Understanding the physiological and molecular mechanism of salinity stress tolerance in plants

Authors

  • Ali ANWAR Shandong Academy of Agricultural Sciences, Institute of Vegetables, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong (CN)
  • Shu ZHANG Shandong Academy of Agricultural Sciences, Institute of Vegetables, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong (CN)
  • Lilong HE Shandong Academy of Agricultural Sciences, Institute of Vegetables, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong (CN)
  • Jianwei GAO Shandong Academy of Agricultural Sciences, Institute of Vegetables, Shandong Branch of National Vegetable Improvement Center, Jinan, Shandong (CN)

DOI:

https://doi.org/10.15835/nbha50312959

Keywords:

antioxidant enzymes, hormone, miRNA , ROS, salinity stress, transcription factor

Abstract

Salinity is considered a global threat to agriculture and causes a significant reduction in crop yield. In particular, salinity stress promotes reactive oxygen species (ROS) accumulation and ionic imbalance in cells, leading to oxidative stress and even cell death. A large number of genes which are involved in defense, hormone, carbohydrate and metabolic pathways are down-regulated under salinity stress. Plants respond to salinity stress through a series of physiological and molecular mechanisms including antioxidant enzymes, hormones, defense related genes and signaling pathway activation. Plant defense systems modulate the overproduction of ROS through the activation of stress responsive-genes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and glutamine synthetase (GS) and transcription factors such as MYBs, WRKY, and ERF. The salt overly sensitive (SOS) pathway is potentially involved in salt stress tolerance. SOS1, SOS3 and SOS2 are required for the oxidative stress tolerance by reducing the uptakes, and inter-cellular and intra-cellular distribution of Na+ and Cl. This review discusses the discovery of stress-responsive genes and signaling pathways, and summarizes the research progress on the regulatory mechanisms of salinity stress tolerance in plants, which will help accelerate breeding programs for salinity stress tolerance.

References

Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell 15:63-78. https://doi.org/10.1105/tpc.006130

Ahanger MA, Alyemeni MN, Wijaya L, Alamri SA, Alam P, Ashraf M, Ahmad P (2018). Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PloS One 13:e0202175. https://doi.org/10.1371/journal.pone.0202175

Al Hassan M, Morosan M, López-Gresa MD, Prohens J, Vicente O, Boscaiu M (2016). Salinity-Induced variation in biochemical markers provides insight into the mechanisms of salt tolerance in common (Phaseolus vulgaris) and runner (P. coccineus) beans. International Journal of Molecular Sciences 17. https://doi.org/10.3390/ijms17091582

Alcázar R, Bueno M, Tiburcio AF (2020). Polyamines: small amines with large effects on plant abiotic stress tolerance. Cells 9. https://doi.org/10.3390/cells9112373

Alet AI, Sánchez DH, Cuevas JC, Marina M, Carrasco P, Altabella T, Tiburcio A, Ruiz OA (2012). New insights into the role of spermine in Arabidopsis thaliana under long-term salt stress. Plant Science 182:94-100. https://doi.org/10.1016/j.plantsci.2011.03.013

Ali MS, Baek K-H (2020). Jasmonic acid signaling pathway in response to abiotic stresses in plants. International Journal of Molecular Sciences 21. https://doi.org/10.3390/ijms21020621

Amoutzias GD, Veron AS, Weiner J, Robinson-Rechavi M, Bornberg-Bauer E, Oliver SG, Robertson DL (2007). One billion years of bZIP transcription factor evolution: conservation and change in dimerization and DNA-binding site specificity. Molecular Biology and Evolution 24:827-835. https://doi.org/10.1093/molbev/msl211

Anwar A, Kim JK (2020). Transgenic breeding approaches for improving abiotic stress tolerance: recent progress and future perspectives. International Journal of Molecular Sciences 21. https://doi.org/10.3390/ijms21082695

Anwar A, Liu Y, Dong R, Bai L, Yu X, Li Y (2018). The physiological and molecular mechanism of brassinosteroid in response to stress: a review. Biology Research 51:46. https://doi.org/10.1186/s40659-018-0195-2

Arif Y, Singh P, Siddiqui H, Bajguz A, Hayat S (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry 156:64-77. https://doi.org/10.1016/j.plaphy.2020.08.042

Asano T, Hakata M, Nakamura H, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R (2011). Functional characterisation of OsCPK21, a calcium-dependent protein kinase that confers salt tolerance in rice. Plant Molecular Biology 75:179-191. https://doi.org/10.1007/s11103-010-9717-1

Asensi-Fabado MA, Cela J, Müller M, Arrom L, Chang C, Munné-Bosch S (2012). Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to salt stress. Journal of Plant Physiology 169:360-368. https://doi.org/10.1016/j.jplph.2011.11.007

Atanasova L, Pissarska M, Stoyanov I (1996). Cytokinins and growth responses of maize and pea plants to salt stress. Journal of Plant Physiology 22:22-31.

