Synergism of microorganisms and seaweed extract on vegetative growth, yield and quality of cucumber fruit
DOI:
https://doi.org/10.15835/nbha51312888Keywords:
biomass, biostimulants, chlorophyll, titratable acidity, total soluble solidsAbstract
Natural biostimulants, such as microorganisms and seaweed extracts, are used in agriculture to improve crop yields with a sustainable approach. However, the interaction effects between different biostimulants have not been thoroughly investigated. The objective of this work was to evaluate the synergistic effects of microorganisms (Glomus intraradices and Azospirillum brasilense) and seaweed extract (Ascophyllum nodosum and Macrocytis pyrifera) on growth, yield and fruit quality of cucumber plants under soilless cultivation. Two doses of microorganisms (0 and 10 spores mL-1 + 106 CFU) and four concentrations of seaweed extract (0, 250, 500 and 2500 ppm) were evaluated. The experimental design used was a randomized complete block design with a factorial arrangement (2 x 4), with four replications per treatment. The results showed that the equatorial diameter of the fruit, yield and titratable acidity improve when applying microorganisms and seaweed extract in combination; however, when applying the two biostimulants the values of plant height, stem diameter, number of leaves, root length, biomass (fresh and dry), firmness, total soluble solids, vitamin C, chlorophyll (a and total) and indices of color (L* and b*) did not exceed those obtained when the biostimulants were applied individually. The combined application of microorganisms and seaweed extract improves cucumber yield, but not vegetative growth and, except for titratable acidity, fruit quality attributes.
References
Adesemoyea A, Torbertb H, Kloeppera J (2010). Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Applied Soil Ecology 56(1):54-58. https://doi.org/10.1016/j.apsoil.2010.06.010
Ali N, Farrell A, Ramsubhag A, Jayaraman J (2016). The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. Journal of Applied Phycology 28(2):1353-1362. https://doi.org/10.1007/s10811-015-0608-3
Al-Shatri AHN, Pakyürek M, Yavic A (2020). Effect of seaweed application on the vegetative growth of strawberry cv. ‘Albion’ grown under Iraq ecological conditions. Applied Ecology and Environmental Research 18:1211-1225. http://dx.doi.org/10.15666/aeer/1801_12111225
Altuntas O, Abak K, Dasgan HY (2015). Serada biber yetiştiriciliğinde arbuskuler mikorizal fungus kullanımının bitki gelişimi ve verime etkileri [The Effects of using arbuscular mycorrhizal fungi on the plant development and yield in pepper growth in greenhouses]. Selcuk Tarim Bilimleri Dergisi 2(2):144-151.
Anli M, Kaoua ME, Boutasknit A, ben-Laouane R, Toubali S, Baslam M, ... Meddich A (2020). Seaweed extract application and arbuscular mycorrhizal fungal inoculation: a tool for promoting growth and development of date palm (Phoenix dactylifera L.) cv. ‘Boufgous’. South African Journal of Botany 132:15-21. https://doi.org/10.1016/j.sajb.2020.04.004
Ansari MH, Hashemabadi D, Mahdavi M, Kaviani B (2018). The role of Pseudomonas strains and arbuscular mycorrhiza fungi as organic phosphate–solubilizing in the yield and quality improvement of strawberry (Fragaria × ananassa duch., cv. ‘Selva’) fruit. Acta Scientiarum Polonorum Hortorum 17:93-107. https://doi.org/10.24326/asphc.2018.4.9
AOAC (2000). Official Methods of Analysis. Association of Official Analytical Chemists (17th ed.), Washington, DC.
Ashour M, El-Shafei AA, Khairy HM, Abd-Elkader DY, Mattar MM, Alataway A, Hassan SM (2020). Effect of Pterocladia capillacea seaweed extracts on growth parameters and biochemical constituents of Jew’s Mallow. Agronomy 10:420. https://doi.org/10.3390/agronomy10030420.
