Dry mass input into fruits can be predicted by fine root morphology of pepper cultivars exposed to varied lighting spectra
DOI:
https://doi.org/10.15835/nbha50412930Keywords:
bioassay model, fine root plasticity, genotypes, illumination adaptation, pepperAbstract
Many pepper cultivars can be raised under artificial lighting in a plant factory. An easily measured parameter is needed to fast predict fruit loading in pepper cultivars. In this study, four pepper cultivars with contrasting manners in growth and fruiting were cultured under three light-emitting diode (LED) spectra in comparison with a sunlight control. It was found that the red-light spectrum (71.7% red-, 13.7% green-, 14.6% blue-lights) increased over 40% of dry mass in fruits, while the green-light spectrum (26.2% red-, 56.4% green-, 17.4% blue-lights) induced no fruiting compared to the control. Only two cultivars responded by fine root morphology, which was characterized as smaller surface-area and fewer tip-number in the blue-light spectrum (7.8% red-, 33.7% green-, 48.5% blue-lights) than in red LED light. Tip-number showed a negative correlation with fruit dry-mass in three cultivars, while fine root diameter increased with dry mass in fruits. In conclusion, fine root tip-number can be used as a predictor of fruit dry-mass in pepper cultivars high in fruit quality or yield. The red-colour light was recommended for raising pepper cultivars in a plant factory with the purpose of greater fruit productivity.
References
Alcock CM, Bertling I (2012). Light-induced colour change in two winter-grown pepper cultivars (Capsicum annuum L.). 7th International Symposium on Light in Horticultural Systems pp 275-281.
An BY, Wang D, Liu XJ, Guan HM, Wei HX, Ren ZB (2019). The effect of environmental factors in urban forests on blood pressure and heart rate in university students. Journal of Forest Research 24(1):27-34. https://doi.org/10.1080/13416979.2018.1540144
Cammarisano L, Korner O (2022). Response of cyanic and acyanic lettuce cultivars to an increased proportion of blue light. Biology 11(7):959. https://doi.org/10.3390/biology11070959
Chavan SG, Maier C, Alagoz Y, Filipe JC, Warren CR, Lin H, … Tissue DT (2020). Light-limited photosynthesis under energy-saving film decreases eggplant yield. Food and Energy Security 9(4):e245. https://doi.org/10.1002/fes3.245
Darko E, Hamow KA, Marcek T, Dernovics M, Ahres M, Galiba G (2022). Modulated light dependence of growth, flowering, and the accumulation of secondary metabolites in chilli. Frontiers in Plant Science 13:801656. https://doi.org/10.3389/fpls.2022.801656
Erel R, Le TT, Eshel A, Cohen S, Offenbach R, Strijker T, Shtein I (2020). Root development of bell pepper (Capsicum annuum L.) as affected by water salinity and sink strength. Plants 9(1):35. https://doi.org/10.3390/plants9010035
He C, Gao J, Zhao Y, Liu J (2021). Root foraging precision of Pinus pumila (Pall.) regel subjected to contrasting light spectra. Plants 10(7):1482.
Jokinen K, Sarkka LE, Nakkila J (2012). Improving sweet pepper productivity by LED interlighting. 7th International Symposium on Light in Horticultural Systems pp 59-66.
Joshi NC, Ratner K, Eidelman O, Bednarczyk D, Zur N, Many Y, … Charuvi D (2019). Effects of daytime intra-canopy LED illumination on photosynthesis and productivity of bell pepper grown in protected cultivation. Scientia Horticulturae 250:81-88. https://doi.org/10.1016/j.scienta.2019.02.039
Kim D, Son JE (2022). Adding far-red to red, blue supplemental light-emitting diode interlighting improved sweet pepper yield but attenuated carotenoid content. Frontiers in Plant Science 13:938199. https://doi.org/10.3389/fpls.2022.938199
Kitamura S, Oka K, Ikutomo K, Kimura Y, Taniguchi Y, Ieee (2008). A distinction method for fruit of sweet pepper using reflection of LED light. Annual Conference of the SICE pp 460-463.
