, Vázquez-Alvarado R, Niño-Medina G (2018). Zinc oxide nanoparticles boosts phenolic compounds and antioxidant activity of Capsicum annuum L. during germination. Agronomy 8(10):215. https://doi.org/10.3390/agronomy8100215

Goswami P, Mathur J (2019). Positive and negative effects of nanoparticles on plants and their applications in agriculture. Plant Science Today 6(2):232-242. https://doi.org/10.14719/pst.2019.6.2.502

Hatami M, Naghdi Badi H, Ghorbanpour M (2019). Nano-elicitation of secondary pharmaceutical metabolites in plant cells: A Review. Journal Medicinal Plants 18(71):6-36. https://doi.org/10.29252/jmp.3.71.6

Hirschi KD (2009). Nutrient biofortification of food crops. Annual Review of Nutrition 29:401-421. https://doi.org/10.1146/annurev-nutr-080508-141143

Huang R, Wu W, Shen S, Fan J, Chang Y, Chen S, Ye X (2018). Evaluation of colorimetric methods for quantification of citrus flavonoids to avoid misuse. Analytical Methods 10(22):2575-2587. https://doi.org/10.1039/c8ay00661jIziy

Janmohammadi M, Amanzadeh T, Sabaghnia N, Dashti S (2016). Impact of foliar application of nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield components of barley under supplemental irrigation. Acta Agriculturae Slovenica 107(2):265-276. https://doi.irg/10.14720/aas.2016.107.2.01

Kumar A, Singh IK, Mishra R, Singh A, Ramawat N, Singh A (2021). The role of zinc oxide nanoparticles in plants: A critical appraisal. In: Sharma N, Sahi S (Eds). Nanomaterial biointeractions at the cellular, organismal and system levels. Springer Nature, Switzerland pp 249-267. https://doi.org/10.1007/978-3-030-65792-5_10

Laware SL, Shilpa R (2014). Effect of titanium dioxide nanoparticles on hydrolytic and antioxidant enzymes during seed germination in onion. International Journal Current Microbiology Applied Science 3(7):749-760.

Liang Z, Pan Z, Li W, Kou E, Kang Y, Lei B, Song S (2021). Dose-dependent effect of ZnO quantum dots for lettuce growth. ACS Omega 6(15):10141-10149. https://doi.org/10.1021/acsomega.1c00205

Lichtenthaler HK, Babani F, Navrátil M, Buschmann C (2013). Chlorophyll fluorescence kinetics, photosynthetic activity, and pigment composition of blue-shade and half-shade leaves as compared to sun and shade leaves of different trees. Photosynthesis Research 117(1):355-366. https://doi.org/10.1007/s11120-013-9834-1

Lira-Saldivar RH, Méndez-Argüello B, De los Santos-Villarreal G, Vera-Reyes I (2018). Nanotechnology potential in sustainable agriculture. Acta Universitaria Multidisciplinary Scientific Journal 28(2):9-24. https://doi.org/10.15174/au.2018.1575

Ma X, Geiser-Lee J, Deng Y, Kolmakov A (2010). Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Science of the Total Environment 408:3053-3061. https://doi.org/10.15174/au.2018.1575

Márquez CJ, Otero CM, Rojano BA, Osorio JA (2014). Antioxidant activity and phenolic compounds concentration of tree tomato (Cyphomandra betacea S.) in postharvest. Temas Agrarios 19:173-184.

Maxfield L, Shukla S, Crane JS (2021). Zinc Deficiency. StatPearls, Treasure Island, FL.

Mckean SJ (1993). Manual de análisis de suelos y tejido vegetal: una guía teórica y práctica de metodologías [Soil and plant tissue analysis manual: a theoretical and practical guide to methodologies]. International Center for Tropical Agriculture (CIAT), Palmira, Colombia.