Ashour M, Hassan SM, Elshobary ME, Ammar GA, Gaber A, Alsanie WF, ... El-Shenody R (2021). Impact of commercial seaweed liquid extract (TAM®) biostimulant and its bioactive molecules on growth and antioxidant activities of hot pepper (Capsicum annuum). Plants 10(6):1045. https://doi.org/10.3390/plants10061045
Azcón R, Ambrosano E, Charest C (2003). Nutrient acquisition in mycorrhizal lettuce plants under different phosphorus and nitrogen concentration. Plant Sciences 165:1137-1145. https://doi.org/10.1016/S0168-9452(03)00322-4
Bashan Y, Bashan LED (2010). How the plant growth-promoting bacterium Azospirillum promotes plant growth- A critical assessment. Advances in Agronomy 108:77-136. https://doi.org/10.1016/S0065-2113(10)08002-8
Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B (2015). Seaweed extracts as biostimulants in horticulture. Scientia Horticulturae 196:39-48. https://doi.org/10.1016/j.scienta.2015.09.012
Bhantana P, Rana MS, Sun XC, Moussa MG, Saleem MH, Syaifudin M, ... Hu CX (2021). Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation. Symbiosis 84(1):19-37. https://doi.org/10.1007/s13199-021-00756-6
Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschini V, ... Berta G (2015). AM fungi and PGP pseudomonads increase flowering, fruit production and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25(3):181-193. https://doi.org/10.1007/s00572-014-0599-y
Cassán F, Coniglio A, López G, Molina R, Nievas S, de Carlan CLN, ... Mora V (2020). Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils 56:461-479. https://doi.org/10.1007/s00374-020-01463-y
Cecatto AP, Ruiz FM, Calvete EO, Martínez J, Palencia P (2016). Mycorrhizal inoculation affects the phytochemical content in strawberry fruits. Acta Scientiarum 38(2):227-237. https://doi.org/10.4025/actasciagron.v38i2.27932
Chen S, Zhao H, Zou C, Li Y, Chen Y, Wang Z, JiangY, Zhao P, Wang M, Ahammed GJ (2017). Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedling. Front Microbiol 8:2516. https://doi.org/10.3389/fmicb.2017.02516
Contreras JR, Mata TM, Sara P, Cuellar P (2019). Symbiotic co-culture of Scenedesmus sp. and Azospirillum brasilense on N-deficient media with biomass production for biofuels. Sustainability 11(7):1-16. https://doi.org/10.3390/su11030707
Cordell D, Drangert JO, White S (2009). The story of phosphorus: global food security and food for thought. Global Environmental Change 19:292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
Craigie JS (2011). Seaweed extract stimuli in plant science and agriculture. Journal of applied phycology 23:371-393. https://doi.org/10.1007/s10811-010-9560-4
Das K, Sau S, Datta P, Sengupta D (2017). Influence of bio-fertilizer on guava (Psidium guajava L.) cultivation in gangetic alluvial plain of west Bengal, India. Journal of Experimental Biology and Agriculture Science 5:476-482. http://dx.doi.org/10.18006/2017.5(4).476.482
du Jardin P (2015). Plant biostimulants: definition, concept, main categories and regulation. Scientia Horticulturae 196:3-14. https://doi.org/10.1016/j.scienta.2015.09.021
Eifediyi EK, Remison SU (2010). Growth and yield of cucumber (Cucumis sativus L.) as influenced by farmyard manure and inorganic fertilizer. Researcher 2(4):1-6.
El-Hifny IM, El-Sayed MA (2011). Response of sweet pepper plant growth and productivity to application of ascorbic acid and biofertilizers under saline conditions. Australian Journal of Basic and Applied Sciences 5(6):1273-1283.
Frioni T, Sabbatini P, Tombesi S, Norrie J, Poni S, Gatti M, Palliotti A (2018). Effects of a biostimulant derived from the brown seaweed Ascophyllum nodosum on ripening dynamics and fruit quality of grapevines. Scientia Horticulturae 232:97-106. https://doi.org/10.1016/j.scienta.2017.12.054
Glick BR (2012). Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. https://doi.org/10.6064/2012/963401.
