Effect of foliar treatment with chitosan on phenolic composition of ῾Fetească neagră’ grapes and wines


  • Victoria ARTEM Research Station for Viticulture and Oenology Murfatlar, 2 Calea Bucuresti, 905100, Murfatlar, Constanta (RO)
  • Arina O. ANTOCE University of Agronomic Sciences and Veterinary Medicine of Bucharest, Faculty of Horticulture, Department of Bioengineering of Horti-Viticultural Systems, 59 Marasti Ave., Sector 1, 011464, Bucharest (RO)
  • Elisabeta I. GEANA National R&D Institute for Cryogenics and Isotopic Technologies-ICIT Ramnicu Valcea, 4th Uzinei Street, PO Box Raureni 7, 240050, Ramnicu Valcea (RO)
  • Aurora RANCA Research Station for Viticulture and Oenology Murfatlar, 2 Calea Bucuresti, 905100, Murfatlar, Constanta (RO)




catechin, chitosan, epicatechin, ‘Fetească neagră’ cv., gallic acid, myricetin, phenolic profile, trans-resveratrol, quercetin


The objective of this study was to determine the influence of chitosan treatments, applied in vineyard for plan protection, on the phenolic quality of grapes. The study was conducted for two consecutive years (2020-2021) in the wine center of Murfatlar, Romania, on ‘Fetească neagră’, an ancient but well-known indigenous Romanian grape variety for red wines. Chitosan is meant to offer an alternative for the classic treatment with Bordeaux mixture (BM), which represented the control variant. A combination treatment with half dose of chitosan and half dose of BM was also applied and evaluated.  Chemical composition at harvest time was evaluated by measuring the content of sugar, total acidity, pH, total anthocyanin potential (ApH1), anthocyanins extractable at wine pH (ApH3.2), total polyphenol index, skin tannins, seed tannins and seeds maturity. In wines the colour parameters were determined by spectrophotometry and individual phenolic compounds by UHPLC-HRMS. In grapes, accumulation of anthocyanins increased with the total dose of chitosan applied in the vineyard, with higher values in 2020 when temperatures were higher and the rainfall values were typical for the region. Accumulation of tannins in grape skins followed a similar trend. In wine, chitosan determined a significant 72% increase in colour intensity in 2020. Among the individual phenols gallic acid was predominant, with higher values in the rainier year (2021) and significant increases determined by chitosan treatment (especially in 2021 when it increased by 97% as compared to BM treatment). Catechin and epicatechin recorded important increases in the less favourable year (2021), with confirmed increases in both years elicited by the chitosan. Quercetin and myricetin were not influenced by the chitosan treatment, but their increase was correlated with higher temperatures and inversely correlated to the amount of rainfall. Trans-resveratrol ranged between 4.3-8.0 mg L-1 in 2020 and 5.0-6.5 mg L-1 in 2021, with an important increase determined by the chitosan treatment in 2020 (89% increase compared to BM treatment).


Metrics Loading ...


Abd El-Hack ME, El-Saadony MT, Shafi ME, Zabermawi NM, Arif M, Batiha GE, … Al-Sagheer AA (2020). Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. International Journal of Biological Macromolecules 164:2726-2744. https://doi.org/10.1016/j.ijbiomac.2020.08.153

Antoce AO, Artem V, Cojocaru GA (2022a). The influence of chitosan treatments in organic Feteasca neagra vineyard on the aromatic profile of wines evaluated by electronic nose. Scientific Papers-Series A-Agronomy LXV:329-334.

Antoce AO, Artem V, Cojocaru GA (2022b). Chitosan treatments in organic vineyard and their impact on the colour and sensory parameters of Feteasca neagra wines. Scientific Papers-Series A-Agronomy LXV:635-642.

Antoce AO, Cojocaru G (2018). Characterization of quality potential of Feteasca neagra grapes cultivated in different Romanian wine region. Proceeding of the Conference Agriculture for Life, Life for Agriculture, pp 238-243. https://doi.org/10.2478/alife-2018-0035

Antoce AO, Stockley C (2019). An overview of the implications of wine on human health, with special consideration of the wine-derived phenolic compounds. AgroLife Scientific Journal 8:21-34.

Arnaz I, Alcantara AR, Civera MC, Arias C, Elorza B, Caballero AH, Acosta N (2021). Chitosan: A overview of its properties and applications. Polymers 13:19-3256, https://doi.org/10.3390/polym13193256

Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006). Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96:1188-1194. https://doi.org/10.1094/PHYTO-96-1188

Bergqvist J, Dokoozlian N, Ebisuda N (2001) Sunlight exposure and temperature effects on berry growth and composition of Cabernet Sauvignon and Grenache in the central San Joaquin Valley of California. American Journal of Enology and Viticulture 52:1-7.

Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA (2007). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta 227:101-112. https://doi.org/227. 10.1007/s00425-007-0598-8

Diego FPQ, José IFF, Juan DMO, Juan ABS, José CGM, José AMJ, Rocío GM (2021). Application of elicitors in two tipening periods of Vitis vinifera L. cv Monastrell: influence on anthocyanin concentration of grapes and wines. Molecules 26(1689):1-16. https://doi.org/10.3390/molecules26061689

El Darra N (2013). Les composés phénoliques des raisins: étude du potentiel qualitatif et des procédés émergeants d’extraction. Thèse présentée pour l’obtention du grade de Docteur de l’UTC, Génie des Procédés Industriels et développement durable. https://www.theses.fr/2013COMP2060.pdf

European Commission (2020). A Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System. Retrieved 2021 May 19 from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0381

European Commission (2019). The European Green Deal. COM/2019/640 Final; European Commission: Brussels, Belgium. Retrieved 2022 August 22 from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640

Fernandes de Oliveira A, Nieddu G (2016) Vine growth and physiological performance of two red grape cultivars under natural and reduced UV solar radiation. Australian Journal of Grape and Wine Research 22:105-114. https://doi.org/10.1111/ajgw.12179

Gambetta JM, Romat V, Schmidtke LM, Holzapfel BP (2021). Secondary metabolites co-ordinately protect grapes from excessive light and sunburn damage during development. Biomolecules 12(1):42. https://doi.org/10.3390/biom12010042

Gao Y, Li XX, Han MM, Yang XF, Li Z, Wang J, Pan QH (2016). Rain-shelter cultivation modifies carbon allocation in the polyphenolic and volatile metabolism of Vitis vinifera L. Chardonnay grapes. PLoS One 11(5):e0156117. https://doi.org/10.1371/journal.pone.0156117

Geana IE, Ionete RE, Tudorache A, Pasa R, Postolache E, Ranca A (2011). Phenolic contents of Romanian wines with different geographical origins. Asian Journal of Chemistry 23:10718. http://dx.doi.org/10.15835/buasvmcnhort:4951

Gil-Muñoz R, Fernández-Fernández JI, Crespo-Villegas O, Garde-Cerdán T (2017). Elicitors used as a tool to increase stilbenes in grapes and wines. Food Research International 98:34-39. https://doi.org/10.1016/j.foodres.2016.11.035

Glories Y (1984). La couleur des vins rouges. 1re partie: les équilibres des anthocyanes et des tanins. OENO One 18(3):195-217. https://doi.org/10.20870/oeno-one.1984.18.3.1751

Glories Y (1984). La couleur des vins rouges. 2e partie: mesure, origine et interprétation. OENO One 18(4):253-271. https://doi.org/10.20870/oeno-one.1984.18.4.1744 (in French).

Gökbilen SO, Becer E, Vatansever HS (2022). Senescence-mediated anticancer effects of quercetin. Nutrition Research 104:82-90. https://doi.org/10.1016/j.nutres.2022.04.007

Guérin L (2005). Amélioration de la Couleur et de la Structure des Vins Rouges par le suivi des composés phénoliques au cours de la maturité. ITV France.

Hidangmayum A, Dwivedi P, Katiyar D, Hemantranjan A (2018). Application of chitosan on plant responses with special reference to abiotic stress. Physiology and Molecular Biology in Plants 25(2):313-326. https://doi.org/10.1007/s12298-018-0633-1

Iriti M, Vitalini S, Tommaso G, Amico S, Borgo M, Faoro F (2011). New chitosan formulation prevents grapevine powdery mildew infection and improves polyphenol content and free radical scavenging activity of grape and wine. Australian Journal of Grape and Wine Research 17:263-269. https://doi.org/10.1111/j.1755-0238.2011.00149.x

Malerba M, Cerana R (2015). Reactive oxygen and nitrogen species in defense/stress responses activated by chitosan in sycamore cultured cells. International Journal of Molecular Sciences 16:3019-3034. https://doi.org/10.3390/ijms16023019

Meena M, Swapnil P, Divyanhu K, Kunar S, Tripathi YN, Zehra A, Upadhyay R (2020). PGPR-mediated induction of systematic resistance and physicochemical alteration in plants against the pathogens. Current perspectives. Journal of Basic Microbiology 60(10):828-861. https://doi.org/10.1002/jobm.202000370