Meier S, Moore F, Morales A, González ME, Seguel A, Meriño-Gergichevich C, … Mejías J (2020). Synthesis of calcium borate nanoparticles and its use as a potential foliar fertilizer in lettuce (Lactuca sativa) and zucchini (Cucurbita pepo). Plant Physiology and Biochemistry 151:673-680. https://doi.org/10.1016/j.plaphy.2020.04.025

Méndez-Argüello B, Lira-Saldívar RH, Ruíz-Torres NA, Cárdenas-Flores A, Ponce-Zambrano R, Vera-Reyes I, … De los Santos G (2015). Influencia de nanopartículas de óxido de zinc puras y dopadas con plata en el crecimiento y producción de biomasa en plántulas de chile [Influence of pure and silver-doped zinc oxide nanoparticles on growth and biomass production in chili seedlings]. Aguilar-González CN, Regalado-González C, Escalante-Lozada A (Eds). XVI Congreso Nacional de Biotecnología y Bioingeniería, Sociedad Mexicana de Biotecnología y Bioquímica. Guadalajara, Jalisco, México, 2015 pp IIO22.

Méndez-Argüello B, Vera-Reyes I, Mendoza-Mendoza E, García-Cerda LA, Puente-Urbina BA, Lira-Saldívar RH (2016). Growth promotion of Capsicum annuum plants by zinc oxide nanoparticcles. Nova Scientia 8(17):140-156.

Norma Oficial Mexicana NOM-FF-51-1982.1983. Productos alimenticios no industrializados para uso humano hortalizas en estado fresco lechuga [Non-industrialized food products for human use fresh vegetables lettuce]. http://www.dof.gob.mx/nota_detalle.php?codigo=4791830&fecha=13/01/1983

Otálora G, Piñero MC, López-Marín J, Varó P, del Amor FM (2018). Effects of foliar nitrogen fertilization on the phenolic, mineral, and amino acid composition of escarole (Cichorium endivia L. var latifolium). Scientia Horticulturae 239:87-92. https://doi.org/10.1016/j.scienta.2018.05.031

Preciado-Rangel P, Campos-Ortiz A, Chávez ES, Reyes-González A, Ruiz-Espinoza F, Ojeda-Barrios D, Hernández-Montiel L (2021). Zinc biofortification improves yield, nutraceutical quality and antioxidant capacity in lettuce. Tropical and Subtropical Agroecosystems 24:122. http://dx.doi.org/10.56369/tsaes.3844

Raliya RV, Saharan V, Dimkpa C, Biswas P (2017). Nanofertilizer for precision and sustainable agriculture: current state and future perspectives. Journal of Agricultural and Food Chemistry 66(26):6487-6503. https://doi.org/10.1021/acs.jafc.7b02178

Ramírez-Barrón SN, Sánchez-Valdés S, Puente-Urbina BA, Martínez-Montemayor S, Esparza-González SC, Betancourt-Galindo R (2019). Preparation of a Pressure Sensitive Adhesive (PSA) with the ZnO Nanoparticles Incorporation. Study of its physicochemical and antimicrobial properties. Revista Mexicana de Ingeniería Biomédica 40(1):1-10. http://dx.doi.org/10.17488/RMIB.40.1.5

Rietra RP, Heinen M, Dimkpa CO, Bindraban PS (2017). Effects of nutrient antagonism and synergism on yield and fertilizer use efficiency. Communications in Soil Science and Plant Analysis 48(16):1895-1920. https://doi.org/10.1080/00103624.2017.1407429

Rivera-Gutiérrez RG, Preciado-Rangel P, Fortis-Hernández M, Betancourt-Galindo R, Yescas-Coronado P, Orozco-Vidal JA (2021). Zinc oxide nanoparticles and their effect on melon yield and quality. Revista Mexicana de Ciencias Agrícolas 12(5):791-803. https://doi.org/10.29312/remexca.v12i5.2987

Rodríguez Y, Fernández A, Peteira B, Fernández F, Solórzano E (2006). Inducing defence enzymes in two rice (Oryza sativa) varieties by G. mosseae arbuscular mycorrhizal fungus. Revista Colombiana de Biotecnología 8(2):35-49.

Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019). Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiology and Biochemistry 135: 160-166. https://doi.org/10.1016/j.plaphy.2018.12.005

Sapkota S, Sapkota S, Liu Z (2019). Effects of nutrient composition and lettuce cultivar on crop production in hydroponic culture. Horticulturae 5(2):72. https://doi.org/10.3390/horticulturae5040072

SAS. 2009. JMP User Guide. Release 8. SAS Institute Inc., Cary, North Carolina, US, pp 513.