Baillo EH, Kimotho RN, Zhang Z, Xu P (2019). Transcription factors associated with abiotic and biotic stress tolerance and their potential for crops improvement. Genes 10. https://doi.org/10.3390/genes10100771

Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM (2012). Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. The Plant Cell 24:1127-1142. https://doi.org/10.1105/tpc.111.095273

Bassil E, Tajima H, Liang YC, Ohto MA, Ushijima K, Nakano R, … Blumwald E (2011). The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482-3497. https://doi.org/10.1105/tpc.111.089581

Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S, … Zhu J-K (2007). SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Molecular and Cellular Biology 27:7781-7790. https://doi.org/10.1128/mcb.00430-07

Cai R, Zhao Y, Wang Y, Lin Y, Peng X, Li Q, … Cheng B (2014). Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell, Tissue and Organ Culture (PCTOC) 119:565-577. https://doi.org/10.1007/s11240-014-0556-7

Chen K, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z (20190. MdMYB46 could enhance salt and osmotic stress tolerance in apple by directly activating stress‐responsive signals. Plant Biotechnology Journal.

Chen R, Fan Y, Zhou H, Mo S, Zhou Z, Yan H, … Wu J (2021). Global transcriptome changes of elongating internode of sugarcane in response to mepiquat chloride. BMC Genomics 22:79-79. https://doi.org/10.1186/s12864-020-07352-w

Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X, Wang L (20150. Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na+ exclusion in Arabidopsis thaliana. Plant Cell Physiology 56:73-83. https://doi.org/10.1093/pcp/pcu149

Cheng MC, Liao PM, Kuo WW, Lin TP (2013). The Arabidopsis ETHYLENE RESPONSE FACTOR1 regulates abiotic stress-responsive gene expression by binding to different cis-acting elements in response to different stress signals. Plant Physiology 162:1566-1582. https://doi.org/10.1104/pp.113.221911

Choudhury FK, Rivero RM, Blumwald E, Mittler R (2017). Reactive oxygen species, abiotic stress and stress combination. Plant Journal 90:856-867. https://doi.org/10.1111/tpj.13299

Collin A, Daszkowska-Golec A, Szarejko I (2021). Updates on the role of abscisic acid insensitive 5 (ABI5) and abscisic acid-responsive element binding factors (ABFs) in ABA signaling in different developmental stages in plants. Cells 10:1996. https://doi.org/10.3390/cells10081996

Cui MH, Yoo KS, Hyoung S, Nguyen HT, Kim YY, Kim HJ, Ok SH, Yoo SD, Shin JS (2013). An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Letters 587:1773-1778. https://doi.org/10.1016/j.febslet.2013.04.028

Drerup MM, Schlücking K, Hashimoto K, Manishankar P, Steinhorst L, Kuchitsu K, Kudla J (2013). The Calcineurin B-Like Calcium Sensors CBL1 and CBL9 Together with Their Interacting Protein Kinase CIPK26 Regulate the Arabidopsis NADPH Oxidase RBOHF. Molecular Plant 6:559-569. https://doi.org/10.1093/mp/sst009

Dröge-Laser W, Snoek BL, Snel B, Weiste C (2018). The Arabidopsis bZIP transcription factor family—an update. Current Opinion in Plant Biology 45:36-49. https://doi.org/10.1016/j.pbi.2018.05.001

El-Badri AM, Batool M, Mohamed I, Wang Z, Khatab A, Sherif A, … Wang B (2021). Antioxidative and metabolic contribution to salinity stress responses in two rapeseed cultivars during the early seedling stage. Antioxidants (Basel, Switzerland) 10:1227. https://doi.org/10.3390/antiox10081227

Fang X, Li W, Yuan H, Chen H, Bo C, Ma Q, Cai R (2021). Mutation of ZmWRKY86 confers enhanced salt stress tolerance in maize. Plant Physiology and Biochemistry 167:840-850. https://doi.org/10.1016/j.plaphy.2021.09.010

Faria JAQA, Reis PAB, Reis MTB, Rosado GL, Pinheiro GL, Mendes GC, Fontes EPB (2011). The NAC domain-containing protein, GmNAC6, is a downstream component of the ER stress- and osmotic stress-induced NRP-mediated cell-death signaling pathway. BMC Plant Biology 11:129. https://doi.org/10.1186/1471-2229-11-129