Golubkina N, Logvinenko L, Novitsky M, Zamana S, Sokolov S, Molchanova A, ... Caruso G (2020). Yield, essential oil and quality performances of Artemisia dracunculus, Hyssopus officinalis and Lavandula angustifolia as affected by arbuscular mycorrhizal fungi under organic management. Plants 9(3):375. https://doi.org/10.3390/plants9030375
González GE, GómezFC, Trejo LI (2020b). Effects of silicon and calcium application on growth, yield and fruit quality parameters of cucumber established in a sodic soil. Acta Scientiarum Polonorum Hortorum Cultus 19(3):149-158. https://doi.org/10.24326/asphc.2020.3.13
González MF, Ocampo H, Santacruz F, Sánchez CV, Casarrubias K, Becerril A, ... Hernández RM (2020a). Physiological, ecological, and biochemical implications in tomato plants of two plant biostimulants: arbuscular mycorrhizal fungi and seaweed extract. Frontiers in Plant Science 11:999. https://doi.org/10.3389/fpls.2020.00999
Gutjahr C, Paszkowski U (2013). Multiple control levels of root system remodeling in arbuscular mycorrhizal symbiosis. Frontiers in Plant Science 4:204. https://doi.org/10.3389/fpls.2013.00204
Hassan SM, Ashour M, Sakai N, Zhang L, Hassanien HA, Gaber A, Ammar G (2021). Impact of seaweed liquid extract biostimulant on growth, yield and chemical composition of cucumber (Cucumis sativus). Agriculture 11(4):320. https://doi.org/10.3390/agriculture11040320
Hurr BM, Huber DJ, Vallejos CE, Talcott ST (2009). Developmentally dependent responses of detached cucumber (Cucumis sativus L.) fruit to exogenous ethylene. Postharvest Biology and Technology 52:207-215. https://doi.org/10.1016/j.postharvbio.2008.12.006
Ibraheem FF (2020). Wild and marine plant extracts, safe and alternative system to reduce damage of mineral fertilizers and stress cases in vegetable crops. A review. Middle East Journal 9(3):533-538. https://doi.org/10.36632/mejar/2020.9.3.41
Jahan SE, Hassan MK, Roy S, Ahmed QM, Hasan GN, Muna AY, Sarkar MN (2020). Effects of different postharvest treatments on nutritional quality and shelf life of cucumber. Asian Journal of Soil Science and Plant Nutrition 2:51-61. https://doi.org/10.18801/ajcsp.020120.08
Keller B, Zimmermann L, Rascher U, Matsubara S, Steier A, Muller O (2022). Toward predicting photosynthetic efficiency and biomass gain in crop genotypes over a field season. Plant Physiology 188(1):301-317. https://doi.org/10.1093/plphys/kiab483
Kishor DS, Alavilli H, Lee SC, Kim JG, Song K (2021). Development of SNP markers for white immature fruit skin color in cucumber (Cucumis sativus L.) using QTL-seq and marker analyses. Plants 10(11):2341. https://doi.org/10.3390/plants10112341
Kumar A, Ram RB, Meena ML, Raj U, Anand AK. (2014). Effect of biofertilizers on nutritional characteristics in aonla seedlings and grafted plants. International Journal of Natural Sciences 5:258-260.
Kumar P (2020). Effect of fertigation on growth and fruit yield of cucumber (Cucumis sativus L.) grown under naturally ventilated polyhouse condition. Journal of Pharmacognosy and Phytochemistry 9(6):124-126. http://dx.doi.org/10.13140/RG.2.2.23386.77767
Lin W, Lin M, Zhou H, Wu H, Li Z, Lin W (2019). The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS One 14:e0217018. https://doi.org/10.1371/journal.pone.0217018
Lira RH, Hernandez A, Valdez LA, Cárdenas A, Ibarra L, Hernández M, Ruiz N (2014). Azospirillum brasilense and Glomus intraradices co-inoculation stimulates growth and yield of cherry tomato under shadehouse conditions. Phyton, International Journal of Experimental Botany 83(1):133-138.