Shah AA, Aslam S, Akbar M, Ahmad A, Khan WU, Yasin NA, … Ali S (2021). Combined effect of Bacillus fortis IAGS 223 and zinc oxide nanoparticles to alleviate cadmium phytotoxicity in Cucumis melo. Plant Physiology and Biochemistry 158:1-12. https://doi.org/10.1016/j.plaphy.2020.11.011

Sharifan H, Ma X (2021). Foliar application of Zn agrichemicals affects the bioavailability of arsenic, cadmium and micronutrients to rice (Oryza sativa L.) in flooded paddy soil. Agriculture 11(6):505. https://doi.org/10.3390/agriculture11060505

Sharifan H, Ma X, Moore JM, Habib MR, Evans C (2019). Zinc oxide nanoparticles alleviated the bioavailability of cadmium and lead and changed the uptake of iron in hydroponically grown lettuce (Lactuca sativa L. var Longifolia). ACS Sustainable Chemistry & Engineering 7(19):16401-16409. https://doi.org/10.1021/acssuschemeng.9b03531

Sida-Arreola JP, Sánchez E, Ojeda-Barrios DL, Ávila-Quezada GD, Flores-Córdova MA, Márquez-Quiroz C, Preciado-Rangel P (2017). Can biofortification of zinc improve the antioxidant capacity and nutritional quality of beans?. Emirates Journal of Food and Agriculture 29(3):237-241. https://doi.org/10.9755/ejfa.2016-04-367.

Singh B, Suri K, Shevkani K, Kaur A, Kaur A, Singh N (2018). Enzymatic browning of fruit and vegetables: A review. Enzymes in Food Technology 63-78. https://doi.org/10.1007/978-981-13-1933-4_4

Singleton VL, Rossi JA (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enolology and Viticululture 16(3): 144-158.

Song U, Kim J (2020). Zinc oxide nanoparticles: a potential micronutrient fertilizer for horticultural crops with little toxicity. Horticulture, Environment, and Biotechnology volume 61(3):625-631. https://doi.org/10.1007/s13580-020-00244-8

Steiner A (1961). A universal method for preparing nutrient solutions of a certain desired compositions. Plant and Soil 15(2):134-154.

Večeřová K, Večeřa Z, Mikuška P, Coufalík P, Oravec M, Dočekal B, … Urban O (2019). Temperature alters susceptibility of Picea abies seedlings to airborne pollutants: The case of CdO nanoparticles. Environmental Pollution 253:646-654. https://doi.org/10.1016/j.envpol.2019.07.061

Watanabe KN, Sassa Y, Suda E, Chen CH, Inaba M, Kikuchi A (2005). Global political, economic, social and technological issues on transgenic crops-review. Plant Biotechnology 22(5):515-522. https://doi.org/10.5511/plantbiotechnology.22.515

White PJ, Broadley MR (2011). Physiological limits to zinc biofortification of edible crops. Frontiers in Plant Science 2:80. https://doi.org/10.3389/fpls.2011.00080

Xu J, Luo X, Wang Y, Feng Y (2018). Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L.) growth and soil bacterial community. Environment Science Pollution Research 25(6):6026-6035. https://doi.org/10.1007/s11356-017-0953-7

Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, … Gardea-Torresdey JL (2014). CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). Journal Agricultural and Food Chemistry 62:2752-2759. https://doi.org/10.1021/jf405476u

Published

2022-11-29

How to Cite

FORTIS-HERNÁNDEZ, M., GARCÍA-DELGADO, J. D., PRECIADO-RANGEL, P., TREJO-VALENCIA, R., SÁNCHEZ-ESTRADA, A., & FORTIZ-HERNÁNDEZ, J. (2022). Commercial and phytochemical quality in biofortified ‘Orejona’ lettuce with zinc oxide nanoparticles. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(4), 12969. https://doi.org/10.15835/nbha50312969

Issue

Section

Research Articles
CITATION
DOI: 10.15835/nbha50312969

Most read articles by the same author(s)