Fu Y, Guo C, Wu H, Chen C (2017). Arginine decarboxylase ADC2 enhances salt tolerance through increasing ROS scavenging enzyme activity in Arabidopsis thaliana. Plant Growth Regulation 83:253-263. https://doi.org/10.1007/s10725-017-0293-0

Fujita M, Fujita Y, Maruyama K, Seki M, Hiratsu K, Ohme-Takagi M, … Shinozaki K (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. The Plant Journal 39:863-876. https://doi.org/10.1111/j.1365-313X.2004.02171.x

Galvan-Ampudia CS, Testerink C (2011). Salt stress signals shape the plant root. Current Opinion in Plant Biology 14:296-302. https://doi.org/10.1016/j.pbi.2011.03.019

Geng G, Lv C, Stevanato P, Li R, Liu H, Yu L, Wang Y (2019). Transcriptome analysis of salt-sensitive and tolerant genotypes reveals salt-tolerance metabolic pathways in sugar beet. International Journal of Molecular Sciences 20. https://doi.org/10.3390/ijms20235910

Gill SS, Tuteja N (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry 48:909-930. https://doi.org/10.1016/j.plaphy.2010.08.016

Gondor OK, Tajti J, Hamow KÁ, Majláth I, Szalai G, Janda T, Pál M (2021). Polyamine metabolism under different light regimes in wheat. International Journal of Molecular Sciences 22. https://doi.org/10.3390/ijms222111717

Gu M, li N, Ty S, Xh L, Brestic M, Shao H, Li J, Rki S (2016). Accumulation capacity of ions in cabbage (Brassica oleracea L.) supplied with sea water. Plant, Soil and Environment 62:314-320. https://doi.org/10.17221/771/2015-PSE

Guo X, Wang Q, Liu Y, Zhang X, Zhang L, Fan S (2020). Screening of salt stress responsive genes in Brachypodium distachyon (L.) Beauv. by transcriptome analysis. Plants 9. https://doi.org/10.3390/plants9111522

Gupta BK, Sahoo KK, Anwar K, Nongpiur RC, Deshmukh R, Pareek A, Singla-Pareek SL (2021). Silicon nutrition stimulates Salt-Overly Sensitive (SOS) pathway to enhance salinity stress tolerance and yield in rice. Plant Physiology and Biochemistry 166:593-604. https://doi.org/10.1016/j.plaphy.2021.06.010

Hao YJ, Wei W, Song QX, Chen HW, Zhang YQ, Wang F, … Chen SY (2011). Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants. Plant Journal 68:302-313. https://doi.org/10.1111/j.1365-313X.2011.04687.x

Hashimoto K, Eckert C, Anschütz U, Scholz M, Held K, Waadt R, … Kudla J (2012). Phosphorylation of calcineurin B-like (CBL) calcium sensor proteins by their CBL-interacting protein kinases (CIPKs) Is required for full activity of CBL-CIPK complexes toward their target proteins. Journal of Biological Chemistry 287:7956-7968. https://doi.org/10.1074/jbc.M111.279331

He L, Wu YH, Zhao Q, Wang B, Liu QL, Zhang L (2018). Chrysanthemum DgWRKY2 gene enhances tolerance to salt stress in transgenic Chrysanthemum. International Journal of Molecular Sciences 19. https://doi.org/10.3390/ijms19072062

He X-J, Mu R-L, Cao W-H, Zhang Z-G, Zhang J-S, Chen S-Y (2005). AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. The Plant Journal 44:903-916. https://doi.org/10.1111/j.1365-313X.2005.02575.x

Hoang MHT, Nguyen XC, Lee K, Kwon YS, Pham HTT, Park HC, … Chung WS (2012). Phosphorylation by AtMPK6 is required for the biological function of AtMYB41 in Arabidopsis. Biochemical and Biophysical Research Communications 422:181-186. https://doi.org/10.1016/j.bbrc.2012.04.137

Horie T, Hauser F, Schroeder JI (2009). HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science 14:660-668. https://doi.org/10.1016/j.tplants.2009.08.009

Hussain S, Zhang J-h, Zhong C, Zhu L-f, Cao X-c, Yu S-m, … Jin Q-y (2017). Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. Journal of Integrative Agriculture 16:2357-2374. https://doi.org/10.1016/S2095-3119(16)61608-8

Hussain SS, Ali M, Ahmad M, Siddique KH (2011). Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnology Advances 29:300-311. https://doi.org/10.1016/j.biotechadv.2011.01.003