Mikiciuk G, Sas-Paszt L, Mikiciuk M, Derkowska E, Trzciński P, Głuszek S, ... Rudnicka J (2019). Mycorrhizal frequency, physiological parameters, and yield of strawberry plants inoculated with endomycorrhizal fungi and rhizosphere bacteria. Mycorrhiza 29(5):489-501. https://doi.org/10.1007/s00572-019-00905-2
Ngoroyemoto N, Kulkarni MG, Stirk WA, Gupta S, Finnie JF, van Staden J (2020). Interactions Between microorganisms and a seaweed-derived biostimulant on the growth and biochemical composition of Amaranthus hybridus L. natural product communications 15(7):1934578X20934228. https://doi.org/10.1177/1934578X20934228
Ozbay N, Demirkiran AR (2019). Enhancement of growth in ornamental pepper (Asapsicum annuum L.) plants with application of a commercial seaweed product, stimplex. Applied Ecology and Environmental Research 17:4361-4375. http://dx.doi.org/10.15666/aeer/1702_43614375
Patel JS, Mukherjee A (2021). Seaweed and associated products: natural biostimulant for improvement of plant health. In: Singh KP, Jahagirdar S, Sarma BK (Eds). Emerging trends in plant pathology. Springer Nature press, Springer, Singapore pp 317-330. https://link.springer.com/chapter/10.1007/978-981-15-6275-4_14
Pathak DV, Kumar M, Rani K (2017). Biofertilizer application in horticultural crops. In: Panpatte D, Jhala Y, Vyas R, Shelat H (Eds). Microorganisms for green revolution. Springer Nature press, Springer, Singapore pp 215-227. https://link.springer.com/chapter/10.1007/978-981-10-6241-4_11
Pérez MM, Pontin M, Lipinski V, Bottini R, Piccoli P, Cohen AC (2020). Pseudomonas fluorescens and Azospirillum brasilense increase yield and fruit quality of tomato under field conditions. Journal of Soil Science and Plant Nutrition 20(4):1614-1624. https://doi.org/10.1007/s42729-020-00233-x
Perner H, Schwarz D, Bruns C, Mader P, George E (2007). Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants. Mycorrhiza 17:469-474. https://doi.org/10.1007/s00572-007-0116-7
Pozo MJ, Lopez JA, Azcon C, Garcia JM (2015). Phytohormones as integrators of environmental signals in the regulation of mycorrhizal symbioses. New Phytologist 205:1431-1436. https://doi.org/10.1111/nph.13252
Ranjbar S, Ramezanian A, Rahemi M (2020). Nano-calcium and its potential to improve ‘Red Delicious’ apple fruit characteristics. Horticulture, Environment, and Biotechnology 61(1):23-30. https://doi.org/10.1007/s13580-019-00168-y
Rayorath P, Jithesh MN, Farid A, Khan W, Palanisamy R, Hankins SD, Critchley AT, Prithiviraj B (2008). Rapid bioassays to evaluate the plant growth promoting activity of Ascophyllum nodosum (L.) Le Jol. using a model plant, Arabidopsis thaliana (L.) Heynth. Journal of Applied Phycology 20:423-429. https://doi.org/10.1007/s10811-007-9280-6
Rivera FH, Vásque, G, Castillejo LH, Angoapérez MV, Oyoque G, Mena HG (2012). Efecto de hongos micorrícicos arbusculares y extracto acuoso de vermicompost sobre calidad de fresa [Effect of arbuscular mycorrhizal fungi and vermicompost liquid extract on quality of straberry]. Ra Ximhai 8:119-130.