Miliordos DE, Tsiknia M, Kontoudakis N, Dimopoulou M, Bouyiouko C, Kotseridis Y (2021). Impact of application of abscisic acid, benzothiadiazole and chitosan on berry quality characteristics and plant associated microbial communities of Vitis vinifera L var. Mouhtaro. Sustainability 13:1-19. https://doi.org/10.3390/su13115802

Najafi M, Nikpayam O, Tavakoli-Rouzbehani OM, Papi S, Bioky AA, Ahmadiani ES, Sohrab G (2021). A comprehensive insight into the potential effects of resveratrol supplementation on SIRT-1: A systematic review. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 15(5):102224. https://doi.org/10.1016/j.dsx.2021.102224

Nichitoi MM, Josceanu AM, Isopescu RD, Isopencu GO, Geana EI, Ciucure CT, Lavric V (2021). Polyphenolics profile effects upon the antioxidant and antimicrobial activity of propolis extracts. Scientifc Reports 11:20113, https://doi.org/10.1038/s41598-021-97130-9

Nichitoi MM, Josceanu AM, Isopescu RD, Isopencu GO, Geana EI, Ciucure CT, Lavric V (2023). Do ultrasonic field effects upon the polyphenolics profile of propolis extracts improve their antioxidant and antimicrobial activity. Ultrasonics Sonochemistry 92:1-14. https://doi.org/10.1016/j.ultsonch.2022.106274

Niimi J, Tomic O, Naes T, Bastian SEP, Jeffery DW, Nichoeson EL, Maffei SM, Boss PK (2020). Objective measures of grape quality: from Cabernet Sauvignon grape composition to wine sensory characteristics. LWT-Food Science and Technology 123. https://doi.org/10.1016/j.lwt.2020.109105

Nutmakul T (2022). A review on benefits of quercetin in hyperuricemia and gouty arthritis. Saudi Pharmaceutical Journal 30(7):918-926. https://doi.org/10.1016/j.jsps.2022.04.013

Paladines-Quezada DF, Fernández-Fernández JI, Moreno-Olivares JD, Bleda-Sánchez JA, Gómez-Martínez JC, Martínez-Jiménez JA, Gil-Muñoz R. (2021). application of elicitors in two ripening periods of Vitis vinifera L. cv Monastrell: Influence on anthocyanin concentration of grapes and wines. Molecules 26(6):1689. https://doi.org/10.3390/molecules26061689

Porgali E, Buyuktuncel E (2012). Determination of phenolic composition and antioxidant capacity of native red wines by high performance liquid chromatography and spectrophotometric methods. Food Research International 45:145-154. http://dx.doi.org/10.1016/j.foodres.2011.10.025

Racinowski M, Mazur E, Lewandowski BT, Gołębiewski J, Kałużny K, Leis K (2022). Quercetin as a supplement improving endurance exercise capacity – review, Science & Sports 37(1):2-9. https://doi.org/10.1016/j.scispo.2021.03.014

Ribéreau-Gayon J, Peynaud E, Ribéreau-Gayon P, Sudraud P (1976). Traite d’Oenologie – Sciences et techniques du vin, Vol. 1 - Dosage des anthocyanes dans le vins rouge, Ed. Dunod, Paris, pp 494-499. (in French).

Ribéreau-Gayon P, Glories Y, Maujean A, Dubourdieu D (2021). Handbook of Enology. Volume 2: The chemistry of wine stabilization and treatments. John Wiley & Sons.

Rinaudo M (2006). Chitin and chitosan: Properties and applications. Progress in Polymer Science 31(7):603-632. https://doi.org/10.1016/j.progpolymsci.2006.06.001

Romanazzi G, Feliziani E, Bautista Baños S, Sivakumar D (2017). Shelf-life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition 57(3):579-601. https://doi.org/10.1080/10408398.2014.900474

Ruano-Rosa D, Sanchez-Hernandez E, Baquero-Foz R, Martin-Ramos P, Martin-Gil J, Torres-Sanchez S, Casanova-Gascon J (2022). Chitosan-based bioactive formulation for the control of Powdery mildew in viticulture. Agronomy 12(2):495. https://doi.org/10.3390/agronomy12020495

Saint-Cricq de Gaulejac N, Vivas N, Glories Y (1998). Maturation phénolique des raisins rouges. Relation avec la qualité des vins. Comparaison des cépages Merlot et Tempranillo. Progres Agricole et Viticole, 115(13-14):306-318.