Iqbal N, Khan NA, Ferrante A, Trivellini A, Francini A, Khan MIR (2017). Ethylene role in plant growth, development and senescence: interaction with other phytohormones. Frontiers in Plant Science 8:475-475. https://doi.org/10.3389/fpls.2017.00475

Jaradat MR, Feurtado JA, Huang D, Lu Y, Cutler AJ (2013). Multiple roles of the transcription factor AtMYBR1/AtMYB44 in ABA signaling, stress responses, and leaf senescence. BMC Plant Biology 13:192. https://doi.org/10.1186/1471-2229-13-192

Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013). The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Molecular Plant 6:275-286. https://doi.org/10.1093/mp/sst017

Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017). WRKY transcription factors in plant responses to stresses. Journal of Integrative Plant Biology 59:86-101. https://doi.org/10.1111/jipb.12513

Joo J, Lee YH, Song SI (2019). OsbZIP42 is a positive regulator of ABA signaling and confers drought tolerance to rice. Planta 249:1521-1533. https://doi.org/10.1007/s00425-019-03104-7

Jung C, Seo JS, Han SW, Koo YJ, Kim CH, Song SI, Nahm BH, Choi YD, Cheong J-J (2008). Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis. Plant Physiology 146:323-324. https://doi.org/10.1104/pp.107.110981

Khan NA, Khan MIR, Ferrante A, Poor P (2017). Editorial: ethylene: a key regulatory molecule in plants. Frontiers in Plant Science 1782.

Kim JH, Hyun WY, Nguyen HN, Jeong CY, Xiong L, Hong SW, Lee H (2015). AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5. Plant Cell Environment 38:559-571. https://doi.org/10.1111/pce.12415

Li H, Gao Y, Xu H, Dai Y, Deng D, Chen J (2013). ZmWRKY33, a WRKY maize transcription factor conferring enhanced salt stress tolerances in Arabidopsis. Plant Growth Regulation 70:207-216. https://doi.org/10.1007/s10725-013-9792-9

Li S, An Y, Hailati S, Zhang J, Cao Y, Liu Y, Geng J, Hu T, Yang P (2019). Overexpression of the Cytokinin Oxidase/dehydrogenase (CKX) from Medicago sativa enhanced salt stress tolerance of Arabidopsis. Journal of Plant Biology 62:374-386. https://doi.org/10.1007/s12374-019-0141-z

Li Y, Wang L, Yu B, Guo J, Zhao Y, Zhu Y (2021). Expression analysis of AUX/IAA family genes in apple under salt stress. Biochemical Genetics. https://doi.org/10.1007/s10528-021-10158-4

Liang QY, Wu YH, Wang K, Bai ZY, Liu QL, Pan YZ, Zhang L, Jiang BB (2017). Chrysanthemum WRKY gene DgWRKY5 enhances tolerance to salt stress in transgenic chrysanthemum. Scientific Reports 7:4799. https://doi.org/10.1038/s41598-017-05170-x

Liu C, Mao B, Yuan D, Chu C, Duan M (2022). Salt tolerance in rice: Physiological responses and molecular mechanisms. The Crop Journal 10:13-25. https://doi.org/10.1016/j.cj.2021.02.010

Liu J, Shabala S, Zhang J, Ma G, Chen D, Shabala L, … Zhao Q (2020). Melatonin improves rice salinity stress tolerance by NADPH oxidase-dependent control of the plasma membrane K+ transporters and K+ homeostasis. Plant, Cell & Environment 43:2591-2605. https://doi.org/10.1111/pce.13759

Mahajan S, Pandey GK, Tuteja N (2008). Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Archives of Biochemistry and Biophysics 471:146-158. https://doi.org/10.1016/j.abb.2008.01.010

Mao C, Ding J, Zhang B, Xi D, Ming F (2018). OsNAC2 positively affects salt-induced cell death and binds to the OsAP37 and OsCOX11 promoters. The Plant Journal 94:454-468. https://doi.org/10.1111/tpj.13867

Mhamdi A, Van Breusegem F (2018). Reactive oxygen species in plant development. Development 145. https://doi.org/10.1242/dev.164376

Miranda RS, Alvarez-Pizarro JC, Costa JH, Paula SO, Prisco JT, Gomes-Filho E (2017). Putative role of glutamine in the activation of CBL/CIPK signalling pathways during salt stress in sorghum. Plant Signalling and Behaviour 12:e1361075. https://doi.org/10.1080/15592324.2017.1361075

Nadarajah KK (2020). ROS homeostasis in abiotic stress tolerance in plants. International Journal of Molecular Sciences 21. https://doi.org/10.3390/ijms21155208