Ruíz M, Armada E, Muñoz Y, de Salamone IEG, Aroca R, Ruíz JM, Azcón R (2011). Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under well-watered and drought conditions. Journal of plant physiology 168(10):1031-1037. https://doi.org/10.1016/j.jplph.2010.12.019
Salim HA, Kadhum AA, Ali AF, Saleh UN, Jassim NH, Hamad AR, ... Hassan AF (2021). Response of cucumber plants to PGPR bacteria (Azospirillum brasilense, Pseudomonas Fluorescens and Bacillus Megaterium) and bread yeast (Saccharomyces cerevisiae). Systematic Reviews in Pharmacy 12(1):969-975.
Schubert R, Werner S, Cirka H, Rödel P, Tandron Y, Mock HP, ... Hause B (2020). Effects of arbuscular mycorrhization on fruit quality in industrialized tomato production. International journal of Molecular Sciences 21(19):7029. https://doi.org/10.3390/ijms21197029
Sharma HSS, Fleming C, Selby C, Rao JR, Martin T (2014). Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology 26(1):465-490. https://doi.org/10.1007/s10811-013-0101-9
Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT, Prithiviraj B (2019). Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science 10:655. https://doi.org/10.3389/fpls.2019.00655
Simonne AH, Fuzere JM, Simonne E, Hochmuth RC, Marshall MR (2007). Effects of nitrogen rates on chemical composition of yellow grape tomato grown in a subtropical climate. Journal of Plant Nutrition 30:927-935. https://doi.org/10.1080/15226510701375465
Sivakumar PV, Palanisamy K, Lenin M (2020). Potential role of arbuscular mycorrizhal fungi (AMF) and vermicompost (vc) on the maturation of agriculture crops. South Asian Journal of Life Sciences 8(2):24-37. http://dx.doi.org/10.17582/journal.sajls/2020/8.2.24.37
Steiner AA (1961). A universal method for preparing nutrient solutions of a certain desired composition. Plant soil 15(2):134-154. https://doi.org/10.1007/BF01347224
Tarantino A, Lops F, Disciglio G, Lopriore G (2018). Effects of plant biostimulants on fruit set, growth, yield and fruit quality attributes of Orange rubis® apricot (Prunus armeniaca L.) cultivar in two consecutive years. Scientia Horticulturae 239:26-34. https://doi.org/10.1016/j.scienta.2018.04.055
Trejo R, Sánchez L, Fortis M, Preciado, P, Gallegos MÁ, Antonio RDC, Vázquez C (2018). Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber (Cucumis sativus L.) fruit. Agronomy 8(11):264. https://doi.org/10.3390/agronomy8110264
Vafa ZN, Sohrabi Y, Sayyed RZ, Luh N, Datta R (2021). Effects of the combinations of rhizobacteria, mycorrhizae and seaweed, and supplementary irrigation on growth and yield in wheat cultivars. Plants 10(4):811. https://doi.org/10.3390/plants10040811
Wang YT, Huang SW, Liu RL, Jin JY (2007). Effects of nitrogen application on flavor compounds of cherry tomato fruits. Journal of Plant Nutrition and Soil Science 170:461-468. https://doi.org/10.1002/jpln.200700011
Wang ZH, Li SX, Malhi S (2008). Effects of fertilization and other agronomic measures on nutritional quality of crops. Journal of the Science of Food and Agriculture 88:7-23. https://doi.org/10.1002/jsfa.3084
Witham FH, Blaydes DF, Devlin RM (1971). Experiments in Plant Physiology. Van Nostrand, New York.
Zhang N, Yang Z, Chen A, Zhao S (2014). Effects of intermittent heat treatment on sensory quality and antioxidant enzymes of cucumber. Scientia Horticulturae 170:39-44. https://doi.org/10.1016/j.scienta.2014.02.032
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Alonso MENDEZ, Silvia MARTINEZ, Aida LEAL, Armando HERNANDEZ, Juana GARCÍA, Miriam SÁNCHEZ

This work is licensed under a Creative Commons Attribution 4.0 International License.
License:
Open Access Journal:
The journal allows the author(s) to retain publishing rights without restriction. Users are allowed to read, download, copy, distribute, print, search, or link to the full texts of the articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author.