Sharif R, Mujtaba M, Rahman M, Shalmani A, Ahmad H, Anwar T, Tianchan D, Wang X (2018). The multifunctional role of chitosan in horticultural crops: A Review. Molecules 23(4):872. https://doi.org/10.3390/molecules23040872

Silva V, Singh RK, Gomes N, Soares BG, Silva A, Falco V, … Poeta P (2020). Comparative insight upon chitosan solution and chitosan nanoparticles application on the phenolic content, antioxidant and antimicrobial activities of individual grape components of Sousão variety. Antioxidants 9(178):1-14. https://doi.org/10.3390/antiox9020178

Singh RK, Martins V, Soares B, Castro I, Falco V (2020). Chitosan application in vineyards (Vitis vinifera L. cv. Tinto Cão) induces accumulation of anthocyanins and alter phenolics in berries, mediated by modifications in the transcription of secondary metabolism genes. International Journal of Molecular Science 21(1):306. https://doi.org/10.3390/ijms21010306

Singh RK, Ruiz-May E, Rajput VD, Minkina T, Gomez-Peroza RL, Verma KK, … Quiroz-Figuero FR (2022). Viewpoint of chitosan application in grapevine for abiotic stress/disease management towards more resilient viticulture practices. Agriculture 12:1369. https://doi.org/10.3390/agriculture12091369

Singh RK, Soares B, Goufo P, Castro I, Cosme F, Pinto-Sintra AL, Ines A, Olivera AA, Falco V (2019). Chitosan upregulates the genes of the ROS pathway, and enhances the antioxidant potential of grape (Vitis vinifera L. ‘Touriga Francax and ‘Tinto Cão’) tissues. Antioxidants 8:525. https://doi.org/10.3390/antiox8110525

Stiller A, Garrison K, Gurdyumov K, Kenner J, Yasmin F, Yates P, Song BH (2021). From fighting critters to saving lives: polyphenols in plant defense and human health. International Journal of Molecular Sciences 22(16):8995. https://doi.org/10.3390/ijms22168995

Stockley C, Antoce OA, Kosti RI (2021). Concise Encyclopedia of Science and Technology of Wine. Joshi VK, Bordiga M, Cosme F, Farina L, Jackson RS, Lonvaud A, Jordão AM, Stockley (Eds). https://doi.org/10.1201/9781315107295

Teixeira A, Eiras-Dias J, Castellarin SD, Gerós H (2013). Berry phenolics of grapevine under challenging environments. International Journal of Molecular Sciences 14(9):18711-18739. https://doi.org/10.3390/ijms140918711

Thirumalaisamy R, Bhuvaneswari M, Haritha S, Jeevarathna S, Sai Janani KS, Suresh K (2022). Curcumin, naringenin and resveratrol from natural plant products hold promising solution for modern world diseases – a recent review. South African Journal of Botany https://doi.org/10.1016/j.sajb.2022.06.027

Xie S, Liu Y, Chen H, Zhang Z, Ge M (2021). Anthocyanin degradation and the underlying molecular mechanism in a red-fleshed grape variety. LWT 151:112198. https://doi.org/10.1016/j.lwt.2021.112198

Yang H, Zhang Y, Zhau F, Guo J, Tang J, Han Y, Fu C (2021). Preparation, bioactivities and applications in food industry of chitosan-based maillard products: A review. Molecules 26(1):166. https://doi.org/10.3390/molecules26010166

Zhang Z, Zhao P, Zhang P, Su L, Jia H, Wei X, Fang J, Jia H (2020). Integrative transcriptomics and metabolomics data exploring the effect of chitosan on postharvest grape resistance to Botrytis cinerea. Postharvest Biology and Technology 167:111248. https://doi.org/10.1016/j.postharvbio.2020.111248

*** https://www.kitogreen-agri.com/, KitoGreen® is the world first vegetal chitosan to be used in agriculture: a unique and efficient biocontrol and biostimulant (Accessed on August 27th, 2022).

***OIV (2022). International Code of Oenological Practices, Paris, Annex Maximum acceptable limits, https://www.oiv.int/public/medias/8672/code-2022-en.pdf



How to Cite

ARTEM, V., ANTOCE, A. O., GEANA, E. I., & RANCA, A. (2023). Effect of foliar treatment with chitosan on phenolic composition of ῾Fetească neagră’ grapes and wines. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 51(1), 12920. https://doi.org/10.15835/nbha51112920



Research Articles
DOI: 10.15835/nbha51112920