Nath M, Bhatt D, Jain A, Saxena SC, Saifi SK, Yadav S, Negi M, Prasad R, Tuteja N (20190. Salt stress triggers augmented levels of Na+, Ca2+ and ROS and alter stress-responsive gene expression in roots of CBL9 and CIPK23 knockout mutants of Arabidopsis thaliana. Environmental and Experimental Botany 161:265-276. https://doi.org/10.1016/j.envexpbot.2018.10.005

Nayak SS, Pradhan S, Sahoo D, Parida A (2020). De novo transcriptome assembly and analysis of Phragmites karka, an invasive halophyte, to study the mechanism of salinity stress tolerance. Scientific Reports 10:5192. https://doi.org/10.1038/s41598-020-61857-8

Neily M, Baldet P, Arfaoui I, Saito T, Li Q-l, Asamizu E, Matsukura C, Moriguchi T, Ezura H (2011). Overexpression of apple spermidine synthase 1 (MdSPDS1) leads to significant salt tolerance in tomato plants. Plant Biotechnology 28:33-42. https://doi.org/10.5511/plantbiotechnology.10.1013a

Neuhaus HE, Trentmann O (2014). Regulation of transport processes across the tonoplast. Frontiers in Plant Science 5. https://doi.org/10.3389/fpls.2014.00460

Nuruzzaman M, Sharoni AM, Kikuchi S (2013). Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Frontiers in Microbiology 4:248-248. https://doi.org/10.3389/fmicb.2013.00248

Persak H, Pitzschke A (2014). Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress. International Journal of Molecular Sciences 15:2517-2537. https://doi.org/10.3390/ijms15022517

Qiu Y, Yu D (2009). Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany 65:35-47. https://doi.org/10.1016/j.envexpbot.2008.07.002

Ribba T, Garrido-Vargas F, O’Brien JA (2020). Auxin-mediated responses under salt stress: from developmental regulation to biotechnological applications. Journal of Experimental Botany 71:3843-3853. https://doi.org/10.1093/jxb/eraa241

Rong W, Qi L, Wang A, Ye X, Du L, Liang H, Xin Z, Zhang Z (2014). The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat. Plant Biotechnology Journal 12:468-479. https://doi.org/10.1111/pbi.12153

Sahito ZA, Wang L, Sun Z, Yan Q, Zhang X, Jiang Q, … Li X (2017). The miR172c-NNC1 module modulates root plastic development in response to salt in soybean. BMC Plant Biology 17:229. https://doi.org/10.1186/s12870-017-1161-9

Saini S, Sharma I, Kaur N, Pati PK (2013). Auxin: a master regulator in plant root development. Plant Cell Reports 32:741-757. https://doi.org/10.1007/s00299-013-1430-5

Sarwar M, Anjum S, Ali Q, Alam MW, Haider MS, Mehboob W (2021). Triacontanol modulates salt stress tolerance in cucumber by altering the physiological and biochemical status of plant cells. Scientific Reports 11:24504. https://doi.org/10.1038/s41598-021-04174-y

Scholey A, Gibbs A, Neale C, Perry N, Ossoukhova A, Bilog V, … Buchwald-Werner S (2014). Anti-stress effects of lemon balm-containing foods. Nutrients 6:4805-4821. https://doi.org/10.3390/nu6114805

Seifikalhor M, Aliniaeifard S, Shomali A, Azad N, Hassani B, Lastochkina O, Li T (2019). Calcium signaling and salt tolerance are diversely entwined in plants. Plant Signal Behavior 14:1665455. https://doi.org/10.1080/15592324.2019.1665455

Serrano R, Rodriguez-Navarro A (2001). Ion homeostasis during salt stress in plants. Current Opinion in Cell Biology 13:399-404. https://doi.org/10.1016/s0955-0674(00)00227-1

Shi H, Chan Z (2014). Improvement of plant abiotic stress tolerance through modulation of the polyamine pathway. Journal of Integrative Plant Biology 56:114-121. https://doi.org/10.1111/jipb.12128

Shi H, Zhu J-K (2002). SOS4, a pyridoxal kinase gene, is required for root hair development in Arabidopsis. Plant Physiology 129:585-593. https://doi.org/10.1104/pp.001982

Siddikee MA, Glick B, Chauhan P, Yim W, Sa T (2011). Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane-1-carboxylic acid deaminase activity. Plant Physiology and Biochemistry: PPB / Société française de physiologie végétale 49:427-434. https://doi.org/10.1016/j.plaphy.2011.01.015