Kokalj D, Hribar J, Cigic B, Zlatic E, Demsar L, Sinkovic L, Sircelj H, Bizjak G, Vidrih R (2016). Influence of yellow light-emitting diodes at 590 nm on storage of apple, tomato and bell pepper fruit. Food Technology and Biotechnology 54(2):228-235. https://doi.org/10.17113/ftb.54.02.16.4096
Lanoue J, Little C, Hawley D, Hao XM (2022). Addition of green light improves fruit weight and dry matter content in sweet pepper due to greater light penetration within the canopy. Scientia Horticulturae 304:111350. https://doi.org/10.1016/j.scienta.2022.111350
Lenz F (2009). Fruit effects on the dry matter - and carbohydrate distribution in apple trees. Acta Horticulturae 835:21-38. https://doi.org/10.17660/ActaHortic.2009.835.2
Li XW, Xia HT, Wang JW, Chen QX (2021). Nutrient uptake and assimilation in fragrant rosewood (Dalbergia odorifera TC Chen) seedlings in growing media with un-composted spent mushroom residue. PLoS One 16(4):e0249534. https://doi.org/10.1371/journal.pone.0249534
Liu CC, Wan HJ, Yang YX, Ye QJ, Zhou GZ, Wang XR, Ahammed GJ, Cheng Y (2022a). Post-harvest LED light irradiation affects firmness, bioactive substances, and amino acid compositions in chili pepper (Capsicum annum L.). Foods 11(17):2712. https://doi.org/10.3390/foods11172712
Liu P, Cao B, Wang YT, Wei ZP, Ye JF, Wei HX (2021). Spectral effect of streetlamps on urban trees: A simulated study on tissue water, nitrogen, and carbohydrate contents in maple and oak. PLoS One 16(3):e0248463. https://doi.org/10.1371/journal.pone.0248463
Liu Y, Schouten RE, Tikunov Y, Liu XX, Visser RGF, Tan F, Bovy A, Marcelis LFM (2022b). Blue light increases anthocyanin content and delays fruit ripening in purple pepper fruit. Postharvest Biology and Technology 192:112024. https://doi.org/10.1016/j.postharvbio.2022.112024
Mares-Quinones MD, Valiente-Banuet JI (2019). Horticultural aspects for the cultivated production of piquin peppers (Capsicum annuum L. var. glabriusculum)-A Review. Hortscience 54(1):70-75. https://doi.org/10.21273/hortsci13451-18
Maroga GM, Soundy P, Sivakumar D (2019). Different postharvest responses of fresh-cut sweet peppers related to quality and antioxidant and Phenylalanine ammonia lyase activities during exposure to light-emitting diode treatments. Foods 8(9):359. https://doi.org/10.3390/foods8090359
Song QY, Xu L, Long W, Guo J, Zhang X (2022). Quality assessment and nutrient uptake and utilization in Luohan pine (Podocarpus macrophyllus) seedlings raised by chitosan spraying in varied LED spectra. PLoS One 17(4):e0267632. https://doi.org/10.1371/journal.pone.0267632
Tan L, Fan RF, Sun HF, Guo SL (2021). Root foraging of birch and larch in heterogeneous soil nutrient patches under water deficit. PLoS One 16(8):e0255848. https://doi.org/10.1371/journal.pone.0255848
Villena IA, Puente WC, Martinez LL, Munoz JV, Sanchez MdCR (2017). Root and aerial growth in early-maturing peach trees under two crop load treatments. Spanish Journal of Agricultural Research 15(2):18.
Wang R, Wang Y, Su Y, Tan JH, Luo XT, Li JY, He Q (2020). Spectral effect on growth, dry mass, physiology and nutrition in Bletilla striata seedlings: individual changes and collaborated response. International Journal of Agriculture and Biology 24(1):125-132. https://doi.org/10.17957/ijab/15.1416
Wang Z, Zhao Y, Wei HX (2017). Chitosan oligosaccharide addition affects current-year shoot of post-transplant Buddhist pine (Podocarpus macrophyllus) seedlings under contrasting photoperiods. iForest-Biogeosciences and Forestry 10:715-721. https://doi.org/10.3832/ifor2302-010
Wei HX, Guo P (2017). Carbohydrate metabolism during new root growth in transplanted Larix olgensis seedlings: post-transplant response to nursery-applied inorganic fertilizer and organic amendment. iForest-Biogeosciences and Forestry 10:15-22. https://doi.org/10.3832/ifor1988-009
Wei HX, Guo P, Zheng HF, He XY, Wang PJ, Ren ZB, Zhai C (2017). Micro-scale heterogeneity in urban forest soils affects fine root foraging by ornamental seedlings of Buddhist pine and Northeast yew. Urban Forestry and Urban Greening 28:63-72. https://doi.org/10.1016/j.ufug.2017.10.006
Wei HX, Ma BQ, Hauer RJ, Liu CY, Chen X, He XY (2020a). Relationship between environmental factors and facial expressions of visitors during the urban forest experience. Urban Forestry and Urban Greening 53:126699. https://doi.org/10.1016/j.ufug.2020.126699
Wei HX, Xu CY, Ren J, Ma LY, Duan J, Jiang LN (2013). Newly transplanted Larix olgensis Henry stock with greater root biomass has higher early nitrogen flux rate. Soil Science and Plant Nutrition 59(5):740-749. https://doi.org/10.1080/00380768.2013.816977
Wei HX, Zhao HT, Chen X, He XY (2020b). Secondary metabolites, carbohydrate accumulation, and nutrient uptake in Aralia elata (Miq.) Seem seedlings exposed to shoot cutting and different LED spectra. Acta Physiologiae Plantarum 42(11):162. https://doi.org/10.1007/s11738-020-03149-2
Xu L, Zhang X, Zhang DH, Wei HX, Guo J (2019). Using morphological attributes for the fast assessment of nutritional responses of Buddhist pine (Podocarpus macrophyllus Thunb. D. Don) seedlings to exponential fertilization. PLoS One 14(12):e0225708. https://doi.org/10.1371/journal.pone.0225708
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Lan WANG, Changwei ZHOU, Yongjun WU

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.