Skubacz A, Daszkowska-Golec A, Szarejko I (2016). The role and regulation of ABI5 (ABA-Insensitive 5) in plant development, abiotic stress responses and phytohormone crosstalk. Frontiers in Plant Science 7:1884-1884. https://doi.org/10.3389/fpls.2016.01884

Song JB, Gao S, Sun D, Li H, Shu XX, Yang ZM (2013). miR394 and LCR are involved in Arabidopsis salt and drought stress responses in an abscisic acid-dependent manner. BMC Plant Biology 13:210. https://doi.org/10.1186/1471-2229-13-210

Song Q, Joshi M, Joshi V (20200. Transcriptomic analysis of short-term salt stress response in watermelon seedlings. International Journal of Molecular Sciences 21. https://doi.org/10.3390/ijms21176036

Sun L-J, Zhou J-J, Pan J-L, Liang Y-Y, Fang Z-J, Xie Y, Yang H, Gu H-Y, Bao N (2018). Electrochemical mapping of indole-3-acetic acid and salicylic acid in whole pea seedlings under normal conditions and salinity. Sensors and Actuators B: Chemical 276:545-551. https://doi.org/10.1016/j.snb.2018.08.152

Sun X, Xu L, Wang Y, Yu R, Zhu X, Luo X, … Liu L (2015). Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.). BMC Genomics 16:197. https://doi.org/10.1186/s12864-015-1416-5

Sun Y, Liang W, Cheng H, Wang H, Lv D, Wang W, Liang M, Miao C (2021). NADPH Oxidase-derived ROS promote mitochondrial alkalization under salt stress in Arabidopsis root cells. Plant Signalling and Behaviour 16:1856546. https://doi.org/10.1080/15592324.2020.1856546

Sun Y, Zhao J, Li X, Li Y (2020). E2 conjugases UBC1 and UBC2 regulate MYB42-mediated SOS pathway in response to salt stress in Arabidopsis. New Phytologist 227:455-472. https://doi.org/10.1111/nph.16538

Suzuki K, Yamaji N, Costa A, Okuma E, Kobayashi NI, Kashiwagi T, … Horie T (2016). OsHKT1;4-mediated Na(+) transport in stems contributes to Na(+) exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biology 16:22. https://doi.org/10.1186/s12870-016-0709-4

Suzuki N, Miller G, Morales J, Shulaev V, Torres MA, Mittler R (2011). Respiratory burst oxidases: the engines of ROS signaling. Current Opinion in Plant Biology 14:691-699. https://doi.org/10.1016/j.pbi.2011.07.014

Todorova D, Katerova Z, Sergiev I, Alexieva V (2013). Role of polyamines in alleviating salt stress. In: Ahmad P, Azooz MM, Prasad MNV (Eds). Ecophysiology and Responses of Plants under Salt Stress. New York, NY: Springer New York, pp 355-379.

Tounekti T, Hernández I, Müller M, Khemira H, Munné-Bosch S (2011). Kinetin applications alleviate salt stress and improve the antioxidant composition of leaf extracts in Salvia officinalis. Plant Physiology and Biochemistry 49:1165-1176. https://doi.org/10.1016/j.plaphy.2011.07.011

Turkan I, Demiral T (2009). Recent developments in understanding salinity tolerance. Environmental and Experimental Botany 67:2-9. https://doi.org/10.1016/j.envexpbot.2009.05.008

van Zelm E, Zhang Y, Testerink C (2020). Salt tolerance mechanisms of plants. Annual Review in Plant Biology 71:403-433. https://doi.org/10.1146/annurev-arplant-050718-100005

Vanstraelen M, Benková E (2012). Hormonal interactions in the regulation of plant development. Annu Rev Cell Dev Biol 28:463-487. https://doi.org/10.1146/annurev-cellbio-101011-155741

Wang C, Deng P, Chen L, Wang X, Ma H, Hu W, … He G (2013a). A wheat WRKY transcription factor TaWRKY10 confers tolerance to multiple abiotic stresses in transgenic tobacco. PloS One 8:e65120-e65120. https://doi.org/10.1371/journal.pone.0065120

Wang F, Hou X, Tang J, Wang Z, Wang S, Jiang F, Li Y (2012). A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Molecular Biology Reports 39:4553-4564. https://doi.org/10.1007/s11033-011-1245-9

Wang P, Zhang Q, Chen Y, Zhao Y, Ren F, Shi H, Wu X (2020). Comprehensive identification and analysis of DELLA genes throughout the plant kingdom. BMC Plant Biology 20:372. https://doi.org/10.1186/s12870-020-02574-2

Wang T, Zhang J-L, Tian Q, Zhao M-G, Zhang W-H (2013b). A Medicago truncatula EF-hand family gene, MtCaMP1, is involved in drought and salt stress tolerance. PloS One 8:e58952. https://doi.org/10.1371/journal.pone.0058952

Wang X, Niu Y, Zheng Y (2021). Multiple functions of MYB transcription factors in abiotic stress responses. International Journal of Molecular Sciences 22:6125. https://doi.org/10.3390/ijms22116125

Wang Y, Zhang Y, Zhou R, Dossa K, Yu J, Li D, Liu A, Ali Mmadi M, Zhang X, You J (2018). Identification and characterization of the bZIP transcription factor family and its expression in response to abiotic stresses in sesame. PloS One 13:e0200850. https://doi.org/10.1371/journal.pone.0200850

Wang Z, Cheng K, Wan L, Yan L, Jiang H, Liu S, Lei Y, Liao B (2015). Genome-wide analysis of the basic leucine zipper (bZIP) transcription factor gene family in six legume genomes. BMC Genomics 16:1053. https://doi.org/10.1186/s12864-015-2258-x

Wei H, Wang X, He Y, Xu H, Wang L (2021). Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. Embo Journal 40:e105086. https://doi.org/10.15252/embj.2020105086

Wei Z-Z, Hu K-D, Zhao D-L, Tang J, Huang Z-Q, Jin P, … Zhang H (2020). MYB44 competitively inhibits the formation of the MYB340-bHLH2-NAC56 complex to regulate anthocyanin biosynthesis in purple-fleshed sweet potato. BMC Plant Biology 20:258. https://doi.org/10.1186/s12870-020-02451-y

Wen K, Chen Y, Zhou X, Chang S, Feng H, Zhang J, … Wang Y (2019). OsCPK21 is required for pollen late-stage development in rice. Journal of Plant Physiology 240:153000. https://doi.org/10.1016/j.jplph.2019.153000

Wu Y, Jin X, Liao W, Hu L, Dawuda MM, Zhao X, … Yu J (2018). 5-Aminolevulinic Acid (ALA) alleviated salinity stress in cucumber seedlings by enhancing chlorophyll synthesis pathway. Frontiers in Plant Science 9. https://doi.org/10.3389/fpls.2018.00635

Xiong F, Liao J, Ma Y, Wang Y, Fang W, Zhu X (2018). The Protective effect of exogenous putrescine in the response of tea plants (Camellia sinensis) to salt stress. HortScience 53:1640-1646. https://doi.org/10.21273/HORTSCI13283-18

Xiong Y, Yan H, Liang H, Zhang Y, Guo B, Niu M, … Ma G (2019). RNA-Seq analysis of Clerodendrum inerme (L.) roots in response to salt stress. BMC Genomics 20:724. https://doi.org/10.1186/s12864-019-6098-y

Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008). Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Letters 582:1037-1043. https://doi.org/10.1016/j.febslet.2008.02.052

Xu Y, Lu JH, Zhang JD, Liu DK, Wang Y, Niu QD, Huang DD (2021a). Transcriptome revealed the molecular mechanism of Glycyrrhiza inflata root to maintain growth and development, absorb and distribute ions under salt stress. BMC Plant Biology 21:599. https://doi.org/10.1186/s12870-021-03342-6

Xu Z, Zhang N, Fu H, Wang F, Wen M, Chang H, … Wang Z-Y (2021b). Salt stress modulates the landscape of transcriptome and alternative splicing in date palm (Phoenix dactylifera L.). Frontiers in Plant Science 12: 807739. https://doi.org/10.3389/fpls.2021.807739

Xue H, Gao X, He P, Xiao G (2021). Origin, evolution, and molecular function of DELLA proteins in plants. The Crop Journal. https://doi.org/10.1016/j.cj.2021.06.005

Yañez-Yazlle MF, Romano-Armada N, Rajal VB, Irazusta VP (2021). Amelioration of saline stress on chia (Salvia hispanica L.) seedlings inoculated with halotolerant plant growth-promoting bacteria isolated from hypersaline environments. Frontiers in Agronomy 3. https://doi.org/10.3389/fagro.2021.665798

Yang J, Duan G, Li C, Liu L, Han G, Zhang Y, Wang C (2019a). The crosstalks between jasmonic acid and other plant hormone signaling highlight the involvement of jasmonic acid as a core component in plant response to biotic and abiotic stresses. Frontiers in Plant Science.

Yang Y, Guo Y (2018a). Unraveling salt stress signaling in plants. Journal of Integrative Plant Biology 60:796-804. https://doi.org/10.1111/jipb.12689

Yang Y, Qin Y, Xie C, Zhao F, Zhao J, Liu D, … Guo Y (2010). The Arabidopsis chaperone J3 regulates the plasma membrane H+-ATPase through interaction with the PKS5 Kinase. The Plant Cell 22:1313-1332. https://doi.org/10.1105/tpc.109.069609

Yang Z, Wang C, Xue Y, Liu X, Chen S, Song C, Yang Y, Guo Y (2019b0. Calcium-activated 14-3-3 proteins as a molecular switch in salt stress tolerance. Nature Communication 10:1199. https://doi.org/10.1038/s41467-019-09181-2

Yang Z, Wang Y, Wei X, Zhao X, Wang B, Sui N (2017). Transcription profiles of genes related to hormonal regulations under salt stress in sweet sorghum. Plant Molecular Biology Reporter 35:586-599. https://doi.org/10.1007/s11105-017-1047-x

Yap Y-K, El-Sherif F, Habib ES, Khattab S (2021). Moringa oleifera leaf extract enhanced growth, yield, and silybin content while mitigating salt-induced adverse effects on the growth of Silybum marianum. Agronomy 11. https://doi.org/10.3390/agronomy11122500

Yin H, Li M, Li D, Khan S-A, Hepworth SR, Wang S-M (2019). Transcriptome analysis reveals regulatory framework for salt and osmotic tolerance in a succulent xerophyte. BMC Plant Biology 19:88. https://doi.org/10.1186/s12870-019-1686-1

Yu Y, Li Y, Yan Z, Duan X (2021). The role of cytokinins in plant under salt stress. Journal of Plant Growth Regulation. https://doi.org/10.1007/s00344-021-10441-z

Yuan X, Wang H, Cai J, Li D, Song F (2019). NAC transcription factors in plant immunity. Phytopathology Research 1:3. https://doi.org/10.1186/s42483-018-0008-0

Yue Y, Wang J, Ren W, Zhou Z, Long X, Gao X, Rengel Z (2022). Expression of genes related to plant hormone signal transduction in jerusalem artichoke (Helianthus tuberosus L.) seedlings under salt stress. Agronomy 12. https://doi.org/10.3390/agronomy12010163

Zarza X, Atanasov KE, Marco F, Arbona V, Carrasco P, Kopka J, … Alcázar R (2017). Polyamine oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress tolerance. Plant Cell Environment 40:527-542. https://doi.org/10.1111/pce.12714

Zhan J, Diao Y, Yin G, Sajjad M, Wei X, Lu Z, Wang Y (2021). Integration of mRNA and miRNA analysis reveals the molecular mechanism of cotton response to salt stress. Frontiers in Plant Science 12. https://doi.org/10.3389/fpls.2021.767984

Zhang B (2015). MicroRNA: a new target for improving plant tolerance to abiotic stress. Journal of Experimental Botany 66:1749-1761. https://doi.org/10.1093/jxb/erv013

Zhang B, Pan X, Cobb G, Anderson T (2006). Plant microRNA: A small regulatory molecule with big impact. Developmental Biology 289:3-16. https://doi.org/10.1016/j.ydbio.2005.10.036

Zhang L, Zhang L, Xia C, Zhao G, Jia J, Kong X (2016). The novel wheat transcription factor TaNAC47 enhances multiple abiotic stress tolerances in transgenic plants. Frontiers in Plant Science 6:1174-1174. https://doi.org/10.3389/fpls.2015.01174

Zhao S, Zhang Q, Liu M, Zhou H, Ma C, Wang P (2021). Regulation of plant responses to salt stress. International Journal of Molecular Sciences 22:4609. https://doi.org/10.3390/ijms22094609

Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z (2014). The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum). Plant Cell Reports 33:1851-1863. https://doi.org/10.1007/s00299-014-1662-z

Zhu M, Meng X, Cai J, Li G, Dong T, Li Z (2018). Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biology 18:83. https://doi.org/10.1186/s12870-018-1299-0

Žižková E, Dobrev PI, Muhovski Y, Hošek P, Hoyerová K, Haisel D, … Hichri I (2015). Tomato (Solanum lycopersicum L.) SlIPT3 and SlIPT4 isopentenyltransferases mediate salt stress response in tomato. BMC Plant Biology 15:85. https://doi.org/10.1186/s12870-015-0415-7

Published

2022-12-07

How to Cite

ANWAR, A., ZHANG, S., HE, L., & GAO, J. (2022). Understanding the physiological and molecular mechanism of salinity stress tolerance in plants. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 50(4), 12959. https://doi.org/10.15835/nbha50312959

Issue

Section

Review Articles
CITATION
DOI: 10.15835/nbha50312959